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PURPOSE OF LESSONS

The purpose of the lessons is to introduce the 
laboratory assignments and prepare for the final 
examination.

You can buy the laboratory compendium as well 
as a small compendium of exercises (suitable as a 
revision for the exam) in the student book store 
in Kårallen. Also the compendium from 2012 is 
fine (just minor formatting differences).

Read the laboratory instructions, the course book 
and the lecture notes.
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LABORATORY ASSIGNMENTS

In the laboratory assignments, you shall complete 
a compiler for DIESEL – a small Pascal like 
language, giving you a practical experience of 
compiler construction.

There are 7 separate parts of the compiler to 
complete in 11x2 laboratory hours. You will also 
(most likely) have to work during non-scheduled 
time.
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HANDING IN AND DEADLINE

 Demonstrate the working solutions to your lab 
assistant during scheduled time.  Then send 
the modified files to the same assistant (put 
TDDB44 <Name of the assignment> in the 
topic field). One e-mail per group.

 Deadline for all the assignments is: 
December 20, 2013 (you will get 3 extra 
points on the final exam if you finish on time)

 Remember to register yourself in the webreg 
system, www.ida.liu.se/webreg

http://www.ida.liu.se/webreg
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RELATING LABS TO THE COURSE

• Building a complete compiler
– We use a language (Diesel) that is small enough 

to be manageable.
– Scanning, Parsing, Semantic Elaboration, Code 

Generation, etc.
– Experience in compiler construction and software 

engineering.
– Compiler mostly written in C++.
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LABORATORY EXERCISES

 This approach (building a whole compiler) has 
several advantages and disadvantages:

Advantages
- Students gains deep knowledge

- Experience with rather complex code

- Provides a framework for the course

- Success instils confidence

Disadvantages
- High ratio of programming to theory

- Cumulative nature magnifies early 
failures

- Many parts are simplified
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LABORATORY ASSIGNMENTS

(Lab 0 Formal languages and grammars)
Lab 1 Creating a scanner using ''flex''
Lab 2 Symbol tables 
Lab 3 LR parsing and abstract syntax tree

          construction using ''bison''
Lab 4 Semantic analysis (type checking) 
Lab 5 Optimization 
Lab 6 Intermediary code generation 
                   (quadruples) 
Lab 7 Code generation (assembly) and  

          memory management
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PHASES OF A COMPILER

Lab 1 Scanner – manages lexical 
analysisLab 2 Symtab –  

administrates the 
symbol table

Lab 3 Parser – manages syntactic  
analysis, build internal form

Lab 4 Semantics – checks static 
semantics

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate 
Code Generator

Code Generator

Source Program

Target Program

Symbol Table 
Manager

Error         Handler

Lab 6 Quads – generates quadruples 
from the internal form

Lab 5 Optimizer – optimizes the 
internal form

Lab 7 Codegen – expands 
quadruples into assembly
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PHASES OF A COMPILER (continued)

program example;
const
   PI = 3.14159;
var
   a : real;
   b : real;
begin
   b := a + PI;
end.

Let's consider this DIESEL program:

Declarations

Instruction block
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PHASES OF A COMPILER

Lab 1 Scanner – manages lexical 
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate 
Code Generator

Code Generator

Source Program

Target Program

Symbol Table 
Manager

Error         Handler
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PHASES OF A COMPILER (SCANNER)

program example;
const
   PI = 3.14159;
var
   a : real;
   b : real;
begin
   b := a + PI;
end.

token pool_p val type
T_PROGRAM keyword
T_IDENT EXAMPLE identifier
T_SEMICOLON separator
T_CONST keyword
T_IDENT PI identifier
T_EQ operator
T_REALCONST constant
T_SEMICOLON separator
T_VAR keyword
T_IDENT A identifier
T_COLON separator
T_IDENT REAL identifier
T_SEMICOLON separator
T_IDENT B identifier
T_COLON separator
T_IDENT REAL identifier
T_SEMICOLON separator
T_BEGIN keyword
T_IDENT B identifier
T_ASSIGNMENT operator
T_IDENT A identifier
T_ADD operator
T_IDENT PI identifier
T_SEMICOLON separator
T_END keyword
T_DOT separator

3.14159

INPUT OUTPUT
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PHASES OF A COMPILER

Lab 1 Scanner – manages lexical 
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate 
Code Generator

Code Generator

Source Program

Target Program

Symbol Table 
Manager

Error         Handler

Lab 2 Symtab –  
administrates the 
symbol table
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PHASES OF A COMPILER (SYMTAB)

program example;
const
   PI = 3.14159;
var
   a : real;
   b : real;
begin
   b := a + PI;
end.

token pool_p val type
T_IDENT VOID
T_IDENT INTEGER
T_IDENT REAL
T_IDENT EXAMPLE
T_IDENT PI REAL
T_IDENT A REAL
T_IDENT B REAL

3.14159

INPUT OUTPUT
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PHASES OF A COMPILER

Lab 1 Scanner – manages lexical 
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate 
Code Generator

Code Generator

Source Program

Target Program

Symbol Table 
Manager

Error         Handler

Lab 2 Symtab –  
administrates the 
symbol table

Lab 3 Parser – manages syntactic  
analysis, build internal form
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PHASES OF A COMPILER (PARSER)
program example;
const
   PI = 3.14159;
var
   a : real;
   b : real;
begin
   b := a + PI;
end.

token pool_p val type
T_PROGRAM keyword
T_IDENT EXAMPLE identifier
T_SEMICOLON separator
T_CONST keyword
T_IDENT PI identifier
T_EQ operator
T_REALCONST constant
T_SEMICOLON separator
T_VAR keyword
T_IDENT A identifier
T_COLON separator
T_IDENT REAL identifier
T_SEMICOLON separator
T_IDENT B identifier
T_COLON separator
T_IDENT REAL identifier
T_SEMICOLON separator
T_BEGIN keyword
T_IDENT B identifier
T_ASSIGNMENT operator
T_IDENT A identifier
T_ADD operator
T_IDENT PI identifier
T_SEMICOLON separator
T_END keyword

3.14159

INPUT OUTPUT

<instr_list>

:=

b

a

+

PI

NULL
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PHASES OF A COMPILER

Lab 1 Scanner – manages lexical 
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate 
Code Generator

Code Generator

Source Program

Target Program

Symbol Table 
Manager

Error         Handler

Lab 2 Symtab –  
administrates the 
symbol table

Lab 3 Parser – manages syntactic  
analysis, build internal form

Lab 4 Semantics – checks static 
semantics
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PHASES OF A COMPILER (SEMANTICS)
INPUT OUTPUT

<instr_list>

:=

b

a

+

PI

NULL

token pool_p val type
T_IDENT VOID
T_IDENT INTEGER
T_IDENT REAL
T_IDENT EXAMPLE
T_IDENT PI REAL
T_IDENT A REAL
T_IDENT B REAL

3.14159

type(a) == type(b) == type(PI) ?

YES
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PHASES OF A COMPILER

Lab 1 Scanner – manages lexical 
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate 
Code Generator

Code Generator

Source Program

Target Program

Symbol Table 
Manager

Error         Handler

Lab 2 Symtab –  
administrates the 
symbol table

Lab 3 Parser – manages syntactic  
analysis, build internal form

Lab 4 Semantics – checks static 
semantics

Lab 5 Optimizer – optimizes the 
internal form
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PHASES OF A COMPILER (OPTIMIZER)
INPUT OUTPUT

:=

x

5

+

4

:=

x 9
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PHASES OF A COMPILER

Lab 1 Scanner – manages lexical 
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate 
Code Generator

Code Generator

Source Program

Target Program

Symbol Table 
Manager

Error         Handler

Lab 2 Symtab –  
administrates the 
symbol table

Lab 3 Parser – manages syntactic  
analysis, build internal form

Lab 4 Semantics – checks static 
semantics

Lab 5 Optimizer – optimizes the 
internal form

Lab 6 Quads – generates quadruples 
from the internal form
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PHASES OF A COMPILER (QUADRUPLES)

program example;
const
   PI = 3.14159;
var
   a : real;
   b : real;
begin
   b := a + PI;
end.

INPUT OUTPUT

q_rplus    A    PI   $1
q_rassign  $1   -    B
q_labl     4    -    -

<instr_list>

:=

b

a

+

PI

NULL
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PHASES OF A COMPILER

Lab 1 Scanner – manages lexical 
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate 
Code Generator

Code Generator

Source Program

Target Program

Symbol Table 
Manager

Error         Handler

Lab 2 Symtab –  
administrates the 
symbol table

Lab 3 Parser – manages syntactic  
analysis, build internal form

Lab 4 Semantics – checks static 
semantics

Lab 5 Optimizer – optimizes the 
internal form

Lab 6 Quads – generates quadruples 
from the internal form

Lab 7 Codegen – expands 
quadruples into assembly
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PHASES OF A COMPILER (CODEGEN)

program example;
const
   PI = 3.14159;
var
   a : real;
   b : real;
begin
   b := a + PI;
end.

INPUT OUTPUT

#include "diesel_glue.s"
L3:            ! EXAMPLE
       set     -104,%l0
       save    %sp,%l0,%sp
       st      %g1,[%fp+64]
       mov     %fp,%g1
       ld      [%g1-4],%f0
       set     1078530000,[%sp+64]
       ld      [%sp+64],%f1
       fadds   %f0,%f1,%f2
       st      %f2,[%g1-12]
       ld      [%g1-12],%o0
       st      %o0,[%g1-8]
L4:
       ld      [%fp+64],%g1
       ret
       restore

Several 
steps
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LABORATORY SKELETON

~TDDB44

/src

 /scan

Contains all the necessary files to complete 
the first lab

 /symtab

Contains all the necessary files to complete 
the second lab

 /remaining

Contains all the necessary files to complete 
the rest of the labs

 /testpgm

Diesel programs for testing the implementation
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INSTALLATION

• Take the following steps in order to install the 
lab skeleton on your system:

– Copy the source files form the course directory 
onto your local account:

– Install g++ on your account, if you don't have it:

– More information in the Laboratory Compendium

mkdir TDDB44
cp -r ~TDDB44/src TDDB44

module initadd prog/gcc
module add prog/gcc
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HOW TO COMPILE

• To compile:
– Execute make in the proper source directory

• To run:
– Call the diesel script with the proper flags
– The Laboratory Compendium specifies, for each 

lab, what test programs to run, and what flags to 
use.

– (diesel script only used from assignment 3)
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DIESEL EXAMPLE

program circle;
   const
     PI = 3.14159;
   var
     o : real;
     r : real;
   procedure init;

   begin
     r := 17;
   end;

   function circumference(radius : real) : real;
      function diameter(radius : real) : real;
      begin

         return 2 * radius;
      end;

   begin
      return diameter(radius) * PI;
   end;
begin
   init();
   o := circumference(r);
end.
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LAB 1
THE SCANNER
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SCANNING

• Its input is text written in some language

• Its output is a sequence of tokens from that text. The tokens are chosen 
according with the language

• Building a scanner manually is hard

• We know that mapping the from regular expressions to Finite State Machine 
is straightforward, so why not automate the process?

• Then we just have to type in regular expressions and get the code to 
implement a scanner back

Scanners are programs that recognize lexical
patterns in text
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SCANNER GENERATORS 

• Automate is exactly what flex does!

• flex is a fast lexical analyzer generator, a tool 
for generating programs that perform pattern 
matching on text

• flex is a free implementation of the well-known 
lex program
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HOW IT WORKS

flex generates at output a C source 
file lex.yy.c which defines a routine 
yylex()

Lex Compiler lex.yy.clex.l

 >> flex lex.l
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HOW IT WORKS

 >> g++ lex.yy.c -lfl

lex.yy.c is compiled and linked with the -lfl library to produce 
an executable, which is the scanner

C Compiler a.outlex.yy.c

a.out sequence of tokensinput stream

 >> a.out < input.txt
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FLEX SPECIFICATIONS

Lex programs are divided into three components

/* Definitions – name definitions
 *             – variables defined
 *             – include files specified
 *             – etc
 */

%%

/* Translation rules – pattern actions {C/C++statements} */

%%

/* User code – supports routines for the above C/C++ 
 *             statements
 */
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NAME DEFINITIONS

• Name definition are intended to simplify the 
scanner specification and have the form:

• Subsequently the definition can be referred to by 
{name}, witch then will expand to the definition.

• Example:

is identical/will be expanded to:

name definition

  DIGIT   [0-9]
  {DIGIT}+”.”{DIGIT}*

  ([0-9])+”.”([0-9])*
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PATTERN ACTIONS

• The translation rules section of the lex/flex 
input, contains a series of rules of the form:

• Example: 

pattern action

[0-9]*   { printf (“%s is a number”, yytext); }
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SIMPLE PATTERNS

Match only one specific character

x The character 'x'
. Any character except newline
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CHARACTER CLASS PATTERNS

Match any character within the class

[xyz]   The pattern matches either 'x', 'y',   or 'z'
[abj-o]  This pattern spans over a range of 

    characters and matches 'a', 'b', 
or
                  any letter ranging from 'j' to 'o'
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NEGATED PATTERNS

Match any character not in the class

[^z]          This pattern matches any character
                  EXCEPT z

[^A-Z]     This pattern matches any character
                  EXCEPT an uppercase letter

[^A-Z\n]  This pattern matches any character
                EXCEPT an uppercase letter or a               
       
                newline
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SOME USEFULL PATTERNS

r*   Zero or more 'r', 'r' is any regular expr.

\\0    NULL character (ASCII code 0)

\123 Character with octal value 123
\x2a Character with hexadecimal value 2a
p|s  Either 'p' or 's'
p/s  'p' but only if it is followed by an 's',
          which is not part of the matched text

^p  'p' at the beginning of a line

p$  'p' at the end of a line, equivalent to 'p/\n'
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FLEX USER CODE

Finally, the user code section is simply copied to 
lex.yy.c verbatim. It is used for companion 
routines which call, or are called by the scanner.

If the lex program is to be used on its own, this 
section will contain a main program. If you leave 
this section empty you will get the default main.

The presence of this user code is optional, if you 
don’t have it there’s no need for the second %%



11/06/1341

FLEX PROGRAM VARIABLES

yytext   Whenever the scanner matches a token, the
                text of the token is stored in the null terminated
                string yytext

yyleng   The length of the string yytext

yylex()   The scanner created by the Lex has the entry point
               yylex(), which can be called to start or resume
               scanning. If lex action returns a value to a program, 
               the next call to yylex() will continue from the point 
               of that return
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A SIMPLE FLEX PROGRAM

%{
/* includes and defines should be stated in this section */
%}

%%

[\t]+       /* ignore white space */

do|does|did|done|has { printf (”%s: is a verb\n”, yytext); } 
[a-zA-Z]+       { printf (”%s: is not a verb\n”,yytext); }
.|\n       { ECHO; /* normal default anyway */ }

%%

main()       { yylex(); }

Recognition of verbs Mary  has  a little  
lamb*.l
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A SIMPLE FLEX PROGRAM

int num_lines = 0, num_chars = 0; /* Variables */

%%
 
\n { ++num_lines; ++num_chars; } /* Take care of newline */
. { ++num_chars; }      /* Take care of everything else */

%% 
main() { yylex(); 

  printf("lines: %d, chars: %d\n", num_lines, num_chars );
} 

A scanner that counts the number of characters 
and lines in its input

The printed output is the result
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A SIMPLE FLEX PROGRAM

'.' Any character other than the newline only 
increment the character count

'\n' A newline increments the line count and the     
         character count
int num_lines = 0, num_chars = 0; /* Variables */

%%
 
\n { ++num_lines; ++num_chars; } /* Take care of newline */
. { ++num_chars; }      /* Take care of everything else */

%% 

main() { yylex(); 
  printf("lines: %d, chars: %d\n", num_lines, num_chars );
} 
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ANOTHER SCANNER

%{
   #include <math.h>
%}
DIGIT    [0-9]
ID       [a-z][a-z0-9]*

%%

{DIGIT}+  { printf("An integer: %s (%d)\n", yytext,  atoi( yytext )); 
          }
 
{DIGIT}+"."{DIGIT}*
          { printf("A float: %s (%g)\n", yytext, atof( yytext )); }

if|then|begin|end|procedure|function
  { printf("A keyword: %s\n", yytext); }

{ID}    { printf("An identifier: %s\n", yytext); }
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ANOTHER SCANNER

"+"|"-"|"*"|"/" { printf("An operator: %s\n", yytext); }

"{"[\^{$\;$}}\n]*"}" /* eat up one-line comments */

[\t\n]+            /* eat up whitespace */

. { printf("Unknown character: %s\n", yytext );}

%%

main(argc, argv) {
    ++argv, --argc;  /* skip over program name */
    if ( argc > 0 )  yyin = fopen( argv[0], "r" );
    else  yyin = stdin;
    yylex();
}
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FILES OF INTEREST

• Files you will need to modify:
– scanner.l : is the flex input file, which you’re going to 

complete. This is the only file you will need to edit in this 
lab.

• Other files of interest
– scanner.hh : is a temporary include file used for scanner 

testing.
– scantest.cc : is an interactive test program for your 

scanner.
– symtab.hh : contains symbol table information, including 

string pool methods.
– symbol.cc : contains symbol implementations (will be 

edited in lab 2).
– symtab.cc : contains the symbol table implementation.
– error.hh and error.cc contain debug and error 

message routines.
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LAB 2
THE SYMBOL TABLE
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SYMBOL TABLES

A Symbol table contains all the information that 
must be passed between different phases of a 
compiler/interpreter

A symbol (or token) has at least the following 
attributes:

• Symbol Name
• Symbol Type (int, real, char, ....)
• Symbol Class (static, automatic, constant, ...) 
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SYMBOL TABLES

In a compiler we also need:
• Address (where is the information stored?)
• Other information due to used data 
structures

Symbol tables are typically implemented using 
hashing schemes because good efficiency for 
the lookup is needed
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SYMBOL TABLES

The symbol table primarily helps ...

… in checking the program's semantic correctness 
(type checking, etc.)

… in generating code (keeping track of memory 
requirements for various variables, etc.)
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SIMPLE SYMBOL TABLES

We classify symbol tables as:
• Simple
• Scoped

Simple symbol tables have…
… only one scope
... only “global” variables

Simple symbol tables may be found in BASIC 
and FORTRAN compilers
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SCOPED SYMBOL TABLES

Complication in simple tables involves 
languages that permit multiple scopes

C permits at the simplest level two scopes: 
global and local (it is also possible to have 
nested scopes in C)
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WHY SCOPES?

The importance of considering the scopes are 
shown in these two C programs

main(){
   int a=10; //global variable
   changeA();
   printf(”Value of a=%d\n,a);
}

void changeA(){
   int a;  //local variable
   a=5;
} 

int a=10; //global variable

main(){
   changeA();
   printf(”Value of a=%d\n,a);
}

void changeA(){
   a=5;
} 
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SCOPED SYMBOL TABLES

• Lookup in any scope – search the most
         recently created scope first

• Enter a new symbol in the symbol table
• Modify information about a symbol in a

          “visible” scope
• Create a new scope
• Delete the most recently created scope

Operations that must be supported by the 
symbol table in order to handle scoping:
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HOW IT WORKS

I  N T E  G E R    R E A  L     R E A  D    W R I  T E  

READ, REAL
A, WRITE

P1

INTEGER

Hash Table

Index to 
string 
table

Other 
info.

Hash 
Link Block Table

pool_pos

sym_pos

sym_pos

sym_pos

sym_pos

String 
Table

1

2

3

…

X
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YOUR TASK

• Implement the methods open_scope() and 
close_scope(), called when entering and 
leaving an environment.

• Implement the method lookup_symbol(), it 
should search for a symbol in open 
environments.

• Implement the method install_symbol(), it 
should install a symbol in the symbol table.

• Implement the method enter_procedure().  
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A SMALL PROGRAM

program prog;
  var
    a : integer;
    b : integer;
    c : integer;

  procedure p1;
    var

a : integer;
    begin
      c := b + a;
   end;

   begin
     c := b + a;
end.
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FILES OF INTEREST

• Files you will need to modify
(First of all you need to set the constant TEST_SCANNER in symtab.hh to 0)

– symtab.cc : contains the symbol table implementation.
– scanner.l : minor changes.

• Other files of interest
(Other than the Makefile, use the same files you were given in the first lab.)

– symtab.hh : contains all definitions concerning symbols 
and the symbol table.

– symbol.cc : contains the symbol class implementations.
– error.hh and error.cc : contain debug and error 

message routine
– symtabtest.cc : used for testing. Edit this file to simulate 

various calls to the symbol table.
– Makefile : not the same as in the first lab!
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DEBUGGING

• All symbols can be sent directly to cout. The 
entire symbol table can be printed using 
the print() method with various arguments.
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LAB 3
THE PARSER
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SYNTAX ANALYSIS

• The parser accepts tokens from the scanner 
and verifies the syntactic correctness of the 
program.

• Along the way, it also derives information 
about the program and builds a fundamental 
data structure known as parse tree or 
abstract syntax tree (ast).

• The parse tree is an internal representation of 
the program and augments the symbol table.
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PURPOSE

• To verify the syntactic correctness of 
the input token stream, reporting any 
errors and to produce a parse tree and 
certain table for use by later phases.
– Syntactic correctness is judged by verification against a 

formal grammar which specifies the language to be 
recognized.

– Error messages are important and should be as meaningful 
as possible. 

– Parse tree and tables will vary depending on compiler.
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METHOD

Match token stream using manually or 
automatically generated parser.
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PARSING STRATEGIES

Two categories of parsers:
– Top-down parsers
– Bottom-up parsers

Within each of these broad categories 
are a number of sub strategies 
depending on whether leftmost or 
rightmost derivations are used.
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TOP-DOWN PARSING

Start with a goal symbol and recognize 
it in terms of its constituent symbols.

Example: recognize a procedure in 
terms of its sub-components (header, 
declarations, and body).

The parse tree is then built from the top 
(root) and down (leaves), hence the 
name.
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TOP-DOWN PARSING (cont'd)

:=

x *

+

a b

c

X := ( a + b ) * c;
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BOTTOM-UP PARSING

Recognize the components of a program 
and then combine them to form more 
complex constructs until a whole 
program is recognized.

The parse tree is then built from the 
bottom and up, hence the name.
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BOTTOM-UP PARSING (cont'd)

:=

x *

+

a b

c

X := ( a + b ) * c;
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PARSING TECHNIQUES

A number of different parsing 
techniques are commonly used for 
syntax analysis, including:

• Recursive-descent parsing
• LR parsing
• Operator precedence parsing
• Many more …
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LR PARSING

A specific bottom-up technique

 LR stands for Left->right scan, Rightmost 
derivation.

 Probably the most common & popular parsing 
technique.

 yacc, bison, and many other parser generation tools 
utilize LR parsing.

 Great for machines, not so great for humans …
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+ AND – LR

 Advantages of LR:
• Accept a wide range of grammars/languages

• Well suited for automatic parser generation

• Very fast

• Generally easy to maintain

 Disadvantages of LR:
• Error handling can be tricky

• Difficult to use manually
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bison AND yacc USAGE

bison is a general-purpose parser 
generator that converts a grammar 
description of an LALR(1) context-free 
grammar into a C program to parse that 
grammar
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bison AND yacc USAGE

One of many parser generator packages

Yet Another Compiler Compiler
– Really a poor name, is more of a parser compiler

– Can specify actions to be performed when each 
construct is recognized and thereby make a full 
fledged compiler but its the user of bison that specify 
the rest of the compilation process…

– Designed to work with flex or other automatically or 
hand generated “lexers”
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bison USAGE

Bison 
Compiler
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bison SPECIFICATION 

A bison specification is composed of 4 parts

%{
/* C declarations */

%}
/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

Looks like flex specification, doesn’t it?
Similar function, tools, look and feel
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C DECLARATIONS

• Contains macro definitions and declarations of 
functions and variables that are used in the 
actions in the grammar rules 

• Copied to the beginning of the parser file so that 
they precede the definition of yyparse 

• Use #include to get the declarations from a 
header file. If C declarations isn’t needed, then 
the %{ and %} delimiters that bracket this section 
can be omitted
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bison DECLARATIONS

• Contains declarations that define terminal 
and non-terminal symbols, and specify 
precedence 
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GRAMMAR RULES

 Contains one or more bison grammar 
rules, and nothing else.

 There must always be at least one 
grammar rule, and the first %% (which 
precedes the grammar rules) may never 
be omitted even if it is the first thing in the 
file.
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ADITIONAL C CODE

 Copied verbatim to the end of the 
parser file, just as the C declarations 
section is copied to the beginning.

 This is the most convenient place to 
put anything that should be in the 
parser file but isn’t needed before 
the definition of yyparse.

 The definitions of yylex and yyerror 
often go here.
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bison EXAMPLE

%{

#include <ctype.h> /* standard C declarations here */

// extern int yylex();

}%

%token DIGIT /* bison declarations */

%%

/* Grammar rules */

line : expr ‘\n’        {  printf { “%d\n”, $1 };  }    ;

expr : expr ‘+’ term    {  $$ = $1 + $3;  }

| term                                          ;

term : term ‘*’ factor   {  $$ = $1 * $3;  }

| factor                                        ;
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bison EXAMPLE

Note: bison uses yylex, yylval, etc - designed to be used with 
flex

factor : ‘(‘ expr ’)’   {  $$ = $2;  }
| DIGIT ;

%%
/* Additional C code */

void yylex () {
   /* A really simple lexical analyzer */
   int c;
   c = getchar ();
   if ( isdigit (c) ) {
      yylval = c - ’0’ ;
      return DIGIT;
   }
   return c; 
}
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bison EXAMPLE

expr ::= term
     ::= expr + term
     ::= expr + term + term
     ::= term +    ...   + term + term + term

term ::= factor
     ::= term * factor
     ::= term * factor * factor
     ::= factor * ... * factor * factor * factor

 factor ::= DIGIT
        ::= ( expr )
        ::= ( term + term + ... + term )
        ::= ( factor * ... factor + term + ... term )
        ::= ...

  DIGIT ::= [0-9]

line ::= expr \n
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bison EXAMPLE
|'(' '1' '*' '3' '+' '2' ')' '*' '5' '\n'

  line ::= |expr '\n'
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bison EXAMPLE

 '('|'1' '*' '3' '+' '2' ')' '*' '5' '\n'

  line ::=  expr '\n'
  expr ::=  term
  term ::=  factor
factor ::=  '('|expr ')'
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bison EXAMPLE

 '(' '1'|'*' '3' '+' '2' ')' '*' '5' '\n'

  line ::=  expr '\n'
  expr ::=  term
  term ::=  factor
factor ::=  '(' expr ')'
  expr ::=  term
  term ::=  factor
factor ::=  DIGIT|
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bison EXAMPLE

 '(' '1' '*'|'3' '+' '2' ')' '*' '5' '\n'

  line ::=  expr '\n'
  expr ::=  term
  term ::=  factor
factor ::=  '(' expr ')'
  expr ::=  term
  term ::=  term '*'|factor
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bison EXAMPLE

 '(' '1' '*' '3'|'+' '2' ')' '*' '5' '\n'

  line ::=  expr '\n'
  expr ::=  term
  term ::=  factor
factor ::=  '(' expr ')'
  expr ::=  term
  term ::=  term '*' factor
factor ::=  DIGIT|
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bison EXAMPLE

 '(' '1' '*' '3' '+'|'2' ')' '*' '5' '\n'

  line ::=  expr '\n'
  expr ::=  term
  term ::=  factor
factor ::=  '(' expr ')'
  expr ::=  expr '+'|term
  term ::=  term '*' factor
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bison EXAMPLE

 '(' '1' '*' '3' '+' '2'|')' '*' '5' '\n'

  line ::=  expr '\n'
  expr ::=  term
  term ::=  factor
factor ::=  '(' expr ')'
  expr ::=  expr '+' term
  term ::=  factor
factor ::=  DIGIT|
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bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')'|'*' '5' '\n'

  line ::=  expr '\n'
  expr ::=  term
  term ::=  factor
factor ::=  '(' expr ')'|
  expr ::=  expr '+' term
  term ::=  factor
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bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')' '*'|'5' '\n'

  line ::=  expr '\n'
  expr ::=  term
  term ::=  term '*'|factor
factor ::=  '(' expr ')'
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bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')' '*' '5'|'\n'

  line ::=  expr '\n'
  expr ::=  term
  term ::=  term '*' factor
factor ::=  DIGIT|
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bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')' '*' '5' '\n'|

  line ::=  expr '\n'|
  expr ::=  term
  term ::=  term '*' factor
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USING bison WITH flex

bison and flex are obviously designed 
to work together

bison produces a driver program called yylex() 
(actually its included in the lex library -ll)

 #include “lex.yy.c” in the third part of 
bison specification

 this gives the program yylex access to bisons’ 
token names
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USING BISON WITH FLEX

 Thus do the following:
 % flex scanner.l

 % bison parser.y

 % cc y.tab.c -ly -ll

 This will produce an a.out which is a parser with an 
integrated scanner included
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ERROR HANDLING IN bison

Error handling in bison is provided by error 
productions

An error production has the general form
non-terminal: error synchronizing-set 

• non-terminal where did it occur
• error a keyword
• synchronizing-set possible empty subset of 
tokens

When an error occurs, bison pops symbols off 
the stack until it finds a state for which there 
exists an error production which may be applied  
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FILES TO BE CHANGED

• parser.y is the input file to bison. This is the file 
you will edit most.

• scanner.l need a small, but important change. 
The file scanner.hh is no longer needed since 
there is a file parser.hh, which will contain (among 
other things) the same declarations. parser.hh will 
be generated automatically by bison. Add (in this 
order):

 #include "ast.h"
 #include "parser.hh"

 and comment out 
 #include "scanner.hh" 

 at the top of scanner.l to reflect this.



11/06/1399

OTHER FILES OF INTEREST

• error.h, error.cc, symtab.hh, symbol.cc, 
symtab.cc Use your completed versions from the 
earlier labs.

• ast.hh contains the definitions for the AST nodes. 
You’ll be reading this file a lot.

• ast.cc contains the implementations of the AST 
nodes.   

• semantic.hh and semantic.cc contain type checking 
code.

• optimize.hh and optimize.cc contain optimization 
code. 

• quads.hh and quads.cc contain quad generation 
code. 

• codegen.hh and codegen.cc contain assembler 
generation code. 
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OTHER FILES OF INTEREST

• main.cc this is the compiler wrapper, parsing flags 
and the like.

• Makefile this is not the same as the last labs. It 
generates a file called compiler which will take 
various arguments (see main.cc for information). It 
also takes source files as arguments, so you can start 
using diesel files to test your compiler-in-the-making.

• diesel this is a shell script which works as a wrapper 
around the binary compiler file, handling flags, linking, 
and such things. Use it when you want to compile a 
diesel file. At the top of this file is a list of all flags 
you can     send to the compiler, for debugging, 
printouts, symbolic compilation and the like.
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