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PHASES OF A COMPILER

Lab 1 Scanner – manages lexical 
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate 
Code Generator

Code Generator

Source Program

Target Program

Symbol Table 
Manager

Error         Handler

Lab 2 Symtab –  
administrates the 
symbol table

Lab 3 Parser – manages syntactic  
analysis, build internal form

Lab 4 Semantics – checks static 
semantics

Lab 5 Optimizer – optimizes the 
internal form

Lab 6 Quads – generates quadruples 
from the internal form

Lab 7 Codegen – expands 
quadruples into assembly



LABORATORY ASSIGNMENTS

Assignment 4 Semantic analysis

Assignment 5 Optimization 

Assignment 6 Intermediary code generation 
(quadruples) 

Assignment 7 Code generation (assembly) and 
  memory management



HANDING IN AND DEADLINE

 Demonstrate the working solutions to your lab assistant 
during scheduled time. Then send the modified files to 
the same assistant (put TDDB44 <Name of the 
assignment> in the topic field). One e-mail per group.

 Deadline for all the assignments is: December 13, 
2012 (you will get 3 extra points on the final exam if 
you finish on time!)



ASSIGNMENT 4
SEMANTIC ANALYSIS



PURPOSE

To verify the semantic correctness of the program 
represented by the parse tree, reporting any 
errors, to produce an intermediate form and 
certain tables for use by later compiler phases

 Semantic correctness the program adheres to the rules 
of the type system defined for the language (plus some 
other rules )

 Error messages should be as meaningful as possible 
 In this phase, there is sufficient information to be able 

to generate a number of tables of semantic information 
identifier, type and literal tables



UNIQUENESS CHECKS

In certain situations it is important that particular 
constructs occur only once

Declarations
within any given scope, each identifier must be 
declared only once.

Case statements 
each case constant must occur only once in the 
“switch”.



MATHEMATICAL CHECKS

Divide by zero
Zero must be compile-time determinable constant 
zero, or an expression which symbolically evaluates 
to zero at runtime.

Overflow
Constant which exceeds representation of target 
machine language arithmetic which obviously leads 
to overflow.

Underflow
Same as for overflow.



TYPE CHECKS

These checks form the bulk of semantic 
checking and certainly account for the 
majority of the overhead of this phase 
of compilation 
In general the types across any given operator must be 
compatible

The meaning of compatible may be:

• the same

• two different sizes of the same basic type



OTHER CHECKS

• All functions return something.

• The number of formal and actual parameters in 
a function call matches.

• ...



TYPE CONVERSION

• The semantics in DIESEL allow us, for example, 
to add floating-point numbers to integers.

• To make quadruple generation as simple as 
possible, we add a type translation node 
(ast_cast) which has a child of integer type 
but which is itself of floating-point type. This is 
known as casting the integer number to real 
type and is an example of type conversion.
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TYPE SPECIFICATIONS FOR DIESEL

• The grammar with a description of which type 
restrictions apply for each production given in 
the laboratory compendium.

• We perform type checking one block at a time, 
by use of a recursive call type_check() which 
is passed from the root downwards in the AST 
representing the block.

• Example:
• => 68. <term><term> AND <factor>                      

     Both operands must be of integer type. The result is of integer 
type.



FILES TO BE CHANGED

• semantic.hh and semantic.cc contains type 
checking code implementation for the AST 
nodes as well as the declaration and 
implementation of the semantic class. These 
are the files you're going to edit in this lab. 
They deal with type checking, type 
synthesizing, and parameter checking.



OTHER FILES OF INTEREST

• All these files are the same as in lab 3:

• parser.y is the input file to bison. This is the file you edited in 
the last lab, and all you should need to do now is uncomment a 
couple of calls to:

       do_typecheck().
• ast.hh contains the definitions for the AST nodes.
• ast.cc contains (part of) the implementations of the AST nodes.
• optimize.hh and optimize.cc contains optimizing code. 
• quads.hh and quads.cc contains quad generation code. 
• codegen.hh and codegen.cc contains assembler generation 

code. 



OTHER FILES OF INTEREST

• error.hh, error.cc, symtab.hh, symbol.cc, 
symtab.cc, scanner.l use your versions from the 
earlier labs.

• main.cc this is the compiler wrapper, parsing flags 
and the like.

• Makefile and diesel use the same files as in the 
last lab.



ASSIGNMENT 5
OPTIMIZATION



CODE OPTIMIZATION

Optimization is the process of improving the code 
produced by the compiler.

The resulting code is “seldom” optimal but is rather 
better than it would be without the applied 
“improvements”.

Many different kind of optimizations are possible 
and they range from the simple to the extremely 
complex.



TYPES OF OPTIMIZATION

Three basic types of optimization:

• The “code” in question might be abstract 
syntax tree in which case machine 
independent optimization may be performed.

• The code in question may be intermediate 
form code in which case machine independent 
optimization may be performed.

• The code might also be assembly/machine 
code in which case machine dependent 
optimization may be performed.



OTHER OPTIMIZATION TYPES

Other taxonomies of optimization divide things up 
differently:

 Global optimization considering the whole program 
as a routine.
 Local optimizations within a basic block.
 Peephole optimizations considering only a small 
sequence of instructions or statements.



COMPENSATION

Many of the optimizations are done to 
compensate for compiler rather than 
programmer deficiencies.

It is simply convenient to let the compiler 
do “stupid” things early on and then fix 
them later.



MACHINE INDEPENDENT OPTIMIZATION 

• Don’t consider any details of the target 
architecture when making optimization 
decisions. 

• This optimization tend to be very general 
in nature.



MACHINE DEPENDENT OPTIMIZATION

• Machine dependent optimization on 
assembly or machine code. 

• Target machine architecture specific.



CONSTANT FOLDING

Expressions with constant operands can 
be evaluated at compile time, thus 
improving run-time performance and 
reducing code size by avoiding 
evaluation at compile-time.        



CONSTANT FOLDING

 Constant folding is a relatively simple 
optimization. 

 Programmers generally do not write 
expressions such as '5 + 3' directly, 
but these expressions are relatively 
common after macro expansion; or 
other optimization such as constant 
propagation. 



CONSTANT PROPAGATION

Constants assigned to a variable can 
be propagated through the flow graph 
and substituted at the use of the 
variable.



COMMON SUB-EXPRESSION ELIMINATION

An expression is a Common Sub-
Expression (CSE) if the expression is:

1) previously computed

2) the values of the operands have not 
changed since the previous 
computation 

Re-computing can then be avoided by 
using the previous value.



COMMON SUB-EXPRESSION ELIMINATION

Below, the second computation of the 
expression 'x + y' can be eliminated: 

i := x + y + 1;
j := x + y;

After CSE Elimination, the code 
fragment is rewritten as follows: 

t1 := x + y;
i  := t1 + 1;
j  := t1;



DEAD CODE ELIMINATION

Code that is unreachable or that does 
not affect the program (e.g. dead 
stores) can be eliminated directly.



DEAD CODE ELIMINATION

 The value assigned to i is never used
 The first assignment to global is dead
 The third assignment to global is 

unreachable

var 
   global : integer;
procedure f;
var
   i : integer;
begin
   i      := 1;     { dead store }
   global := 1;     { dead store }
   global := 2;
   return;
   global := 3;     { unreachable }
end;     



DEAD CODE ELIMINATION

After elimination of dead code the 
fragment is reduced to: 

var 
   global : integer;
procedure f;
begin
   global := 2;
   return;
end;     



FORWARD STORES

Stores to global variables in loops can 
be moved out of the loop to reduce 
memory bandwidth requirements.



FORWARD STORES

Below the load and store to the global 
variable sum can be moved out of the 
loop by computing the summation in a 
register and then storing the result to 
sum outside the loop:

int sum;
void f (void)
{
  int i;

  sum = 0;
  for (i = 0; i < 100; i++)
    sum += a[i];
}



FORWARD STORES

After forward store optimization the 
code looks like this:

int sum;
void f (void)
{
  int i;
  register int t;
  sum = 0;
  for (i = 0; i < 100; i++)
    t += a[i];
  sum = t;
}



IMPLEMENTATION

• In this lab you are to implement constant 
folding as described earlier.

• You will optimize the abstract syntax tree.
• The tree traversal will be done using recursive 

method calls, similar to the type checking in 
the last lab.

• You will start from the root and then make 
optimize() calls, that will propagate down the 
AST, and try to identify sub-trees eligible for 
optimization.



IMPLEMENTATION

• Requirements:
• Must be able to handle optimizations of all 

operations derived from ast_binaryoperation.
• Need only optimize subtrees whose leaf nodes are 

instances of ast_real, ast_integer or ast_id 
(constant).

• No need to optimize ast_cast nodes, but feel free to 
implement this.

• No need to optimize optimization of binary relations, 
but feel free to implement this.

• Your program must preserve the code structure, i.e. 
the destructive updates must not change the final 
result of running the compiled program in any way.

• Optimization should be done one block at a time 
(local optimization).



FILES OF INTEREST

• Files you will have to modify
– optimize.hh and optimize.cc contains optimizing code 

for the AST nodes as well as the declaration and 
implementation of the ast_optimizer class. These are the 
files you will edit in this lab.

• Other files of interest
– ast.hh : contains the implementations of the AST nodes.
– ast.cc : contains the implementations of the AST nodes.
– parser.y : the function do_optimize() is called from here. 
– error.hh, error.cc, symtab.hh, symbol.cc, symtab.cc, 

 scanner.l, semantic.hh, semantic.cc : use your 
versions from earlier labs.

– Makefile and diesel use the same files as in the last lab.



ASSIGNMENT 6
QUADRUPLES



INTERMEDIATE CODE

• Is closer to machine code without being 
machine dependent.

• Can handle temporary variables. 

• Means higher portability, intermediate 
code can easier be expanded to assembly 
code.

• Offers the possibility of performing code 
optimizations such as register allocation.



INTERMEDIATE LANGUAGE

 Why use intermediate languages?
• Retargeting - build a compiler for a new machine 
by attaching a new code generator to an existing 
front-end and middle-part

• Optimization - reuse intermediate code 
optimizers in compilers for different languages and 
different machines

• Code generation - for different source languages 
can be combined



THREE-ADDRESS SYSTEM

Source statement: 
x := a + b * c + d;

Three address statements with 
temporaries t1 and t2: 

t1 := b * c; 

t2 := a + t1; 

x  := t2 + d;



QUADRUPLES

You will use Quadruples as intermediate code 
where each instruction has four fields:

operator operand1 operand2 result



QUADRUPLES

(A + B) * (C + D) - E

T4ET3-

T3T2T1*

T2DC+

T1BA+

resultoperand2operand1operator



QUADRUPLES

A := (B + C) / D;

:=

/

D+

B C

A

q_iplus 10 11 13
q_idiv 13 12 14
q_assign 14 0 9

The numbers are indexes in the symbol table
9     10    11    12    13     14
A     B     C     D     T1     T2



QUADRUPLES
 Another example:

The DIESEL statement  a[a[1]] := a[2];  will generate:

q_iload                 2            0            10 
q_irindex              9           10           11              (retrieves a 

value)
q_iload                 1            0            12
q_irindex              9           12           13
q_lindex               9            13          14              (calculates an 

address)     
q_istore               11           0            14

The numbers are indexes in the symbol table
9     10    11    12    13    14
A     T1   T2    T3    T4    T5



QUADRUPLES
 Another example:

The DIESEL statement  foo(a, bar(b), c);  will 
generate:

q_param              11           0            0 
q_param              10           0            0
q_call                   13           1            14   
q_param              14           0            0
q_param               9            0            0
q_call                   12           3            0  

The numbers are indexes in the symbol table
9    10    11   12        13       14
A    B     C    FOO    BAR    T1



QUADRUPLES

•Operations are typed. There are both q_rdivide 
and q_idivide. The operation to select depends 
on the node type if it is an arithmetic operation 
but on the children's types if it is a relational 
operation.



HANDLING REAL NUMBERS
• When generating assembly code all real 
numbers are stored in 32 bits.

• We do this by storing real numbers as integers 
in the IEEE format.

• Use the symbol table method ieee(). It takes a 
float number and returns an integer 
representation in the 32-bit IEEE format.

• So when you are generating a quadruple 
representing or treating a real number call: 
sym_tab->ieee(value);



IMPLEMENTATION
• In this lab, you will write the routines for 
converting the internal form we have been 
working with so far into quadruples.

• The quadruple generation is started from 
parser.y with a call to do_quads(). This function 
will call generate_quads() which propagates 
down the AST. 

• The final result is a quad_list containing the 
quadruples generated while traversing the AST.  
 



IMPLEMENTATION
• Complete the empty generate method bodies 
in quads.cc.

• Complete the empty method body 
gen_temp_var() in the file symtab.cc. It takes a 
sym_index to a type as argument. It should 
create and install a temporary variable (of the 
given type) in the symbol table. Give your 
temporary variables “unique” names that are 
not likely to collide with the user variables.



FILES OF INTEREST
• Files you will have to modify

– quads.cc, quads.hh : contains quad generation code for the 
AST nodes as well as the declaration and implementation of 
the quadruple, quad_list, quad_list_element and 
quad_list_iterator classes. These are the files you will edit in 
this lab.

– symtab.cc : You will need to complete one more method in 
this lab.

• Other files of interest
– ast.hh : contains the definitions of the AST nodes.
– ast.cc : contains (part of) the implementations of the AST 

nodes.
– parser.y : the function do_quads() is called from here. 
– error.hh, error.cc, symtab.hh, symbol.cc, symtab.cc, 
    scanner.l, semantic.hh, semantic.cc, optimize.hh, 

optimize.cc : use your versions from earlier labs.



ASSIGNMENT 7
CODE GENERATION



CODE GENERATION

Once the source code has been

1)  scanned
2)  parsed and transformed into internal 

form
3)  semantically analyzed

code generation might be performed.



CODE GENERATION

Code generation is the process of 
creating assembly/machine language 
statements which will perform the 
operations specified by the source 
program when they run.  



CODE GENERATION

In addition other code is also produced:

 Typically assembly directives are 
produced, e.g. storage allocation 
statements for each variable and literal 
in the program.



CODE GENERATION
Un-optimized code generation is 
relatively straightforward:

 Simple mapping of intermediate code 
constructs to assembly/machine code 
sequences.
 Resulting code is quite poor though 
compared to manual coding.



CODE GENERATION FOR SPARC
 We are going to use a simple method which 

expands each quadruple to one or more 
assembly instructions.

 SPARC has 32 general 32-bit registers, and 32 
floating-point registers.

global registers                 %g0, ..., %g7

“in”-register                    %i0, ..., %i7

local register                    %l0, ..., %l7

“out”-register                  %o0, ..., %o7          (%o6 stack pointer 
…)

floating-point register     %f0, ..., %f31



MEMORY MANAGEMENT
 Static memory management: In certain 
programming languages recursion and dynamic data 
allocation is forbidden and the size must be known at 
compile time. No run-time support needed and all 
data can be referenced using absolute addresses. 
(FORTRAN).
 Dynamic memory management: Other languages 
such as Pascal, C++ and Java allow recursion and 
dynamic memory allocation.



DYNAMIC MEMORY MANAGEMENT

 All data belonging to a function/procedure is gathered into an 
Activation Record (AR). An AR is created when the 
function/procedure is called and memory is allocated on a stack. 



ACTIVATION RECORD
 Local data
 Temporary data
 Return address
 Parameters
 Pointers to the previous activation record (dynamic link).
 Static link or display to find the right reference to non-
local variables.
 Dynamically allocated data (dope-vectors).
 Possibly space for return values (applies to functions, not 
procedures).
 Place to save register contents.



ACTIVATION RECORD
 An example:
procedure fum(i : integer);

begin

   if i <> 0 then
       fum(i - 1);
   end;

end;

procedure fie;

begin
   fum(1);
end;

procedure foo;
begin
  fie();
end;

time



REGISTER WINDOWS
 The SPARC processor has many general 
registers, typically about 128 or more. But the 
programmer can’t access all at the same time.
 The register window mechanism only shows a 
subset of all the registers at a given time, for 
each procedure/function (in this case 32 general 
registers). These registers are organized in four 
groups: global, in, local, and out.
 The global registers can be accessed from any 
window.



REGISTER WINDOWS
 There are two instructions, SAVE and 
RESTORE, which (among other things) move the 
register window. SAVE and RESTORE are also 
used to create and release activation records.
 These instructions, together with the 
overlaying of out- and in-registers in adjacent 
windows, are used to implement parameter 
transfer as well as creating and releasing 
activation records.



REGISTER WINDOWS



IMPLEMENTATION
• In this lab, you will write certain routines that 

help expanding quadruples into assembly, as 
well as some routines for handling creating 
and releasing activation records.

• The assembly code generation is done by 
traversing a quad list, expanding each quad to 
assembly as we go. The expansion is started 
from parser.y with a call generate_assembler() 
to a code generator class.



IMPLEMENTATION
• Complete the prologue() method (used when 

entering a block).
• Complete the epilogue() method (used when 

leaving a block).
• Write the find() method which given a sym_index 

returns the display register level and offset for a 
variable, array or parameter to the symbol table.

• Write the fetch() method that retrieves the value 
of a variable, parameter or constant to a given 
register.



IMPLEMENTATION
• Write the store() method which stores the 

value of a register in a variable or parameter.
• Write the array_address() method which 

retrieves the base address of an array to a 
register.

• Complete the expand() method which 
translates a quad list to assembly code using 
the methods above. You will need to write 
code for expanding q_param and q_call quads.



FILES OF INTEREST
• Files you will have to modify
• codegen.hh, codegen.cc : contains assembly generation code for 

SPARC assembly. These are the files you will edit in this lab.
• Other files of interest

• parser.y is the input file to bison.
• ast.hh contains the definitions for the AST nodes. 
• ast.cc contains (part of) the implementations of the AST nodes.
• error.hh, error.cc, symtab.hh, symbol.cc, symtab.cc, scanner.l, 

semantic.hh, semantic.cc, optimize.hh, optimize.cc, quads.hh, 
quads.cc use your versions from the earlier labs.

• main.cc this is the compiler wrapper, parsing flags and the like. Same 
as in the previous labs.

• Makefile and diesel use the same files as in the last lab.
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