
COMPILER CONSTRUCTION
Lesson 1 – TDDB44

November, 6 2013

Kristian Stavåker (kristian.stavaker@liu.se)

Sergiu Rafiliu (sergiu.rafiliu@liu.se)

Department of Computer and Information Science

Linköping University

11/06/132

PURPOSE OF LESSONS

The purpose of the lessons is to introduce the
laboratory assignments and prepare for the final
examination.

You can buy the laboratory compendium as well
as a small compendium of exercises (suitable as a
revision for the exam) in the student book store
in Kårallen. Also the compendium from 2012 is
fine (just minor formatting differences).

Read the laboratory instructions, the course book
and the lecture notes.

11/06/133

LABORATORY ASSIGNMENTS

In the laboratory assignments, you shall complete
a compiler for DIESEL – a small Pascal like
language, giving you a practical experience of
compiler construction.

There are 7 separate parts of the compiler to
complete in 11x2 laboratory hours. You will also
(most likely) have to work during non-scheduled
time.

11/06/134

HANDING IN AND DEADLINE

 Demonstrate the working solutions to your lab
assistant during scheduled time. Then send
the modified files to the same assistant (put
TDDB44 <Name of the assignment> in the
topic field). One e-mail per group.

 Deadline for all the assignments is:
December 20, 2013 (you will get 3 extra
points on the final exam if you finish on time)

 Remember to register yourself in the webreg
system, www.ida.liu.se/webreg

http://www.ida.liu.se/webreg

11/06/135

RELATING LABS TO THE COURSE

• Building a complete compiler
– We use a language (Diesel) that is small enough

to be manageable.
– Scanning, Parsing, Semantic Elaboration, Code

Generation, etc.
– Experience in compiler construction and software

engineering.
– Compiler mostly written in C++.

11/06/136

LABORATORY EXERCISES

 This approach (building a whole compiler) has
several advantages and disadvantages:

Advantages
- Students gains deep knowledge

- Experience with rather complex code

- Provides a framework for the course

- Success instils confidence

Disadvantages
- High ratio of programming to theory

- Cumulative nature magnifies early
failures

- Many parts are simplified

11/06/137

LABORATORY ASSIGNMENTS

(Lab 0 Formal languages and grammars)
Lab 1 Creating a scanner using ''flex''
Lab 2 Symbol tables
Lab 3 LR parsing and abstract syntax tree

 construction using ''bison''
Lab 4 Semantic analysis (type checking)
Lab 5 Optimization
Lab 6 Intermediary code generation
 (quadruples)
Lab 7 Code generation (assembly) and

 memory management

11/06/138

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysisLab 2 Symtab –

administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate
Code Generator

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error Handler

Lab 6 Quads – generates quadruples
from the internal form

Lab 5 Optimizer – optimizes the
internal form

Lab 7 Codegen – expands
quadruples into assembly

11/06/139

PHASES OF A COMPILER (continued)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

Let's consider this DIESEL program:

Declarations

Instruction block

11/06/1310

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate
Code Generator

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error Handler

11/06/1311

PHASES OF A COMPILER (SCANNER)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

token pool_p val type
T_PROGRAM keyword
T_IDENT EXAMPLE identifier
T_SEMICOLON separator
T_CONST keyword
T_IDENT PI identifier
T_EQ operator
T_REALCONST constant
T_SEMICOLON separator
T_VAR keyword
T_IDENT A identifier
T_COLON separator
T_IDENT REAL identifier
T_SEMICOLON separator
T_IDENT B identifier
T_COLON separator
T_IDENT REAL identifier
T_SEMICOLON separator
T_BEGIN keyword
T_IDENT B identifier
T_ASSIGNMENT operator
T_IDENT A identifier
T_ADD operator
T_IDENT PI identifier
T_SEMICOLON separator
T_END keyword
T_DOT separator

3.14159

INPUT OUTPUT

11/06/1312

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate
Code Generator

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error Handler

Lab 2 Symtab –
administrates the
symbol table

11/06/1313

PHASES OF A COMPILER (SYMTAB)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

token pool_p val type
T_IDENT VOID
T_IDENT INTEGER
T_IDENT REAL
T_IDENT EXAMPLE
T_IDENT PI REAL
T_IDENT A REAL
T_IDENT B REAL

3.14159

INPUT OUTPUT

11/06/1314

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate
Code Generator

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error Handler

Lab 2 Symtab –
administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

11/06/1315

PHASES OF A COMPILER (PARSER)
program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

token pool_p val type
T_PROGRAM keyword
T_IDENT EXAMPLE identifier
T_SEMICOLON separator
T_CONST keyword
T_IDENT PI identifier
T_EQ operator
T_REALCONST constant
T_SEMICOLON separator
T_VAR keyword
T_IDENT A identifier
T_COLON separator
T_IDENT REAL identifier
T_SEMICOLON separator
T_IDENT B identifier
T_COLON separator
T_IDENT REAL identifier
T_SEMICOLON separator
T_BEGIN keyword
T_IDENT B identifier
T_ASSIGNMENT operator
T_IDENT A identifier
T_ADD operator
T_IDENT PI identifier
T_SEMICOLON separator
T_END keyword

3.14159

INPUT OUTPUT

<instr_list>

:=

b

a

+

PI

NULL

11/06/1316

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate
Code Generator

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error Handler

Lab 2 Symtab –
administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

11/06/1317

PHASES OF A COMPILER (SEMANTICS)
INPUT OUTPUT

<instr_list>

:=

b

a

+

PI

NULL

token pool_p val type
T_IDENT VOID
T_IDENT INTEGER
T_IDENT REAL
T_IDENT EXAMPLE
T_IDENT PI REAL
T_IDENT A REAL
T_IDENT B REAL

3.14159

type(a) == type(b) == type(PI) ?

YES

11/06/1318

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate
Code Generator

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error Handler

Lab 2 Symtab –
administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lab 5 Optimizer – optimizes the
internal form

11/06/1319

PHASES OF A COMPILER (OPTIMIZER)
INPUT OUTPUT

:=

x

5

+

4

:=

x 9

11/06/1320

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate
Code Generator

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error Handler

Lab 2 Symtab –
administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lab 5 Optimizer – optimizes the
internal form

Lab 6 Quads – generates quadruples
from the internal form

11/06/1321

PHASES OF A COMPILER (QUADRUPLES)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

INPUT OUTPUT

q_rplus A PI $1
q_rassign $1 - B
q_labl 4 - -

<instr_list>

:=

b

a

+

PI

NULL

11/06/1322

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Code Optimizer

Intermediate
Code Generator

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error Handler

Lab 2 Symtab –
administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lab 5 Optimizer – optimizes the
internal form

Lab 6 Quads – generates quadruples
from the internal form

Lab 7 Codegen – expands
quadruples into assembly

11/06/1323

PHASES OF A COMPILER (CODEGEN)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

INPUT OUTPUT

#include "diesel_glue.s"
L3: ! EXAMPLE
 set -104,%l0
 save %sp,%l0,%sp
 st %g1,[%fp+64]
 mov %fp,%g1
 ld [%g1-4],%f0
 set 1078530000,[%sp+64]
 ld [%sp+64],%f1
 fadds %f0,%f1,%f2
 st %f2,[%g1-12]
 ld [%g1-12],%o0
 st %o0,[%g1-8]
L4:
 ld [%fp+64],%g1
 ret
 restore

Several
steps

11/06/1324

LABORATORY SKELETON

~TDDB44

/src

 /scan

Contains all the necessary files to complete
the first lab

 /symtab

Contains all the necessary files to complete
the second lab

 /remaining

Contains all the necessary files to complete
the rest of the labs

 /testpgm

Diesel programs for testing the implementation

11/06/1325

INSTALLATION

• Take the following steps in order to install the
lab skeleton on your system:

– Copy the source files form the course directory
onto your local account:

– Install g++ on your account, if you don't have it:

– More information in the Laboratory Compendium

mkdir TDDB44
cp -r ~TDDB44/src TDDB44

module initadd prog/gcc
module add prog/gcc

11/06/1326

HOW TO COMPILE

• To compile:
– Execute make in the proper source directory

• To run:
– Call the diesel script with the proper flags
– The Laboratory Compendium specifies, for each

lab, what test programs to run, and what flags to
use.

– (diesel script only used from assignment 3)

11/06/1327

DIESEL EXAMPLE

program circle;
 const
 PI = 3.14159;
 var
 o : real;
 r : real;
 procedure init;

 begin
 r := 17;
 end;

 function circumference(radius : real) : real;
 function diameter(radius : real) : real;
 begin

 return 2 * radius;
 end;

 begin
 return diameter(radius) * PI;
 end;
begin
 init();
 o := circumference(r);
end.

11/06/1328

LAB 1
THE SCANNER

11/06/1329

SCANNING

• Its input is text written in some language

• Its output is a sequence of tokens from that text. The tokens are chosen
according with the language

• Building a scanner manually is hard

• We know that mapping the from regular expressions to Finite State Machine
is straightforward, so why not automate the process?

• Then we just have to type in regular expressions and get the code to
implement a scanner back

Scanners are programs that recognize lexical
patterns in text

11/06/1330

SCANNER GENERATORS

• Automate is exactly what flex does!

• flex is a fast lexical analyzer generator, a tool
for generating programs that perform pattern
matching on text

• flex is a free implementation of the well-known
lex program

11/06/1331

HOW IT WORKS

flex generates at output a C source
file lex.yy.c which defines a routine
yylex()

Lex Compiler lex.yy.clex.l

 >> flex lex.l

11/06/1332

HOW IT WORKS

 >> g++ lex.yy.c -lfl

lex.yy.c is compiled and linked with the -lfl library to produce
an executable, which is the scanner

C Compiler a.outlex.yy.c

a.out sequence of tokensinput stream

 >> a.out < input.txt

11/06/1333

FLEX SPECIFICATIONS

Lex programs are divided into three components

/* Definitions – name definitions
 * – variables defined
 * – include files specified
 * – etc
 */

%%

/* Translation rules – pattern actions {C/C++statements} */

%%

/* User code – supports routines for the above C/C++
 * statements
 */

11/06/1334

NAME DEFINITIONS

• Name definition are intended to simplify the
scanner specification and have the form:

• Subsequently the definition can be referred to by
{name}, witch then will expand to the definition.

• Example:

is identical/will be expanded to:

name definition

 DIGIT [0-9]
 {DIGIT}+”.”{DIGIT}*

 ([0-9])+”.”([0-9])*

11/06/1335

PATTERN ACTIONS

• The translation rules section of the lex/flex
input, contains a series of rules of the form:

• Example:

pattern action

[0-9]* { printf (“%s is a number”, yytext); }

11/06/1336

SIMPLE PATTERNS

Match only one specific character

x The character 'x'
. Any character except newline

11/06/1337

CHARACTER CLASS PATTERNS

Match any character within the class

[xyz] The pattern matches either 'x', 'y', or 'z'
[abj-o] This pattern spans over a range of

 characters and matches 'a', 'b',
or
 any letter ranging from 'j' to 'o'

11/06/1338

NEGATED PATTERNS

Match any character not in the class

[^z] This pattern matches any character
 EXCEPT z

[^A-Z] This pattern matches any character
 EXCEPT an uppercase letter

[^A-Z\n] This pattern matches any character
 EXCEPT an uppercase letter or a

 newline

11/06/1339

SOME USEFULL PATTERNS

r* Zero or more 'r', 'r' is any regular expr.

\\0 NULL character (ASCII code 0)

\123 Character with octal value 123
\x2a Character with hexadecimal value 2a
p|s Either 'p' or 's'
p/s 'p' but only if it is followed by an 's',
 which is not part of the matched text

^p 'p' at the beginning of a line

p$ 'p' at the end of a line, equivalent to 'p/\n'

11/06/1340

FLEX USER CODE

Finally, the user code section is simply copied to
lex.yy.c verbatim. It is used for companion
routines which call, or are called by the scanner.

If the lex program is to be used on its own, this
section will contain a main program. If you leave
this section empty you will get the default main.

The presence of this user code is optional, if you
don’t have it there’s no need for the second %%

11/06/1341

FLEX PROGRAM VARIABLES

yytext Whenever the scanner matches a token, the
 text of the token is stored in the null terminated
 string yytext

yyleng The length of the string yytext

yylex() The scanner created by the Lex has the entry point
 yylex(), which can be called to start or resume
 scanning. If lex action returns a value to a program,
 the next call to yylex() will continue from the point
 of that return

11/06/1342

A SIMPLE FLEX PROGRAM

%{
/* includes and defines should be stated in this section */
%}

%%

[\t]+ /* ignore white space */

do|does|did|done|has { printf (”%s: is a verb\n”, yytext); }
[a-zA-Z]+ { printf (”%s: is not a verb\n”,yytext); }
.|\n { ECHO; /* normal default anyway */ }

%%

main() { yylex(); }

Recognition of verbs Mary has a little
lamb*.l

11/06/1343

A SIMPLE FLEX PROGRAM

int num_lines = 0, num_chars = 0; /* Variables */

%%

\n { ++num_lines; ++num_chars; } /* Take care of newline */
. { ++num_chars; } /* Take care of everything else */

%%
main() { yylex();

 printf("lines: %d, chars: %d\n", num_lines, num_chars);
}

A scanner that counts the number of characters
and lines in its input

The printed output is the result

11/06/1344

A SIMPLE FLEX PROGRAM

'.' Any character other than the newline only
increment the character count

'\n' A newline increments the line count and the
 character count
int num_lines = 0, num_chars = 0; /* Variables */

%%

\n { ++num_lines; ++num_chars; } /* Take care of newline */
. { ++num_chars; } /* Take care of everything else */

%%

main() { yylex();
 printf("lines: %d, chars: %d\n", num_lines, num_chars);
}

11/06/1345

ANOTHER SCANNER

%{
 #include <math.h>
%}
DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

{DIGIT}+ { printf("An integer: %s (%d)\n", yytext, atoi(yytext));
 }

{DIGIT}+"."{DIGIT}*
 { printf("A float: %s (%g)\n", yytext, atof(yytext)); }

if|then|begin|end|procedure|function
 { printf("A keyword: %s\n", yytext); }

{ID} { printf("An identifier: %s\n", yytext); }

11/06/1346

ANOTHER SCANNER

"+"|"-"|"*"|"/" { printf("An operator: %s\n", yytext); }

"{"[\^{$\;$}}\n]*"}" /* eat up one-line comments */

[\t\n]+ /* eat up whitespace */

. { printf("Unknown character: %s\n", yytext);}

%%

main(argc, argv) {
 ++argv, --argc; /* skip over program name */
 if (argc > 0) yyin = fopen(argv[0], "r");
 else yyin = stdin;
 yylex();
}

11/06/1347

FILES OF INTEREST

• Files you will need to modify:
– scanner.l : is the flex input file, which you’re going to

complete. This is the only file you will need to edit in this
lab.

• Other files of interest
– scanner.hh : is a temporary include file used for scanner

testing.
– scantest.cc : is an interactive test program for your

scanner.
– symtab.hh : contains symbol table information, including

string pool methods.
– symbol.cc : contains symbol implementations (will be

edited in lab 2).
– symtab.cc : contains the symbol table implementation.
– error.hh and error.cc contain debug and error

message routines.

11/06/1348

LAB 2
THE SYMBOL TABLE

11/06/1349

SYMBOL TABLES

A Symbol table contains all the information that
must be passed between different phases of a
compiler/interpreter

A symbol (or token) has at least the following
attributes:

• Symbol Name
• Symbol Type (int, real, char,)
• Symbol Class (static, automatic, constant, ...)

11/06/1350

SYMBOL TABLES

In a compiler we also need:
• Address (where is the information stored?)
• Other information due to used data
structures

Symbol tables are typically implemented using
hashing schemes because good efficiency for
the lookup is needed

11/06/1351

SYMBOL TABLES

The symbol table primarily helps ...

… in checking the program's semantic correctness
(type checking, etc.)

… in generating code (keeping track of memory
requirements for various variables, etc.)

11/06/1352

SIMPLE SYMBOL TABLES

We classify symbol tables as:
• Simple
• Scoped

Simple symbol tables have…
… only one scope
... only “global” variables

Simple symbol tables may be found in BASIC
and FORTRAN compilers

11/06/1353

SCOPED SYMBOL TABLES

Complication in simple tables involves
languages that permit multiple scopes

C permits at the simplest level two scopes:
global and local (it is also possible to have
nested scopes in C)

11/06/1354

WHY SCOPES?

The importance of considering the scopes are
shown in these two C programs

main(){
 int a=10; //global variable
 changeA();
 printf(”Value of a=%d\n,a);
}

void changeA(){
 int a; //local variable
 a=5;
}

int a=10; //global variable

main(){
 changeA();
 printf(”Value of a=%d\n,a);
}

void changeA(){
 a=5;
}

11/06/1355

SCOPED SYMBOL TABLES

• Lookup in any scope – search the most
 recently created scope first

• Enter a new symbol in the symbol table
• Modify information about a symbol in a

 “visible” scope
• Create a new scope
• Delete the most recently created scope

Operations that must be supported by the
symbol table in order to handle scoping:

11/06/1356

HOW IT WORKS

I N T E G E R R E A L R E A D W R I T E

READ, REAL
A, WRITE

P1

INTEGER

Hash Table

Index to
string
table

Other
info.

Hash
Link Block Table

pool_pos

sym_pos

sym_pos

sym_pos

sym_pos

String
Table

1

2

3

…

X

11/06/1357

YOUR TASK

• Implement the methods open_scope() and
close_scope(), called when entering and
leaving an environment.

• Implement the method lookup_symbol(), it
should search for a symbol in open
environments.

• Implement the method install_symbol(), it
should install a symbol in the symbol table.

• Implement the method enter_procedure().

11/06/1358

A SMALL PROGRAM

program prog;
 var
 a : integer;
 b : integer;
 c : integer;

 procedure p1;
 var

a : integer;
 begin
 c := b + a;
 end;

 begin
 c := b + a;
end.

11/06/1359

FILES OF INTEREST

• Files you will need to modify
(First of all you need to set the constant TEST_SCANNER in symtab.hh to 0)

– symtab.cc : contains the symbol table implementation.
– scanner.l : minor changes.

• Other files of interest
(Other than the Makefile, use the same files you were given in the first lab.)

– symtab.hh : contains all definitions concerning symbols
and the symbol table.

– symbol.cc : contains the symbol class implementations.
– error.hh and error.cc : contain debug and error

message routine
– symtabtest.cc : used for testing. Edit this file to simulate

various calls to the symbol table.
– Makefile : not the same as in the first lab!

11/06/1360

DEBUGGING

• All symbols can be sent directly to cout. The
entire symbol table can be printed using
the print() method with various arguments.

11/06/1361

LAB 3
THE PARSER

11/06/1362

SYNTAX ANALYSIS

• The parser accepts tokens from the scanner
and verifies the syntactic correctness of the
program.

• Along the way, it also derives information
about the program and builds a fundamental
data structure known as parse tree or
abstract syntax tree (ast).

• The parse tree is an internal representation of
the program and augments the symbol table.

11/06/1363

PURPOSE

• To verify the syntactic correctness of
the input token stream, reporting any
errors and to produce a parse tree and
certain table for use by later phases.
– Syntactic correctness is judged by verification against a

formal grammar which specifies the language to be
recognized.

– Error messages are important and should be as meaningful
as possible.

– Parse tree and tables will vary depending on compiler.

11/06/1364

METHOD

Match token stream using manually or
automatically generated parser.

11/06/1365

PARSING STRATEGIES

Two categories of parsers:
– Top-down parsers
– Bottom-up parsers

Within each of these broad categories
are a number of sub strategies
depending on whether leftmost or
rightmost derivations are used.

11/06/1366

TOP-DOWN PARSING

Start with a goal symbol and recognize
it in terms of its constituent symbols.

Example: recognize a procedure in
terms of its sub-components (header,
declarations, and body).

The parse tree is then built from the top
(root) and down (leaves), hence the
name.

11/06/1367

TOP-DOWN PARSING (cont'd)

:=

x *

+

a b

c

X := (a + b) * c;

11/06/1368

BOTTOM-UP PARSING

Recognize the components of a program
and then combine them to form more
complex constructs until a whole
program is recognized.

The parse tree is then built from the
bottom and up, hence the name.

11/06/1369

BOTTOM-UP PARSING (cont'd)

:=

x *

+

a b

c

X := (a + b) * c;

11/06/1370

PARSING TECHNIQUES

A number of different parsing
techniques are commonly used for
syntax analysis, including:

• Recursive-descent parsing
• LR parsing
• Operator precedence parsing
• Many more …

11/06/1371

LR PARSING

A specific bottom-up technique

 LR stands for Left->right scan, Rightmost
derivation.

 Probably the most common & popular parsing
technique.

 yacc, bison, and many other parser generation tools
utilize LR parsing.

 Great for machines, not so great for humans …

11/06/1372

+ AND – LR

 Advantages of LR:
• Accept a wide range of grammars/languages

• Well suited for automatic parser generation

• Very fast

• Generally easy to maintain

 Disadvantages of LR:
• Error handling can be tricky

• Difficult to use manually

11/06/1373

bison AND yacc USAGE

bison is a general-purpose parser
generator that converts a grammar
description of an LALR(1) context-free
grammar into a C program to parse that
grammar

11/06/1374

bison AND yacc USAGE

One of many parser generator packages

Yet Another Compiler Compiler
– Really a poor name, is more of a parser compiler

– Can specify actions to be performed when each
construct is recognized and thereby make a full
fledged compiler but its the user of bison that specify
the rest of the compilation process…

– Designed to work with flex or other automatically or
hand generated “lexers”

11/06/1375

bison USAGE

Bison
Compiler

C
Compiler

a.out

Bison source
program

parser.y

y.tab.c

a.out

Parse tree

y.tab.c

Token
stream

11/06/1376

bison SPECIFICATION

A bison specification is composed of 4 parts

%{
/* C declarations */

%}
/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

Looks like flex specification, doesn’t it?
Similar function, tools, look and feel

11/06/1377

C DECLARATIONS

• Contains macro definitions and declarations of
functions and variables that are used in the
actions in the grammar rules

• Copied to the beginning of the parser file so that
they precede the definition of yyparse

• Use #include to get the declarations from a
header file. If C declarations isn’t needed, then
the %{ and %} delimiters that bracket this section
can be omitted

11/06/1378

bison DECLARATIONS

• Contains declarations that define terminal
and non-terminal symbols, and specify
precedence

11/06/1379

GRAMMAR RULES

 Contains one or more bison grammar
rules, and nothing else.

 There must always be at least one
grammar rule, and the first %% (which
precedes the grammar rules) may never
be omitted even if it is the first thing in the
file.

11/06/1380

ADITIONAL C CODE

 Copied verbatim to the end of the
parser file, just as the C declarations
section is copied to the beginning.

 This is the most convenient place to
put anything that should be in the
parser file but isn’t needed before
the definition of yyparse.

 The definitions of yylex and yyerror
often go here.

11/06/1381

bison EXAMPLE

%{

#include <ctype.h> /* standard C declarations here */

// extern int yylex();

}%

%token DIGIT /* bison declarations */

%%

/* Grammar rules */

line : expr ‘\n’ { printf { “%d\n”, $1 }; } ;

expr : expr ‘+’ term { $$ = $1 + $3; }

| term ;

term : term ‘*’ factor { $$ = $1 * $3; }

| factor ;

11/06/1382

bison EXAMPLE

Note: bison uses yylex, yylval, etc - designed to be used with
flex

factor : ‘(‘ expr ’)’ { $$ = $2; }
| DIGIT ;

%%
/* Additional C code */

void yylex () {
 /* A really simple lexical analyzer */
 int c;
 c = getchar ();
 if (isdigit (c)) {
 yylval = c - ’0’ ;
 return DIGIT;
 }
 return c;
}

11/06/1383

bison EXAMPLE

expr ::= term
 ::= expr + term
 ::= expr + term + term
 ::= term + ... + term + term + term

term ::= factor
 ::= term * factor
 ::= term * factor * factor
 ::= factor * ... * factor * factor * factor

 factor ::= DIGIT
 ::= (expr)
 ::= (term + term + ... + term)
 ::= (factor * ... factor + term + ... term)
 ::= ...

 DIGIT ::= [0-9]

line ::= expr \n

11/06/1384

bison EXAMPLE
|'(' '1' '*' '3' '+' '2' ')' '*' '5' '\n'

 line ::= |expr '\n'

11/06/1385

bison EXAMPLE

 '('|'1' '*' '3' '+' '2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '('|expr ')'

11/06/1386

bison EXAMPLE

 '(' '1'|'*' '3' '+' '2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= term
 term ::= factor
factor ::= DIGIT|

11/06/1387

bison EXAMPLE

 '(' '1' '*'|'3' '+' '2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= term
 term ::= term '*'|factor

11/06/1388

bison EXAMPLE

 '(' '1' '*' '3'|'+' '2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= term
 term ::= term '*' factor
factor ::= DIGIT|

11/06/1389

bison EXAMPLE

 '(' '1' '*' '3' '+'|'2' ')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= expr '+'|term
 term ::= term '*' factor

11/06/1390

bison EXAMPLE

 '(' '1' '*' '3' '+' '2'|')' '*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'
 expr ::= expr '+' term
 term ::= factor
factor ::= DIGIT|

11/06/1391

bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')'|'*' '5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= factor
factor ::= '(' expr ')'|
 expr ::= expr '+' term
 term ::= factor

11/06/1392

bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')' '*'|'5' '\n'

 line ::= expr '\n'
 expr ::= term
 term ::= term '*'|factor
factor ::= '(' expr ')'

11/06/1393

bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')' '*' '5'|'\n'

 line ::= expr '\n'
 expr ::= term
 term ::= term '*' factor
factor ::= DIGIT|

11/06/1394

bison EXAMPLE

 '(' '1' '*' '3' '+' '2' ')' '*' '5' '\n'|

 line ::= expr '\n'|
 expr ::= term
 term ::= term '*' factor

11/06/1395

USING bison WITH flex

bison and flex are obviously designed
to work together

bison produces a driver program called yylex()
(actually its included in the lex library -ll)

 #include “lex.yy.c” in the third part of
bison specification

 this gives the program yylex access to bisons’
token names

11/06/1396

USING BISON WITH FLEX

 Thus do the following:
 % flex scanner.l

 % bison parser.y

 % cc y.tab.c -ly -ll

 This will produce an a.out which is a parser with an
integrated scanner included

11/06/1397

ERROR HANDLING IN bison

Error handling in bison is provided by error
productions

An error production has the general form
non-terminal: error synchronizing-set

• non-terminal where did it occur
• error a keyword
• synchronizing-set possible empty subset of
tokens

When an error occurs, bison pops symbols off
the stack until it finds a state for which there
exists an error production which may be applied

11/06/1398

FILES TO BE CHANGED

• parser.y is the input file to bison. This is the file
you will edit most.

• scanner.l need a small, but important change.
The file scanner.hh is no longer needed since
there is a file parser.hh, which will contain (among
other things) the same declarations. parser.hh will
be generated automatically by bison. Add (in this
order):

 #include "ast.h"
 #include "parser.hh"

 and comment out
 #include "scanner.hh"

 at the top of scanner.l to reflect this.

11/06/1399

OTHER FILES OF INTEREST

• error.h, error.cc, symtab.hh, symbol.cc,
symtab.cc Use your completed versions from the
earlier labs.

• ast.hh contains the definitions for the AST nodes.
You’ll be reading this file a lot.

• ast.cc contains the implementations of the AST
nodes.

• semantic.hh and semantic.cc contain type checking
code.

• optimize.hh and optimize.cc contain optimization
code.

• quads.hh and quads.cc contain quad generation
code.

• codegen.hh and codegen.cc contain assembler
generation code.

11/06/13100

OTHER FILES OF INTEREST

• main.cc this is the compiler wrapper, parsing flags
and the like.

• Makefile this is not the same as the last labs. It
generates a file called compiler which will take
various arguments (see main.cc for information). It
also takes source files as arguments, so you can start
using diesel files to test your compiler-in-the-making.

• diesel this is a shell script which works as a wrapper
around the binary compiler file, handling flags, linking,
and such things. Use it when you want to compile a
diesel file. At the top of this file is a list of all flags
you can send to the compiler, for debugging,
printouts, symbolic compilation and the like.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

