
COMPILER CONSTRUCTION
Lesson 2 – TDDB44

Kristian Stavåker (kristian.stavaker@liu.se)

Sergiu Rafiliu (sergiu.rafiliu@liu.se)

Department of Computer and Information Science

Linköping University

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate
Code Generator

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error Handler

Lab 2 Symtab –
administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lab 5 Optimizer – optimizes the
internal form

Lab 6 Quads – generates quadruples
from the internal form

Lab 7 Codegen – expands
quadruples into assembly

LABORATORY ASSIGNMENTS

Assignment 4 Semantic analysis

Assignment 5 Optimization

Assignment 6 Intermediary code generation
(quadruples)

Assignment 7 Code generation (assembly) and
 memory management

HANDING IN AND DEADLINE

 Demonstrate the working solutions to your lab assistant
during scheduled time. Then send the modified files to
the same assistant (put TDDB44 <Name of the
assignment> in the topic field). One e-mail per group.

 Deadline for all the assignments is: December 13,
2012 (you will get 3 extra points on the final exam if
you finish on time!)

ASSIGNMENT 4
SEMANTIC ANALYSIS

PURPOSE

To verify the semantic correctness of the program
represented by the parse tree, reporting any
errors, to produce an intermediate form and
certain tables for use by later compiler phases

 Semantic correctness the program adheres to the rules
of the type system defined for the language (plus some
other rules)

 Error messages should be as meaningful as possible
 In this phase, there is sufficient information to be able

to generate a number of tables of semantic information
identifier, type and literal tables

UNIQUENESS CHECKS

In certain situations it is important that particular
constructs occur only once

Declarations
within any given scope, each identifier must be
declared only once.

Case statements
each case constant must occur only once in the
“switch”.

MATHEMATICAL CHECKS

Divide by zero
Zero must be compile-time determinable constant
zero, or an expression which symbolically evaluates
to zero at runtime.

Overflow
Constant which exceeds representation of target
machine language arithmetic which obviously leads
to overflow.

Underflow
Same as for overflow.

TYPE CHECKS

These checks form the bulk of semantic
checking and certainly account for the
majority of the overhead of this phase
of compilation
In general the types across any given operator must be
compatible

The meaning of compatible may be:

• the same

• two different sizes of the same basic type

OTHER CHECKS

• All functions return something.

• The number of formal and actual parameters in
a function call matches.

• ...

TYPE CONVERSION

• The semantics in DIESEL allow us, for example,
to add floating-point numbers to integers.

• To make quadruple generation as simple as
possible, we add a type translation node
(ast_cast) which has a child of integer type
but which is itself of floating-point type. This is
known as casting the integer number to real
type and is an example of type conversion.

 +

3.1 x

 +

3.1
ast_cas
t

 x

?

real

real

real real

integer

integer

TYPE SPECIFICATIONS FOR DIESEL

• The grammar with a description of which type
restrictions apply for each production given in
the laboratory compendium.

• We perform type checking one block at a time,
by use of a recursive call type_check() which
is passed from the root downwards in the AST
representing the block.

• Example:
• => 68. <term><term> AND <factor>

 Both operands must be of integer type. The result is of integer
type.

FILES TO BE CHANGED

• semantic.hh and semantic.cc contains type
checking code implementation for the AST
nodes as well as the declaration and
implementation of the semantic class. These
are the files you're going to edit in this lab.
They deal with type checking, type
synthesizing, and parameter checking.

OTHER FILES OF INTEREST

• All these files are the same as in lab 3:

• parser.y is the input file to bison. This is the file you edited in
the last lab, and all you should need to do now is uncomment a
couple of calls to:

 do_typecheck().
• ast.hh contains the definitions for the AST nodes.
• ast.cc contains (part of) the implementations of the AST nodes.
• optimize.hh and optimize.cc contains optimizing code.
• quads.hh and quads.cc contains quad generation code.
• codegen.hh and codegen.cc contains assembler generation

code.

OTHER FILES OF INTEREST

• error.hh, error.cc, symtab.hh, symbol.cc,
symtab.cc, scanner.l use your versions from the
earlier labs.

• main.cc this is the compiler wrapper, parsing flags
and the like.

• Makefile and diesel use the same files as in the
last lab.

ASSIGNMENT 5
OPTIMIZATION

CODE OPTIMIZATION

Optimization is the process of improving the code
produced by the compiler.

The resulting code is “seldom” optimal but is rather
better than it would be without the applied
“improvements”.

Many different kind of optimizations are possible
and they range from the simple to the extremely
complex.

TYPES OF OPTIMIZATION

Three basic types of optimization:

• The “code” in question might be abstract
syntax tree in which case machine
independent optimization may be performed.

• The code in question may be intermediate
form code in which case machine independent
optimization may be performed.

• The code might also be assembly/machine
code in which case machine dependent
optimization may be performed.

OTHER OPTIMIZATION TYPES

Other taxonomies of optimization divide things up
differently:

 Global optimization considering the whole program
as a routine.
 Local optimizations within a basic block.
 Peephole optimizations considering only a small
sequence of instructions or statements.

COMPENSATION

Many of the optimizations are done to
compensate for compiler rather than
programmer deficiencies.

It is simply convenient to let the compiler
do “stupid” things early on and then fix
them later.

MACHINE INDEPENDENT OPTIMIZATION

• Don’t consider any details of the target
architecture when making optimization
decisions.

• This optimization tend to be very general
in nature.

MACHINE DEPENDENT OPTIMIZATION

• Machine dependent optimization on
assembly or machine code.

• Target machine architecture specific.

CONSTANT FOLDING

Expressions with constant operands can
be evaluated at compile time, thus
improving run-time performance and
reducing code size by avoiding
evaluation at compile-time.

CONSTANT FOLDING

 Constant folding is a relatively simple
optimization.

 Programmers generally do not write
expressions such as '5 + 3' directly,
but these expressions are relatively
common after macro expansion; or
other optimization such as constant
propagation.

CONSTANT PROPAGATION

Constants assigned to a variable can
be propagated through the flow graph
and substituted at the use of the
variable.

COMMON SUB-EXPRESSION ELIMINATION

An expression is a Common Sub-
Expression (CSE) if the expression is:

1) previously computed

2) the values of the operands have not
changed since the previous
computation

Re-computing can then be avoided by
using the previous value.

COMMON SUB-EXPRESSION ELIMINATION

Below, the second computation of the
expression 'x + y' can be eliminated:

i := x + y + 1;
j := x + y;

After CSE Elimination, the code
fragment is rewritten as follows:

t1 := x + y;
i := t1 + 1;
j := t1;

DEAD CODE ELIMINATION

Code that is unreachable or that does
not affect the program (e.g. dead
stores) can be eliminated directly.

DEAD CODE ELIMINATION

 The value assigned to i is never used
 The first assignment to global is dead
 The third assignment to global is

unreachable

var
 global : integer;
procedure f;
var
 i : integer;
begin
 i := 1; { dead store }
 global := 1; { dead store }
 global := 2;
 return;
 global := 3; { unreachable }
end;

DEAD CODE ELIMINATION

After elimination of dead code the
fragment is reduced to:

var
 global : integer;
procedure f;
begin
 global := 2;
 return;
end;

FORWARD STORES

Stores to global variables in loops can
be moved out of the loop to reduce
memory bandwidth requirements.

FORWARD STORES

Below the load and store to the global
variable sum can be moved out of the
loop by computing the summation in a
register and then storing the result to
sum outside the loop:

int sum;
void f (void)
{
 int i;

 sum = 0;
 for (i = 0; i < 100; i++)
 sum += a[i];
}

FORWARD STORES

After forward store optimization the
code looks like this:

int sum;
void f (void)
{
 int i;
 register int t;
 sum = 0;
 for (i = 0; i < 100; i++)
 t += a[i];
 sum = t;
}

IMPLEMENTATION

• In this lab you are to implement constant
folding as described earlier.

• You will optimize the abstract syntax tree.
• The tree traversal will be done using recursive

method calls, similar to the type checking in
the last lab.

• You will start from the root and then make
optimize() calls, that will propagate down the
AST, and try to identify sub-trees eligible for
optimization.

IMPLEMENTATION

• Requirements:
• Must be able to handle optimizations of all

operations derived from ast_binaryoperation.
• Need only optimize subtrees whose leaf nodes are

instances of ast_real, ast_integer or ast_id
(constant).

• No need to optimize ast_cast nodes, but feel free to
implement this.

• No need to optimize optimization of binary relations,
but feel free to implement this.

• Your program must preserve the code structure, i.e.
the destructive updates must not change the final
result of running the compiled program in any way.

• Optimization should be done one block at a time
(local optimization).

FILES OF INTEREST

• Files you will have to modify
– optimize.hh and optimize.cc contains optimizing code

for the AST nodes as well as the declaration and
implementation of the ast_optimizer class. These are the
files you will edit in this lab.

• Other files of interest
– ast.hh : contains the implementations of the AST nodes.
– ast.cc : contains the implementations of the AST nodes.
– parser.y : the function do_optimize() is called from here.
– error.hh, error.cc, symtab.hh, symbol.cc, symtab.cc,

 scanner.l, semantic.hh, semantic.cc : use your
versions from earlier labs.

– Makefile and diesel use the same files as in the last lab.

ASSIGNMENT 6
QUADRUPLES

INTERMEDIATE CODE

• Is closer to machine code without being
machine dependent.

• Can handle temporary variables.

• Means higher portability, intermediate
code can easier be expanded to assembly
code.

• Offers the possibility of performing code
optimizations such as register allocation.

INTERMEDIATE LANGUAGE

 Why use intermediate languages?
• Retargeting - build a compiler for a new machine
by attaching a new code generator to an existing
front-end and middle-part

• Optimization - reuse intermediate code
optimizers in compilers for different languages and
different machines

• Code generation - for different source languages
can be combined

THREE-ADDRESS SYSTEM

Source statement:
x := a + b * c + d;

Three address statements with
temporaries t1 and t2:

t1 := b * c;

t2 := a + t1;

x := t2 + d;

QUADRUPLES

You will use Quadruples as intermediate code
where each instruction has four fields:

operator operand1 operand2 result

QUADRUPLES

(A + B) * (C + D) - E

T4ET3-

T3T2T1*

T2DC+

T1BA+

resultoperand2operand1operator

QUADRUPLES

A := (B + C) / D;

:=

/

D+

B C

A

q_iplus 10 11 13
q_idiv 13 12 14
q_assign 14 0 9

The numbers are indexes in the symbol table
9 10 11 12 13 14
A B C D T1 T2

QUADRUPLES
 Another example:

The DIESEL statement a[a[1]] := a[2]; will generate:

q_iload 2 0 10
q_irindex 9 10 11 (retrieves a

value)
q_iload 1 0 12
q_irindex 9 12 13
q_lindex 9 13 14 (calculates an

address)
q_istore 11 0 14

The numbers are indexes in the symbol table
9 10 11 12 13 14
A T1 T2 T3 T4 T5

QUADRUPLES
 Another example:

The DIESEL statement foo(a, bar(b), c); will
generate:

q_param 11 0 0
q_param 10 0 0
q_call 13 1 14
q_param 14 0 0
q_param 9 0 0
q_call 12 3 0

The numbers are indexes in the symbol table
9 10 11 12 13 14
A B C FOO BAR T1

QUADRUPLES

•Operations are typed. There are both q_rdivide
and q_idivide. The operation to select depends
on the node type if it is an arithmetic operation
but on the children's types if it is a relational
operation.

HANDLING REAL NUMBERS
• When generating assembly code all real
numbers are stored in 32 bits.

• We do this by storing real numbers as integers
in the IEEE format.

• Use the symbol table method ieee(). It takes a
float number and returns an integer
representation in the 32-bit IEEE format.

• So when you are generating a quadruple
representing or treating a real number call:
sym_tab->ieee(value);

IMPLEMENTATION
• In this lab, you will write the routines for
converting the internal form we have been
working with so far into quadruples.

• The quadruple generation is started from
parser.y with a call to do_quads(). This function
will call generate_quads() which propagates
down the AST.

• The final result is a quad_list containing the
quadruples generated while traversing the AST.

IMPLEMENTATION
• Complete the empty generate method bodies
in quads.cc.

• Complete the empty method body
gen_temp_var() in the file symtab.cc. It takes a
sym_index to a type as argument. It should
create and install a temporary variable (of the
given type) in the symbol table. Give your
temporary variables “unique” names that are
not likely to collide with the user variables.

FILES OF INTEREST
• Files you will have to modify

– quads.cc, quads.hh : contains quad generation code for the
AST nodes as well as the declaration and implementation of
the quadruple, quad_list, quad_list_element and
quad_list_iterator classes. These are the files you will edit in
this lab.

– symtab.cc : You will need to complete one more method in
this lab.

• Other files of interest
– ast.hh : contains the definitions of the AST nodes.
– ast.cc : contains (part of) the implementations of the AST

nodes.
– parser.y : the function do_quads() is called from here.
– error.hh, error.cc, symtab.hh, symbol.cc, symtab.cc,
 scanner.l, semantic.hh, semantic.cc, optimize.hh,

optimize.cc : use your versions from earlier labs.

ASSIGNMENT 7
CODE GENERATION

CODE GENERATION

Once the source code has been

1) scanned
2) parsed and transformed into internal

form
3) semantically analyzed

code generation might be performed.

CODE GENERATION

Code generation is the process of
creating assembly/machine language
statements which will perform the
operations specified by the source
program when they run.

CODE GENERATION

In addition other code is also produced:

 Typically assembly directives are
produced, e.g. storage allocation
statements for each variable and literal
in the program.

CODE GENERATION
Un-optimized code generation is
relatively straightforward:

 Simple mapping of intermediate code
constructs to assembly/machine code
sequences.
 Resulting code is quite poor though
compared to manual coding.

CODE GENERATION FOR SPARC
 We are going to use a simple method which

expands each quadruple to one or more
assembly instructions.

 SPARC has 32 general 32-bit registers, and 32
floating-point registers.

global registers %g0, ..., %g7

“in”-register %i0, ..., %i7

local register %l0, ..., %l7

“out”-register %o0, ..., %o7 (%o6 stack pointer
…)

floating-point register %f0, ..., %f31

MEMORY MANAGEMENT
 Static memory management: In certain
programming languages recursion and dynamic data
allocation is forbidden and the size must be known at
compile time. No run-time support needed and all
data can be referenced using absolute addresses.
(FORTRAN).
 Dynamic memory management: Other languages
such as Pascal, C++ and Java allow recursion and
dynamic memory allocation.

DYNAMIC MEMORY MANAGEMENT

 All data belonging to a function/procedure is gathered into an
Activation Record (AR). An AR is created when the
function/procedure is called and memory is allocated on a stack.

ACTIVATION RECORD
 Local data
 Temporary data
 Return address
 Parameters
 Pointers to the previous activation record (dynamic link).
 Static link or display to find the right reference to non-
local variables.
 Dynamically allocated data (dope-vectors).
 Possibly space for return values (applies to functions, not
procedures).
 Place to save register contents.

ACTIVATION RECORD
 An example:
procedure fum(i : integer);

begin

 if i <> 0 then
 fum(i - 1);
 end;

end;

procedure fie;

begin
 fum(1);
end;

procedure foo;
begin
 fie();
end;

time

REGISTER WINDOWS
 The SPARC processor has many general
registers, typically about 128 or more. But the
programmer can’t access all at the same time.
 The register window mechanism only shows a
subset of all the registers at a given time, for
each procedure/function (in this case 32 general
registers). These registers are organized in four
groups: global, in, local, and out.
 The global registers can be accessed from any
window.

REGISTER WINDOWS
 There are two instructions, SAVE and
RESTORE, which (among other things) move the
register window. SAVE and RESTORE are also
used to create and release activation records.
 These instructions, together with the
overlaying of out- and in-registers in adjacent
windows, are used to implement parameter
transfer as well as creating and releasing
activation records.

REGISTER WINDOWS

IMPLEMENTATION
• In this lab, you will write certain routines that

help expanding quadruples into assembly, as
well as some routines for handling creating
and releasing activation records.

• The assembly code generation is done by
traversing a quad list, expanding each quad to
assembly as we go. The expansion is started
from parser.y with a call generate_assembler()
to a code generator class.

IMPLEMENTATION
• Complete the prologue() method (used when

entering a block).
• Complete the epilogue() method (used when

leaving a block).
• Write the find() method which given a sym_index

returns the display register level and offset for a
variable, array or parameter to the symbol table.

• Write the fetch() method that retrieves the value
of a variable, parameter or constant to a given
register.

IMPLEMENTATION
• Write the store() method which stores the

value of a register in a variable or parameter.
• Write the array_address() method which

retrieves the base address of an array to a
register.

• Complete the expand() method which
translates a quad list to assembly code using
the methods above. You will need to write
code for expanding q_param and q_call quads.

FILES OF INTEREST
• Files you will have to modify
• codegen.hh, codegen.cc : contains assembly generation code for

SPARC assembly. These are the files you will edit in this lab.
• Other files of interest

• parser.y is the input file to bison.
• ast.hh contains the definitions for the AST nodes.
• ast.cc contains (part of) the implementations of the AST nodes.
• error.hh, error.cc, symtab.hh, symbol.cc, symtab.cc, scanner.l,

semantic.hh, semantic.cc, optimize.hh, optimize.cc, quads.hh,
quads.cc use your versions from the earlier labs.

• main.cc this is the compiler wrapper, parsing flags and the like. Same
as in the previous labs.

• Makefile and diesel use the same files as in the last lab.

	COMPILER CONSTRUCTION Lesson 2 – TDDB44
	PHASES OF A COMPILER
	LABORATORY ASSIGNMENTS
	HANDING IN AND DEADLINE
	ASSIGNMENT 4 SEMANTIC ANALYSIS
	PURPOSE
	UNIQUENESS CHECKS
	MATHEMATICAL CHECKS
	TYPE CHECKS
	OTHER CHECKS
	TYPE CONVERSION
	TYPE SPECIFICATIONS FOR DIESEL
	FILES TO BE CHANGED
	OTHER FILES OF INTEREST
	Slide 15
	ASSIGNMENT 5 OPTIMIZATION
	CODE OPTIMIZATION
	TYPES OF OPTIMIZATION
	OTHER OPTIMIZATION TYPES
	COMPENSATION
	MACHINE INDEPENDENT OPTIMIZATION
	MACHINE DEPENDENT OPTIMIZATION
	CONSTANT FOLDING
	Slide 24
	CONSTANT PROPAGATION
	COMMON SUB-EXPRESSION ELIMINATION
	Slide 27
	DEAD CODE ELIMINATION
	Slide 29
	Slide 30
	FORWARD STORES
	Slide 32
	Slide 33
	IMPLEMENTATION
	Slide 35
	FILES OF INTEREST
	ASSIGNMENT 6 QUADRUPLES
	INTERMEDIATE CODE
	INTERMEDIATE LANGUAGE
	THREE-ADDRESS SYSTEM
	QUADRUPLES
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	HANDLING REAL NUMBERS
	Slide 48
	Slide 49
	Slide 50
	ASSIGNMENT 7 CODE GENERATION
	CODE GENERATION
	Slide 53
	Slide 54
	Slide 55
	CODE GENERATION FOR SPARC
	MEMORY MANAGEMENT
	DYNAMIC MEMORY MANAGEMENT
	ACTIVATION RECORD
	Slide 60
	REGISTER WINDOWS
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

