TDDB56 – DALG
Examination Requirements
To be augmented for TDDB57

Overview:
- Complexity Analysis [G&T] 4.2; Fö 1-2; Le 1
- Stacks and Queues [G&T] 5.1, 5.2; Fö 3; Le 2
- ADTMap&Dictionary, Hashing, Skip Lists [G&T] 9.1-9.4.1; Fö 4; Le 2
- Trees, Search Trees, [G&T] 7.1-7.3; 10.1-10.4; Fö 5-7; Le 3
- Priority Queues, Heaps, Union/Find [G&T] 8.1-8.3, 11.6.2; Fö 7; Le 4
- Sorting and Selection [G&T] 3.1.2, 11.1-11.5, 11.7; Fö 8-10; Le 4
- Graphs [G&T] 13.1-13.4; Fö 11; Le 5

[G&T]: Goodrich and Tamassia 4th edition
[Le]: on-line lektion’s material [Fö]: on-line slides

Complexity Analysis:
- Order Notation: O, Θ, Ω
 - [G&T] 4.2.3-4.2.4;
 - Definitions and intuitions of asymptotic analysis;
- Analysis of algorithms, recurrence equations
 - [G&T] 4.25, 6.1.5, 11.1.5;
 - Finding complexity of given iterative/recursive algorithms
Cases: worst case, expected, amortized analysis

Stacks and Queues:
- Stack
 - ADT [G&T] 5.1.1
 - Implementations [G&T] 5.1.2, 5.1.3
 - Applications [G&T] 5.1.4
- Queue
 - ADT[G&T] 5.2.1
 - Implementations [G&T] 5.2.2, 5.2.3

Which of the algorithms discussed in the course use stacks or/and queues?

Trees:
- Basic Terminology [G&T] 7.1.1
- ADT Tree/binary Tree and its implementation
 - [G&T] 7.1.2 – 7.1.3, 7.2, 7.3.1, 7.3.3-7.3.6
- Binary Search trees [G&T] 10.1
Particular attention: representation of trees operations on BSTs

Maps and Dictionaries:
- Implementations ADT Map/Dictionary:
 - Simple list-based [G&T] 9.1.1, 9.3.1
 - Hash tables/collision handling (chaining, open addressing, double hashing)
 [G&T] 9.2.1-9.2.2, 9.2.4-9.2.5, 9.2.7, 9.3.2
 - Ordered Search Tables/Binary Search [G&T] 9.3.3
 - Skip Lists [G&T] 9.4.1
Illustrating execution of ADT operations in these implementations
Special Search Trees:
- AVL Trees \[G&T\] 10.2
- Splay Trees \[G&T\] 10.3.1-10.3.2
- Multi-way Search Trees, (a,b) trees \[G&T\] 10.4
- B-trees \[G&T\] 14.3.2

Examples showing execution of look-up, insert and delete operations on AVL-trees, Splay trees, (2,3) trees.

Priority Queues
- ADT Priority Queue \[G&T\] 8.1
- Implementations:
 - Lists \[G&T\] 8.2.1,8.2.2
 - Heap \[G&T\] 8.3.1-8.3.3

Show execution of ADT Priority Queue operations in different implementations; variants of heaps.

Sorting and Selection (1)
- Aspects of Sorting \[Fö\] 8.3-8.5
- Comparison based sorting algorithms
 - (Linear) Insertion Sort \[G&T\] 3.1.2
 - (Straight) Selection Sort \[G&T\] p.332
 - Quick Sort \[G&T\] 11.2
 - Heap Sort \[G&T\] 8.3.5-8.3.6
 - Merge Sort \[G&T\] 11.1.1-11.1.3
- Lower bound \[G&T\] 11.3

Illustrate steps of a sorting algorithm for given input, discuss stability of a given algorithm, discuss complexity.

Graphs
- ADT Graph \[G&T\] 13.1
- Representing graphs
 - adjacency list \[G&T\] 13.2.1-13.2.2
 - adjacency matrix \[G&T\] 13.2.3
- Graph traversals and applications
 - Depth-first Search \[G&T\] 13.3.1
 - Breadth-first Search \[G&T\] 13.3.3
- Directed graphs
 - Basics/traversals \[G&T\] 13.4.1
 - Strong connectivity \[G&T\] 13.4.1
 - Topological ordering on DAGs \[G&T\] 13.4.3

Show data structures representing a given graph, illustrate on examples basic graph algorithms.