
Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler, 
IDA, Linköpings universitet, 2023.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Error Management
in Compilers and Run-time Systems

  Classification of program errors
  Handling static errors in the compiler
  Handling run-time errors by the run-time system

 Exception handling concept and implementation



2 TDDD55/TDDB44 Compiler Construction, 2022

Program Errors …
 A major part of the total cost of software projects is due to 

testing and debugging.

 US-Study 
 2002 – Software errors cost the US economy ~$60 billion yearly
 2016 – Jumped to ~$1.1 trillion
 2020 – Poor software quality cost US companies ~$2.08 trillion
 2022 – Software Quality Issues in the US cost ~$2.41 trillion

 What error types can occur?  
 Classification

 Prevention,  Diagnosis,  Treatment
 Programming language concepts
 Compiler, IDE, Run-time support
 Other tools:  Debugger, Verifier, ... 0.00E+00

5.00E+11

1.00E+12

1.50E+12

2.00E+12

2.50E+12

3.00E+12

2002 2016 2020 2022



3 TDDD55/TDDB44 Compiler Construction, 2022

Classification of Program Errors (1)
 Design-Time Errors   (not considered here)

 Algorithmic errors e.g.: forgotten special case; 
     non-terminating program
Numeric errors Accumulation of rounding errors

 Contract violation Violating required invariants

 Static Errors
 Syntax Error  forgotten semicolon, 

                                  misspelled keyword, e.g. BEGNI  (BEGIN)
 Semantic Error

Static type error Wrong parameter number or type;
   Downcast without run-time check

Undeclared variable
Use of uninitialized variable
Static overflow  Constant too large for target format

 Compiler Runtime Errors Symbol table / constant table / 
    string table / type table overflow 



4 TDDD55/TDDB44 Compiler Construction, 2022

Classification of Program Errors (2)
 Execution Run-time errors – usually not checkable statically

 Memory access error e.g.:
Array index error Index out of bounds
Pointer error  Dereferenced NULL-pointer

 Arithmetic error  Division by 0;  Overflow
 I/O – error  unexpected end of file

    write to non-opened file
 Communication error Wrong receiver, wrong type
 Synchronization error Data ”race”,  deadlock
 Resource exhaustion Stack / heap overflow, 

    time account exhausted
 ...

 Remark:  There are further types of errors, and combinations.



5 TDDD55/TDDB44 Compiler Construction, 2022

Error Prevention, Diagnosis, Treatment

 Programming language concepts
 Type safety     static type errors
 Exception concept   run-time errors
 Automatic memory mgmt  memory leaks, pointer errors

 Compiler frontend          syntax errors, static semantic errors
 Program verifier    contract violation
 Code Inspection  [Fagan’76]    all error types

 Testing, Debugging, Static Analysis  run-time errors
 Runtime protection monitor   access errors
 Trace Visualizer   communication errors,

     synchronization errors



6 TDDD55/TDDB44 Compiler Construction, 2022

Some Debugging Research at PELAB
(Needs a lot of compiler technology, integrated with compiler)

 High-Level Host-Target Embedded System Debugging
 Peter Fritzson: Symbolic Debugging through Incremental Compilation in an 

Integrated Environment. The Journal of Systems and Software 3, 285-294, 
(1983) 

 Semi-automatic debugging – automatic bug localization by 
automatic comparison with a specification /or using oracle
 Peter Fritzson, Nahid Shahmehri, Mariam Kamkar, Tibor Gyimothy: 

Generalized Algorithmic Debugging and Testing. In ACM LOPLAS - Letters 
of Programming Languages and Systems, Vol 1, No 4, Dec 1992.

 Henrik Nilsson, Peter Fritzson: Declarative Algorithmic Debugging for Lazy 
Functional Languages. In Journal of Functional Programming, 4(3):337 - 370, 
July 1994.



7 TDDD55/TDDB44 Compiler Construction, 2022

More Debugging Research at PELAB
(Needs a lot of compiler technology, integrated with compiler)

 Debugging of very high-level languages: specification 
languages (RML), equation-based languages (Modelica)
 Adrian Pop and Peter Fritzson. An Eclipse-based Integrated Environment for 

Developing Executable Structural Operational Semantics Specifications. 
Electronic Notes in Theoretical Computer Science (ENTCS), Vol 175, pp 71–
75. ISSN:1571-0661. May  2007.

 Adrian Pop (June 5, 2008). Integrated Model-Driven Development 
Environments for Equation-Based Object-Oriented Languages. Linköping 
Studies in Science and Technology, Dissertation No. 1183.

 Martin Sjölund. Tools for Understanding, Debugging, and Simulation 
Performance Improvement of Equation-Based Models. Licentiate thesis No 
1592, Linköping University, Department of Computer and Information 
Science, April 2013

 Adrian Pop, Martin Sjölund, Adeel Ashgar, Peter Fritzson, and Francesco 
Casella. Integrated Debugging of Modelica Models. Modeling, Identification 
and Control, 35(2):93-107, 2014



8 TDDD55/TDDB44 Compiler Construction, 2022

The Task of the Compiler…
 Discover errors
 Report errors
 Restart parsing after errors, automatic recovery
 Correct errors on-the-fly if possible

Requirements on error management in the compiler
 Correct and meaningful error messages
 All static program errors (as defined by language) must be 

found
 Not to introduce any new errors
 Suppress code generation if error encountered



Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler, 
IDA, Linköpings universitet, 2023.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Handling Syntactic Errors

in the lexical analyser and parser



10 TDDD55/TDDB44 Compiler Construction, 2022

Local or Global Errors
 Lexical errors (local - usually)
 Syntactic errors (local)
 Semantic errors (can be global)

 Lexical and syntactic errors are local,  i.e. you do not go 
backwards and forwards in the parse stack or in the token 
sequence to fix the error. The error is fixed where it occurs, 
locally.



11 TDDD55/TDDB44 Compiler Construction, 2022

When is a Syntax Error Discovered?
 Syntax errors are discovered (by the parser) when we cannot go from one 

configuration to another as decided by the stack contents and input plus 
parse tables (applies to bottom-up).

 LL- and LR-parsers have a valid prefix property i.e. discover the error 
when the substring being analyzed together with the next symbol do not 
form a prefix of the language.

 LL- and LR-parsers discover errors as early as a left-to-right parser can.

 Syntax errors rarely discovered by the lexical analyzer
 E.g., ”unterminated string constant; identifier too long,

illegal identifier: 55ES



12 TDDD55/TDDB44 Compiler Construction, 2022

Example; Global vs Local Correction
 Example. From PL/1 (where "=" is also used for assigment).

 Two kinds of methods:
 Methods that assume a valid prefix (called phrase level in [ASU]).
 Methods that do not assume a valid prefix, but are based on a (mostly) 

valid prefix, are called global correction in [ASU]

The error is discovered here, but the
real error is here. "IF" is missing.

A = B + C * D THEN . . . ELSE . . .



13 TDDD55/TDDB44 Compiler Construction, 2022

 A = B + C * D  THEN ... ELSE ...

  IF

 Inserting IF is a minimum distance repair.

   

Minimum Distance Error Correction
 Definition: The least number of operations (such as removal, 

inserting or replacing) which are needed to transform a string 
with syntax errors to a string without errors, is called the 
minimum distance (Hamming distance) between the strings.

 Example. Correct the string below using this principle.

 This principle leads to a high level of inefficiency as you have 
to try all possibilities and choose the one with the least 
distance!



14 TDDD55/TDDB44 Compiler Construction, 2022

Parser-Defined Error Correction
 More efficient!
 Let G be a CFG and w = xty an incorrect string, i.e. w ∉ L(G). 

If x is a valid prefix while xt is not a valid prefix, t is called a parser 
defined error.

Parser-defined error 1:
Change THEN to ";"

A = B+C*D THEN ... ELSE ...

Minimum distance repair:
Insert IF

Parser-defined error 2:
Change ELSE to ";"



15 TDDD55/TDDB44 Compiler Construction, 2022

Some Methods for Syntax Error Management

 Panic mode  (for LL parsing/recursive descent, or LR 
parsing))

 Coding error entries in the ACTION table  (for LR parsing)

 Error productions for ”typical” errors  (LL, LR, Any parsers)

 Language-independent methods 
 Continuation method, Röchrich (1980) 
 Automatic error recovery, Burke & Fisher  (1982) 



16 TDDD55/TDDB44 Compiler Construction, 2022

Synchronization Points 
for Recovery after a Syntax Error

cβ

A

B

A

S

A  β.b γ
a? a?

in FOLLOW( A ) ?

Parser stack contents

input prefix
parsed successfully

α



17 TDDD55/TDDB44 Compiler Construction, 2022

Panic Mode Recovery after a Syntax Error

c

A?

B

A

S

B  αA.δ
a  

in FOLLOW( A ) !

Parser stack contents

input prefix
parsed successfully

α



18 TDDD55/TDDB44 Compiler Construction, 2022

Panic mode  (for predictive (LL) parsing)
 A wrong token c was found for current production  A  β . b γ
 Skip input tokens until either

 parsing can continue (find b), or
 a synchronizing token is found for the current production

(e.g. {, }, while, if, ; …)  
 tokens in FOLLOW(A) for current LHS nonterminal A

– then pop A and continue
 tokens in FOLLOW(B) for some LHS nonterminal B on the stack 

below A  
– then pop the stack until 

and including B, and continue
 tokens in FIRST(A) 

– Then resume parsing by 
the matching production for A

 Further details:  [ALSU06] 4.4.5 

 Systematic, easy to implement
 Does not require extra memory
 Much input can be removed
 Semantic information on stack
    is lost if popped for error recovery



19 TDDD55/TDDB44 Compiler Construction, 2022

Error Productions
 For ”typical beginner’s” syntax errors

 E.g. by former Pascal programmers changing to C

 Define ”fake” productions that ”allow” the error idiom:
 E.g.,   <id> := <expr>       similarly to    <id> = <expr>

Error message:  
”Syntax error in line 123,  v := 17 should read v = 17 ?”

 very good error messages
 can easily repair the error
 difficult to foresee all such error idioms
 increases grammar size and thereby parser size



20 TDDD55/TDDB44 Compiler Construction, 2022

Error Entries in the ACTION table  (LR)
 Empty fields in the ACTION table  (= no transition in GOTO graph when 

seeing a token) correspond to syntax errors.

 LR Panic-mode recovery:
Scan down the stack until a state s with a goto on a particular nonterminal 
A is found such that one of the next input symbols a is in FOLLOW(A).
Then push the state GOTO(s, A) and resume parsing from a.
 Eliminates the erroneous phrase (subexpr., stmt., block) completely.

 LR Phrase-level recovery:
For typical error cases  (e.g. semicolon before else in Pascal) define a 
special error transition with pointer to an error handling routine, called if 
the error is encountered
 See example and [ALSU06] 4.8.3 for details

 Can provide very good error messages
 Difficult to foresee all possible cases
 Much coding
 Modifying the grammar means recoding the error entries



21 TDDD55/TDDB44 Compiler Construction, 2022

Example: LR Phrase-level Recovery
0.    S’ -> L |-- 
1.    L  ->  L , M
2.         |   M
3.    M  -> a
4.         |   b

ACTION table:

state     |--   ,     a    b

0          E1  E2  S4  S5
1           A   S2  E4  E4      
2          E1  E3  S4  S5
3          R1  R1  E5  E5    
4          R3  R3  E6  E6  
5          R4  R4  E6  E6 
6          R2  R2  E5  E5

GOTO table:

state       L     M   

0             1     6
1             *      *
2             *      3
3             *      *
4             *      *
5             *      *
6             *      *

E1: errmsg(”Found EOF where element expected”);
      push state 3  = the GOTO target of finding (fictitious) M

Error handling routines
triggered by new ACTION 
table error transitions:

E2: errmsg(”No leading comma”);   read the comma away and stay in state 0
E3: errmsg(”Duplicate comma”);    read the comma away and stay in state 2
E4: errmsg(”Missing comma between elements”);
      push state 2  (pretend to have seen and shifted a comma)
E5: errmsg(”Missing comma”);   reduce + push state 1 as if seeing the comma
E6: errmsg(”Missing comma”);   reduce + push state 3 as if seeing the comma



22 TDDD55/TDDB44 Compiler Construction, 2022

Error Productions in Yacc
 Extend grammar with error productions of the form

A  ::=  error  α  
which correspond to most common errors  A  α  
error:   fictitious token, reserved keyword in Yacc
 Example:   <stmt>  ::=   error <id> := <expr>

Panic mode for LR parsing

 When an error occurs:  
 Pop stack elements until the state on top of the stack has an item of 

the form  [ A  . error α ]  in its item set
 Shift error in as a token  
 If α is ε,  reduce using semantic action for this rule:

             A ::= error ε       { printf(”Error: …”); }
 Otherwise, skip tokens until a string derivable from α is found, and 

reduce for this rule:
             A ::= error α      { printf(”Error, continued from α”); }

 Example:   A ::= error ;       { printf(”Error, continued from semicolon”); }



23 TDDD55/TDDB44 Compiler Construction, 2022

Language-Independent Error Management 
Methods - "Röhrich Continuation Method"
 All information about a language is in the parse tables. 
 By looking in the tables you know what is allowed in a 

configuration. 
 Error handling is generated automatically

w = x t y 

valid prefix
(already parsed) parser-defined 

rest of 
token sequence

error

Input:   w



24 TDDD55/TDDB44 Compiler Construction, 2022

Röhrich Continuation Method (Cont.)
 1. Construct a continuation u, u ∈ S*, and w’ = 

xu ∈  L(G).
 2. Remove input symbols until an important 

symbol is found (anchor, beacon) e.g. WHILE, 
IF, REPEAT, BEGIN etc.
 In this case:  then is removed 

as BEGIN is the anchor symbol.
 3. Insert parts of u after x,  

and provide an error message.
 "DO" expected instead of "THEN".

 "Röhrich Continuation Method"
 + Language-independent 

+ Efficient
- A valid prefix can not cause an error. 
- Much input can be thrown away.

program foo;
begin
    while a > b then begin

Parser-defined error
    end
end;



25 TDDD55/TDDB44 Compiler Construction, 2022

 Takes into consideration that a valid prefix can be error-prone.
Can also recover/correct such errors. 

 Problem: you have to ’’back up’’/Undo the stack

 This works if information is still in the 
stack but this is not always the case!

Remember that information
is popped from the stack
at reductions. stack input 

normal 

if an error occurs

Automatic Error Recovery, Burke & Fisher  (2)
(PLDI Conference 1982)



26 TDDD55/TDDB44 Compiler Construction, 2022

Automatic Error Recovery, Burke & Fisher  (2)

 The algorithm has three phases: 
 1. Simple error recovery
 2. Scope recovery
 3. Secondary recovery

 Phase 1: Simple Error Recovery (a so-called token error) 
 Removal of a token 
 Insertion of a token 
 Replace a token with something else
 Merging: Concatenate two adjacent tokens.
 Error spelling      

 (BEGNI → BEGIN)



27 TDDD55/TDDB44 Compiler Construction, 2022

Automatic Error Recovery, Burke & Fisher  (3)

 Phase 2: 
Scope Recovery 

Insertion of several 
tokens to switch off 
open scope. 

Opener Closer
PROGRAM BEGIN END.

.

PROCEDURE BEGIN END;

;

BEGIN END

( )

[ ]

REPEAT UNTIL identifier;

UNTIL identifier

ARRAY OF identifier;

OF identifier



28 TDDD55/TDDB44 Compiler Construction, 2022

 Phase 3: Secondary recovery

 Similar to panic mode. 
 Phase 3 is called if phase 1 and 2 did not succeed in putting the 

parser back on track. 

  Summary "Automatic error recovery", Burke & Fisher
 + Language-independent, general
 + Provides very good error messages 
 + Able to make modifications to the parse stack 

   (by ’’backing up’’ the stack) 
 - Consumes some time and memory. 

Automatic Error Recovery, Burke & Fisher  (2)



29 TDDD55/TDDB44 Compiler Construction, 2022

Example Test Program for Error Recovery
1 PROGRRAM scoptest(input, output);

     3 CONST mxi dlen = 10

     5 VAR a,b,c;d :INTEGER;

     7     arr10 : ARRAY [1..mxidlen]  ;

 

    10    PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;

    12    VAR i, : INTEGER; 

    14    BEGIN )* foo *)

    16       REPEAT 

    18          a:= (a + c);

    20          IF (a > b) THEN a:= b ; ELSE b:=a;  

    22   PROCEDURE fie(VAR i,j:INTEGER);

    24   BEGIN (* fie *)

    26      a = a + 1;

    28   END (* fie *);

    29 

    32   A := B + C; 

    34 END.



30 TDDD55/TDDB44 Compiler Construction, 2022

Error Messages from Old Hedrick Pascal - Bad!
1   PROGRRAM scoptest(input, output);

P*  1**        ^         **************^

1.^:  "BEGIN" expected    

2.^:  ":=" expected  

    3   CONST mxi dlen = 10

P*  1**     ^        ^  ** 

1.^:  "END" expected 

2.^:  "=" expected   

2.^:  Identifier not declared  

    5   VAR a,b,c;d :INTEGER;

P*  1**   ^      ^           

1.^:  ";" expected   

2.^:  Can't have that here (or something 
extra or missing before) 

2.^:  ":" expected   

    7       arr10 : ARRAY [1..mxidlen]  ;

P*  1**                             ^^  ^

1.^:  Identifier not declared  

2.^:  Incompatible subrange types   

3.^:  "OF" expected  

10      PROCEDURE foo(VAR k:INTEGER) : 
BOOLEAN;

P*  1**                                 
^******** 

1.^:  Can't have that here (or something 
extra or missing before) 

   12      VAR i, : INTEGER;

P*  1**           ^         

1.^:  Identifier expected 

   14      BEGIN )* foo *)

P*  1**          ^******* 

1.^:  Can't have that here (or something 
extra or missing before) 

   20            IF (a > b) THEN a:= b ; 
ELSE b:=a;

P*  1**                                     
^***** 

1.^:  ELSE not within an IF-THEN (extra 
";","END",etc. before it?)

   22     PROCEDURE fie(VAR i,j:INTEGER);

P*  1**           ^ 



31 TDDD55/TDDB44 Compiler Construction, 2022

Error Messages from Old Sun Pascal - Better!
1  PROGRAM scoptest(input,output);

e ------^--- Inserted '['

E -------------------------------------^--- 
Expected ']'

     3  CONST mxi dlen = 10

e ----------------^--- Deleted identifier

     5  VAR a,b,c;d :INTEGER;

e ------^--- Inserted ';'

e ---------------^--- Replaced ';' with a 
','

     7      arr10 : ARRAY [1..mxidlen] ;

E -------------------------------------^- 
Expected keyword of

E -------------------------------------^- 
Inserted identifier

   PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;

E--------- Procedures cannot have types

    12     VAR i, : INTEGER;

E --------------^--- Deleted ','

14     BEGIN )* foo *)

E ---------------^--- Malformed statement

    20           IF (a > b) THEN a:= b ; 
ELSE b:=a;

e -------------------------------------^--- 
Deleted ';'                                            
before keyword else

    22    PROCEDURE fie(VAR i,j:INTEGER);

E --------^--- Expected keyword until

E --------^--- Expected keyword end

E --------^--- Inserted keyword end 
matching begin on line 14

e --------^--- Inserted ';'

    26       a = a + 1;

e -------------^--- Replaced '=' with a 
keyword (null)

    32    A := B + C; 

e --------^--- Inserted keyword (null)

    34  END.

E ------^--- Malformed declaration

E ------^--- Unrecoverable syntax error - 
QUIT



32 TDDD55/TDDB44 Compiler Construction, 2022

Error Messages from Burke & Fisher's 
"Automatic Error Recovery" – Best!
1  PROGRRAM scoptest(input,output);

      ^^^^^^^^

*** Lexical Error: Reserved word "PROGRAM" 
misspelled

   3  CONST mxi dlen = 10

            ^^^ ^^^

*** Lexical Error: "MXIDLEN" expected 
instead of "MXI"  "DLEN"

   3  CONST mxi dlen = 10

                       ^^

*** Syntax Error: ";" expected after this 
token

   5  VAR a,b,c;d :INTEGER;

               ^

*** Syntax Error: "," expected instead of 
";"

   7      arr10 : ARRAY [1..mxidlen]  ;

                                    ^

*** Syntax Error: "OF IDENTIFIER" inserted 
to match "ARRAY" 

10     PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;

         ^^^^^^^^^

*** Syntax Error: "FUNCTION" expected instead of 
"PROCEDURE"

  12     VAR i, : INTEGER;

                ^

*** Syntax Error: "IDENTIFIER" expected before 
this token

  14     BEGIN )* foo *)

               <------->

*** Syntax Error: Unexpected input

  20           IF (a > b) THEN a:= b ; ELSE b:=a;                                     
^

*** Syntax Error: Unexpected ";" , ignored

  20           IF (a > b) THEN a:= b ; ELSE b:=a;                                                
^

*** Syntax Error: "UNTIL IDENTIFIER" inserted to 
match "REPEAT" 

*** Syntax Error: "END" inserted to match "BEGIN"               

  26       a = a + 1;

             ^



Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler, 
IDA, Linköpings universitet, 2023.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Handling Semantic Errors

in the compiler front end



34 TDDD55/TDDB44 Compiler Construction, 2022

Semantic Errors
 Can be global  

(needs not be tied to a specific code location or nesting level)
 Do not affect the parsing progress
 Usually hard to recover automatically

 May e.g. automatically declare an undeclared identifier with a 
default type (int) in the current local scope – but this may lead to 
further semantic errors later

 May e.g. automatically insert a missing type conversion
 May e.g. try to derive the type of a variable which is not declared 

(some type inference algorithms exist) 

 Usually handled ad-hoc in the semantic actions /
frontend code



Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler, 
IDA, Linköpings universitet, 2023.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Exception handling

Concept and Implementation



36 TDDD55/TDDB44 Compiler Construction, 2022

Exception Concept
 PL/I  (IBM) ca. 1965:  ON condition …
 J. B. Goodenough, POPL’1975 and  Comm. ACM  Dec. 1975
 Supported in many modern programming languages

 CLU, Ada, Modula-3, ML, C++, Java, C#, MetaModelica

 Overview:
 Terminology:  Error vs. Exception
 Exception Propagation
 Checked vs. Unchecked Exceptions
 Implementation



37 TDDD55/TDDB44 Compiler Construction, 2022

Exception Concept
2 sorts of run-time errors:
 Error:  cannot be handled by application program – terminate execution
 Exception:  may be handled by the program itself  

 Triggered (thrown) by run-time system when recognizing a run-time 
issue, or by the program itself 

 Message (signal) to the program
 Run-time object defining an uncommon or error situation  

has a type (Exception class)
May have parameters, e.g. a string with clear-text error message
Also, user-defined exceptions e.g. for boundary cases

 Exception Handler: 
Contains a code block for treatment
 Is statically associated with the monitored code block, 

which it replaces in the case of an exception



38 TDDD55/TDDB44 Compiler Construction, 2022

Exception Example   (in Java)
public class class1 {
    public static void main ( String[] args ) {
    try {
        System.out.println("Hello, " + args[0] );
    }
    catch (ArrayIndexOutOfBoundsException e ) {
        System.out.println(”Please provide an argument! " + e);
    }
            System.out.println(”Goodbye");
    }
}

% java class1 
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0
at class1.main(class1.java:4)

% java class1 
Please provide an argument! java.lang.ArrayIndexOutOfBoundsException
Goodbye



39 TDDD55/TDDB44 Compiler Construction, 2022

Propagating Exceptions
 If an exception is not handled in the current method, program control 

returns from the method and triggers the same exception to the caller.
This schema will repeat until either 
 a matching handler is found, or
 main() is left  (then error message and program termination).

 Optional finally-block will always be executed, though.  
 E.g. for releasing of allocated resources or held locks

 To be determined:
 When does a handler match?
 How can we guarantee statically that a certain exception is  eventually 

handled within the program?
 Implementation?



40 TDDD55/TDDB44 Compiler Construction, 2022

When Does a Handler ”match”?
 Exception Class Hierarchy
 User-defined exceptions 

by subclassing

 Handler  catch( XYException e ) {…}
     matches, if XYException is of the 

same type or a supertype of the 
thrown exception.

Object

Throwable

Error Exception

RunTimeException

ArrayIndexOutOfBoundsE

ArithmeticException

NullPointerException

IllegalAccessException

NoSuchMethodException
…

VirtualMachineError

ThreadDeath

…



41 TDDD55/TDDB44 Compiler Construction, 2022

Checked and Unchecked Exceptions
 Checked Exception:  must be

 Treated in a method, or
 Explicitly declared in method declaration as propagated exception:

void writeEntry( … ) throws IOException { … }

 Unchecked Exception:  will be propagated implicitly

 In Java: All Exceptions are checked,
              except RunTimeException and its subtypes.

 Checked Exceptions:  
 Encapsulation
 Consistency can be checked statically 
 become part of the contract  of the method’s class/interface 
 suitable for component systems, e.g. CORBA  ( TDDC18)
 Extensibility   



42 TDDD55/TDDB44 Compiler Construction, 2022

AR( main )

-> catch(…)
AR( foo )

Implementation
Simple solution:
 Stack of handlers 
 When entering a monitored block (try {…}):

 Push all its handlers (catch(…) {…})
 When an exception occurs:

 Pop topmost handler and start (test of exception type).
If it does not match, re-throw and repeat.
(If the last handler in current method did not match either,
 pop also the method’s activation record  exit method.)

 If leaving the try-block normally:  pop its handlers
  Simple
  Overhead (push/pop) also if no exception occurs

More efficient solution: 
 Compiler generates table of pairs (try-block, matching handler)

 When exception occurs find try-block by binary search (PC)

main:
fp(foo):

-> catch(E2)
AR( bar )fp(bar):

void bar(…) {
   try { … }
   catch(E1 e) {…}
   catch(E2 e) {…}
   …
}

-> catch(E2)
-> catch(E1)



43 TDDD55/TDDB44 Compiler Construction, 2022

Exceptions:  Summary,  Literature
 Exceptions  

 Well-proven concept for treatment of run-time errors
 Efficiently implementable
 Suitable for component-based software development

M. Scott:  Programming Language Pragmatics. Morgan Kaufmann, 2000.
Section 8.5 about Exception Handling.
J. Goodenough: Structured Exception Handling. ACM POPL, Jan. 1975
J. Goodenough: Exception Handling: Issues and a proposed notation. 
Communications of the ACM, Dec. 1975
B. Ryder, M. Soffa: Influences on the Design of Exception Handling, 2003
Adrian Pop, Kristian Stavåker, and Peter Fritzson. Exception Handling for 
Modelica. In Proceedings of the 6th International Modelica Conference 
(Modelica'2008), Bielefeld, Germany, March.3-4, 2008



Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler, 
IDA, Linköpings universitet, 2023.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Interpreters



45 TDDD55/TDDB44 Compiler Construction, 2022

Direct Interpretation
 Given the program source code and the run-time input
 Interpret the source code directly, 

i.e. parse and simulate it, statement by statement
(syntax-directed interpretation)
 UNIX shells (command line interpreter)
 Early interpreters for BASIC, LISP, APL

 Symbol table 
 contains also storage for run-time values of program variables

 Full information about source-level program entities
 Good for debugging

 Very slow
 But ok for small scripts



46 TDDD55/TDDB44 Compiler Construction, 2022

Hybrid Compiler/Interpreter Scenario 
Step 1:
 Translate the source program to an internal form

 E.g. quadruples, postfix, abstract syntax tree
 Or to instructions for an abstract machine

 E.g. P-code for Pascal and Modula-2,  Diana for Ada, 
JVM bytecode for Java,  CIL for C#/.NET   

Step 2:
 Execute the interpreter

 given the internal form / abstract machine program 
 simulate the abstract machine step by step 

 More efficient than direct interpretation, but
 still much slower than compiled code, typ. by a factor ~10 to ~100
 Still portable – intermediate form is not processor specific
  Source code cannot be reconstructed completely from intermediate form
 Can be stored compactly
 Easy to write an interpreter (virtual machine)



47 TDDD55/TDDB44 Compiler Construction, 2022

Example:  JVM Bytecode
 Instructions for the JVM (Java Virtual Machine), 

an abstract stack machine
 Executes .class or .jar files (loaded when first referenced)

Heap of loaded classes  (program text and static data)
 Program counter PC
 Bytecode instructions (postfix order) have 

1 byte opcode with 0 or 1 operand 
span 1 or more bytes, depending on operand size

 Run-time stack:  Frame pointer fp,  Stack pointer sp

 Could even be implemented in hardware  (e.g. Sun MAJC)



48 TDDD55/TDDB44 Compiler Construction, 2022

JVM Bytecode Interpretation
JVM Instruction
(examples)

Interpretation (by C code) Stack top 
before

Stack top
afterwards

iconst_0 Stack[ sp++ ] = 0;
PC++;        // code needs 1 byte

()
= don’t care

(I)
= int-value

istore v Stack[ fp + v ] = Stack[ --sp ];
PC += 2;   //  needs 2 bytes

(I) ()

iload v Stack[ sp++ ] = Stack[ fp + v ];
PC += 2;    

() (I)

iadd Stack[sp-1] = Stack[sp] +   
           Stack[sp-1];  sp--; PC++;

(I, I) (I)

goto a PC = a;      () ()

ifeq a if (Stack[ sp-- ] == 0)  PC = a;
else PC += 3;

(I) ()



49 TDDD55/TDDB44 Compiler Construction, 2022

Just-In-Time (JIT) Compiling
 A.k.a. dynamic translation
 Program execution starts in interpreter as before
 Whenever control flow enters a new unit of bytecode

(unit could be e.g. a class file, a function, a loop, or a basic block):
 Do not interpret it, but call the JIT compiler that translates it to target 

code and replaces the unit with a branch to the new target code
 JIT compiling overhead  delay at run-time

 paid once per unit  (if code can be kept in memory)
 pays often only off if translated code is executed several times  

(e.g., a loop body)
Can also be done lazily:  Interpret the unit when executed for the first 

time. When re-entering the unit, JIT-compile.
Or pre-compile/pre-JIT to native code ahead of time 

 Trade-off: 
JIT-generated code quality vs. JIT compiler speed (run-time delay)



50 TDDD55/TDDB44 Compiler Construction, 2022

Just-In-Time (JIT) Compiling  (cont.)
 Typically, performance boost by at least one order of magnitude
 Still somewhat slower, 

but may even be faster than statically compiled code in some cases 
 Can use on-line information from performance counters (e.g. #cache 

misses) for dynamic re-optimization and memory re-layout
 Example for Java:  Sun JDK HotSpot JVM;

               for C#:  .NET CLR, NGEN



51 TDDD55/TDDB44 Compiler Construction, 2022

Thank you!
 Any questions?
 Next week

 L14 – Compiler frameworks & Bootstrapping
 TDDB44 & TDDD55 

Last Seminar: Exam preparation


	Error Management�in Compilers and Run-time Systems
	Program Errors …
	Classification of Program Errors (1)
	Classification of Program Errors (2)
	Error Prevention, Diagnosis, Treatment
	Some Debugging Research at PELAB�(Needs a lot of compiler technology, integrated with compiler)
	More Debugging Research at PELAB�(Needs a lot of compiler technology, integrated with compiler)
	The Task of the Compiler…
	Handling Syntactic Errors
	Local or Global Errors
	When is a Syntax Error Discovered?
	Example; Global vs Local Correction
	Minimum Distance Error Correction
	Parser-Defined Error Correction
	Some Methods for Syntax Error Management
	Synchronization Points �for Recovery after a Syntax Error
	Panic Mode Recovery after a Syntax Error
	Panic mode  (for predictive (LL) parsing)
	Error Productions
	Error Entries in the ACTION table  (LR)
	Example: LR Phrase-level Recovery
	Error Productions in Yacc
	Language-Independent Error Management Methods - "Röhrich Continuation Method"
	Röhrich Continuation Method (Cont.)
	Automatic Error Recovery, Burke & Fisher  (2)�(PLDI Conference 1982)
	Automatic Error Recovery, Burke & Fisher  (2)
	Automatic Error Recovery, Burke & Fisher  (3)
	Automatic Error Recovery, Burke & Fisher  (2)
	Example Test Program for Error Recovery
	Error Messages from Old Hedrick Pascal - Bad!
	Error Messages from Old Sun Pascal - Better!
	Error Messages from Burke & Fisher's �"Automatic Error Recovery" – Best!
	Handling Semantic Errors
	Semantic Errors
	Exception handling
	Exception Concept
	Exception Concept
	Exception Example   (in Java)
	Propagating Exceptions
	When Does a Handler ”match”?
	Checked and Unchecked Exceptions
	Implementation
	Exceptions:  Summary,  Literature
	Interpreters
	Direct Interpretation
	Hybrid Compiler/Interpreter Scenario 
	Example:  JVM Bytecode
	JVM Bytecode Interpretation
	Just-In-Time (JIT) Compiling
	Just-In-Time (JIT) Compiling  (cont.)
	Thank you!

