
Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2022.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Error Management
in Compilers and Run-time Systems

 Classification of program errors
 Handling static errors in the compiler
 Handling run-time errors by the run-time system

 Exception concept and implementation

2 TDDD55/TDDB44 Compiler Construction, 2022

Program Errors …
 A major part of the total cost of software projects is due to

testing and debugging.

 US-Study
 2002 – Software errors cost the US economy $60 billion yearly
 2016 – Jumped to $1.1 trillion
 2020 – Poor software quality cost US companies $2.08 trillion

 What error types can occur?
 Classification

 Prevention, Diagnosis, Treatment
 Programming language concepts
 Compiler, IDE, Run-time support
 Other tools: Debugger, Verifier, ...

0.00E+00

5.00E+11

1.00E+12

1.50E+12

2.00E+12

2.50E+12

2002 2016 2020

$

3 TDDD55/TDDB44 Compiler Construction, 2022

Classification of Program Errors (1)
 Design-Time Errors (not considered here)

 Algorithmic errors e.g.: forgotten special case;
non-terminating program

Numeric errors Accumulation of rounding errors
 Contract violation Violating required invariants

 Static Errors
 Syntax Error forgotten semicolon,

misspelled keyword, e.g. BEGNI (BEGIN)
 Semantic Error

Static type error Wrong parameter number or type;
Downcast without run-time check

Undeclared variable
Use of uninitialized variable
Static overflow Constant too large for target format

 Compiler Runtime Errors Symbol table / constant table /
string table / type table overflow

4 TDDD55/TDDB44 Compiler Construction, 2022

Classification of Program Errors (2)
 Execution Run-time errors – usually not checkable statically

 Memory access error e.g.:
Array index error Index out of bounds
Pointer error Dereferenced NULL-pointer

 Arithmetic error Division by 0; Overflow
 I/O – error unexpected end of file

write to non-opened file
 Communication error Wrong receiver, wrong type
 Synchronisation error Data ”race”, deadlock
 Resource exhaustion Stack / heap overflow,

time account exhausted
 ...

 Remark: There are further types of errors, and combinations.

5 TDDD55/TDDB44 Compiler Construction, 2022

Error Prevention, Diagnosis, Treatment

 Programming language concepts
 Type safety  static type errors
 Exception concept  run-time errors
 Automatic memory mgmt  memory leaks, pointer errors

 Compiler frontend  syntax errors, static semantic errors
 Program verifier  Contract violation
 Code Inspection [Fagan’76]  All error types

 Testing, Debugging, Static Analysis  Run-time errors
 Runtime protection monitor  Access errors
 Trace Visualiser  Communication errors,

Synchronisation errors

6 TDDD55/TDDB44 Compiler Construction, 2022

Some Debugging Research at PELAB
(Needs a lot of compiler technology, integrated with compiler)

 High-Level Host-Target Embedded System Debugging
 Peter Fritzson: Symbolic Debugging through Incremental Compilation in an

Integrated Environment. The Journal of Systems and Software 3, 285-294,
(1983)

 Semi-automatic debugging – automatic bug localization by
automatic comparison with a specification /or using oracle
 Peter Fritzson, Nahid Shahmehri, Mariam Kamkar, Tibor Gyimothy:

Generalized Algorithmic Debugging and Testing. In ACM LOPLAS - Letters
of Programming Languages and Systems, Vol 1, No 4, Dec 1992.

 Henrik Nilsson, Peter Fritzson: Declarative Algorithmic Debugging for Lazy
Functional Languages. In Journal of Functional Programming, 4(3):337 - 370,
July 1994.

7 TDDD55/TDDB44 Compiler Construction, 2022

More Debugging Research at PELAB
(Needs a lot of compiler technology, integrated with compiler)

 Debugging of very high level languages: specification
languages (RML), equation-based languages (Modelica)
 Adrian Pop and Peter Fritzson. An Eclipse-based Integrated Environment for

Developing Executable Structural Operational Semantics Specifications.
Electronic Notes in Theoretical Computer Science (ENTCS), Vol 175, pp 71–
75. ISSN:1571-0661. May 2007.

 Adrian Pop (June 5, 2008). Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented Languages. Linköping
Studies in Science and Technology, Dissertation No. 1183.

 Martin Sjölund. Tools for Understanding, Debugging, and Simulation
Performance Improvement of Equation-Based Models. Licentiate thesis No
1592, Linköping University, Department of Computer and Information
Science, April 2013

 Adrian Pop, Martin Sjölund, Adeel Ashgar, Peter Fritzson, and Francesco
Casella. Integrated Debugging of Modelica Models. Modeling, Identification
and Control, 35(2):93-107, 2014

8 TDDD55/TDDB44 Compiler Construction, 2022

The Task of the Compiler…
 Discover errors
 Report errors
 Restart parsing after errors, automatic recovery
 Correct errors on-the-fly if possible

Requirements on error management in the compiler
 Correct and meaningful error messages
 All static program errors (as defined by language) must be

found
 Not to introduce any new errors
 Suppress code generation if error encountered

Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2022.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Handling Syntactic Errors

in the lexical analyser and parser

10 TDDD55/TDDB44 Compiler Construction, 2022

Local or Global Errors
 Lexical errors (local - usually)
 Syntactic errors (local)
 Semantic errors (can be global)

 Lexical and syntatic errors are local, i.e. you do not go
backwards and forwards in the parse stack or in the token
sequence to fix the error. The error is fixed where it occurs,
locally.

11 TDDD55/TDDB44 Compiler Construction, 2022

When is a Syntax Error Discovered?
 Syntax errors are discovered (by the parser) when we can not go from one

configuration to another as decided by the stack contents and input plus
parse tables (applies to bottom-up).

 LL- and LR-parsers have a valid prefix property i.e. discover the error
when the substring being analyzed together with the next symbol do not
form a prefix of the language.

 LL- and LR-parsers discover errors as early as a left-to-right parser can.

 Syntax errors rarely discovered by the lexical analyzer
 E.g., ”unterminated string constant; identifier too long,

illegal identifier: 55ES

12 TDDD55/TDDB44 Compiler Construction, 2022

Example; Global vs Local Correction
 Example. From PL/1 (where "=" is also used for assigment).

 Two kinds of methods:
 Methods that assume a valid prefix (called phrase level in [ASU]).
 Methods that do not assume a valid prefix, but are based on a (mostly)

valid prefix, are called global correction in [ASU]

The error is discovered here, but the
real error is here. "IF" is missing.

A = B + C * D THEN . . . ELSE . . .

13 TDDD55/TDDB44 Compiler Construction, 2022

 A = B + C * D THEN ... ELSE ...

 IF

 Inserting IF is a minimum distance repair.

Minimum Distance Error Correction
 Definition: The least number of operations (such as removal,

inserting or replacing) which are needed to transform a string
with syntax errors to a string without errors, is called the
minimum distance (Hamming distance) between the strings.

 Example. Correct the string below using this principle.

 This principle leads to a high level of inefficiency as you have
to try all possibilities and choose the one with the least
distance!

14 TDDD55/TDDB44 Compiler Construction, 2022

Parser-Defined Error Correction
 More efficient!
 Let G be a CFG and w = xty an incorrect string, i.e. w ∉ L(G).

If x is a valid prefix while xt is not a valid prefix, t is called a parser
defined error.

Parser-defined error 1:
Change THEN to ";"

A = B+C*D THEN ... ELSE ...

Minimum distance repair:
Insert IF

Parser-defined error 2:
Change ELSE to ";"

15 TDDD55/TDDB44 Compiler Construction, 2022

Some Methods for Syntax Error Management

 Panic mode (for LL parsing/recursive descent, or LR
parsing))

 Coding error entries in the ACTION table (for LR parsing)

 Error productions for ”typical” errors (LL, LR, Any parsers)

 Language-independent methods
 Continuation method, Röchrich (1980)
 Automatic error recovery, Burke & Fisher (1982)

16 TDDD55/TDDB44 Compiler Construction, 2022

Synchronization Points
for Recovery after a Syntax Error

cβ

A

B

A

S

A  β.b γ
a? a?

in FOLLOW(A) ?

Parser stack contents

input prefix
parsed successfully

α

17 TDDD55/TDDB44 Compiler Construction, 2022

Panic Mode Recovery after a Syntax Error

c

A?

B

A

S

B  αA.δ
a

in FOLLOW(A) !

Parser stack contents

input prefix
parsed successfully

α

18 TDDD55/TDDB44 Compiler Construction, 2022

Panic mode (for predictive (LL) parsing)
 A wrong token c was found for current production A  β . b γ
 Skip input tokens until either

 parsing can continue (find b), or
 a synchronizing token is found for the current production

(e.g. {, }, while, if, ; …)
 tokens in FOLLOW(A) for current LHS nonterminal A

– then pop A and continue
 tokens in FOLLOW(B) for some LHS nonterminal B on the stack

below A
– then pop the stack until

and including B, and continue
 tokens in FIRST(A)

– Then resume parsing by
the matching production for A

 Further details: [ALSU06] 4.4.5

 Systematic, easy to implement
 Does not require extra memory
 Much input can be removed
 Semantic information on stack

is lost if popped for error recovery

19 TDDD55/TDDB44 Compiler Construction, 2022

Error Productions
 For ”typical beginner’s” syntax errors

 E.g. by former Pascal programmers changing to C
 Define ”fake” productions that ”allow” the error idiom:

 E.g., <id> := <expr> similarly to <id> = <expr>
Error message:
”Syntax error in line 123, v := 17 should read v = 17 ?”

 very good error messages
 can easily repair the error
 difficult to foresee all such error idioms
 increases grammar size and thereby parser size

20 TDDD55/TDDB44 Compiler Construction, 2022

Error Entries in the ACTION table (LR)
 Empty fields in the ACTION table (= no transition in GOTO graph when

seeing a token) correspond to syntax errors.

 LR Panic-mode recovery:
Scan down the stack until a state s with a goto on a particular nonterminal
A is found such that one of the next input symbols a is in FOLLOW(A).
Then push the state GOTO(s, A) and resume parsing from a.
 Eliminates the erroneous phrase (subexpr., stmt., block) completely.

 LR Phrase-level recovery:
For typical error cases (e.g. semicolon before else in Pascal) define a
special error transition with pointer to an error handling routine, called if
the error is encountered
 See example and [ALSU06] 4.8.3 for details

 Can provide very good error messages
 Difficult to foresee all possible cases
 Much coding
 Modifying the grammar means recoding the error entries

23 TDDD55/TDDB44 Compiler Construction, 2022

Language-Independent Error Management
Methods - "Röhrich Continuation Method"
 All information about a language is in the parse tables.
 By looking in the tables you know what is allowed in a

configuration.
 Error handling is generated automatically

w = x t y

valid prefix
(already parsed) parser-defined

rest of
token sequence

error

Input: w

24 TDDD55/TDDB44 Compiler Construction, 2022

Röhrich Continuation Method (Cont.)
 1. Construct a continuation u, u ∈ S*, and w’ =

xu ∈ L(G).
 2. Remove input symbols until an important

symbol is found (anchor, beacon) e.g. WHILE,
IF, REPEAT, begin etc.
 In this case: then is removed

as BEGIN is the anchor symbol.
 3. Insert parts of u after x,

and provide an error message.
 "DO" expected instead of "THEN".

 "Röhrich Continuation Method"
 + Language-independent

+ Efficient
- A valid prefix can not cause an error.
- Much input can be thrown away.

program foo;
begin
 while a > b then begin

Parser-defined error
 end
end;

25 TDDD55/TDDB44 Compiler Construction, 2022

 Takes into consideration that a valid prefix can be error-prone.
Can also recover/correct such errors.

 Problem: you have to ’’back up’’/Undo the stack

 This works if information is still in the
stack but this is not always the case!

Remember that information
is popped from the stack
at reductions. stack input

normal

if an error occurs

Automatic Error Recovery, Burke & Fisher (2)
(PLDI Conference 1982)

26 TDDD55/TDDB44 Compiler Construction, 2022

Automatic Error Recovery, Burke & Fisher (2)

 The algorithm has three phases:
 1. Simple error recovery
 2. Scope recovery
 3. Secondary recovery

 Phase 1: Simple Error Recovery (a so-called token error)
 Removal of a token
 Insertion of a token
 Replace a token with something else
 Merging: Concatenate two adjacent tokens.
 Error spelling

(BEGNI → BEGIN)

27 TDDD55/TDDB44 Compiler Construction, 2022

Automatic Error Recovery, Burke & Fisher (3)

 Phase 2:
Scope Recovery

Insertion of several
tokens to switch off
open scope.

Opener Closer
PROGRAM BEGIN END.

.

PROCEDURE BEGIN END;

;

BEGIN END

()

[]

REPEAT UNTIL identifier;

UNTIL identifier

ARRAY OF identifier;

OF identifier

28 TDDD55/TDDB44 Compiler Construction, 2022

 Phase 3: Secondary recovery

 Similar to panic mode.
 Phase 3 is called if phase 1 and 2 did not succeed in

putting the parser back on track.

 Summary "Automatic error recovery", Burke & Fisher
 + Language-independent, general
 + Provides very good error messages
 + Able to make modifications to the parse stack

(by ’’backing up’’ the stack)
 - Consumes some time and memory.

Automatic Error Recovery, Burke & Fisher (2)

29 TDDD55/TDDB44 Compiler Construction, 2022

Example Test Program for Error Recovery
1 PROGRRAM scoptest(input,output);

3 CONST mxi dlen = 10

5 VAR a,b,c;d :INTEGER;

7 arr10 : ARRAY [1..mxidlen] ;

10 PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;

12 VAR i, : INTEGER;

14 BEGIN)* foo *)

16 REPEAT

18 a:= (a + c);

20 IF (a > b) THEN a:= b ; ELSE b:=a;

22 PROCEDURE fie(VAR i,j:INTEGER);

24 BEGIN (* fie *)

26 a = a + 1;

28 END (* fie *);

29

32 A := B + C;

34 END.

30 TDDD55/TDDB44 Compiler Construction, 2022

Error Messages from Old Hedrick Pascal - Bad!
1 PROGRRAM scoptest(input,output);

P* 1** ^ **************^

1.^: "BEGIN" expected

2.^: ":=" expected

3 CONST mxi dlen = 10

P* 1** ^ ^ **

1.^: "END" expected

2.^: "=" expected

2.^: Identifier not declared

5 VAR a,b,c;d :INTEGER;

P* 1** ^ ^

1.^: ";" expected

2.^: Can't have that here (or something
extra or missing before)

2.^: ":" expected

7 arr10 : ARRAY [1..mxidlen] ;

P* 1** ^^ ^

1.^: Identifier not declared

2.^: Incompatible subrange types

3.^: "OF" expected

10 PROCEDURE foo(VAR k:INTEGER) :
BOOLEAN;

P* 1**
^********

1.^: Can't have that here (or something
extra or missing before)

12 VAR i, : INTEGER;

P* 1** ^

1.^: Identifier expected

14 BEGIN)* foo *)

P* 1** ^*******

1.^: Can't have that here (or something
extra or missing before)

20 IF (a > b) THEN a:= b ;
ELSE b:=a;

P* 1**
^*****

1.^: ELSE not within an IF-THEN (extra
";","END",etc. before it?)

22 PROCEDURE fie(VAR i,j:INTEGER);

P* 1** ^

31 TDDD55/TDDB44 Compiler Construction, 2022

Error Messages from Old Sun Pascal - Better!
1 PROGRAM scoptest(input,output);

e ------^--- Inserted '['

E -------------------------------------^---
Expected ']'

3 CONST mxi dlen = 10

e ----------------^--- Deleted identifier

5 VAR a,b,c;d :INTEGER;

e ------^--- Inserted ';'

e ---------------^--- Replaced ';' with a
','

7 arr10 : ARRAY [1..mxidlen] ;

E -------------------------------------^-
Expected keyword of

E -------------------------------------^-
Inserted identifier

PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;

E--------- Procedures cannot have types

12 VAR i, : INTEGER;

E --------------^--- Deleted ','

14 BEGIN)* foo *)

E ---------------^--- Malformed statement

20 IF (a > b) THEN a:= b ;
ELSE b:=a;

e -------------------------------------^---
Deleted ';'
before keyword else

22 PROCEDURE fie(VAR i,j:INTEGER);

E --------^--- Expected keyword until

E --------^--- Expected keyword end

E --------^--- Inserted keyword end
matching begin on line 14

e --------^--- Inserted ';'

26 a = a + 1;

e -------------^--- Replaced '=' with a
keyword (null)

32 A := B + C;

e --------^--- Inserted keyword (null)

34 END.

E ------^--- Malformed declaration

E ------^--- Unrecoverable syntax error -
QUIT

32 TDDD55/TDDB44 Compiler Construction, 2022

Error Messages from Burke & Fisher's
"Automatic Error Recovery" – Best!
1 PROGRRAM scoptest(input,output);

^^^^^^^^

*** Lexical Error: Reserved word "PROGRAM"
misspelled

3 CONST mxi dlen = 10

^^^ ^^^

*** Lexical Error: "MXIDLEN" expected
instead of "MXI" "DLEN"

3 CONST mxi dlen = 10

^^

*** Syntax Error: ";" expected after this
token

5 VAR a,b,c;d :INTEGER;

^

*** Syntax Error: "," expected instead of
";"

7 arr10 : ARRAY [1..mxidlen] ;

^

*** Syntax Error: "OF IDENTIFIER" inserted
to match "ARRAY"

10 PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;

^^^^^^^^^

*** Syntax Error: "FUNCTION" expected instead of
"PROCEDURE"

12 VAR i, : INTEGER;

^

*** Syntax Error: "IDENTIFIER" expected before
this token

14 BEGIN)* foo *)

<------->

*** Syntax Error: Unexpected input

20 IF (a > b) THEN a:= b ; ELSE b:=a;
^

*** Syntax Error: Unexpected ";" , ignored

20 IF (a > b) THEN a:= b ; ELSE b:=a;
^

*** Syntax Error: "UNTIL IDENTIFIER" inserted to
match "REPEAT"

*** Syntax Error: "END" inserted to match "BEGIN"

26 a = a + 1;

^

Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2022.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Handling Semantic Errors

in the compiler front end

34 TDDD55/TDDB44 Compiler Construction, 2022

Semantic Errors
 Can be global

(needs not be tied to a specific code location or nesting level)
 Do not affect the parsing progress
 Usually hard to recover automatically

 May e.g. automatically declare an undeclared identifier
with a default type (int) in the current local scope – but this
may lead to further semantic errors later

 May e.g. automatically insert a missing type conversion
 May e.g. try to derive the type of a variable which is not

declared (some type inference algorithms exist)
 Usually handled ad-hoc in the semantic actions /

frontend code

Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2022.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Exception handling

Concept and Implementation

36 TDDD55/TDDB44 Compiler Construction, 2022

Exception Concept
 PL/I (IBM) ca. 1965: ON condition …
 J. B. Goodenough, POPL’1975 and Comm. ACM Dec. 1975
 Supported in many modern programming languages

 CLU, Ada, Modula-3, ML, C++, Java, C#, MetaModelica

 Overview:
 Terminology: Error vs. Exception
 Exception Propagation
 Checked vs. Unchecked Exceptions
 Implementation

37 TDDD55/TDDB44 Compiler Construction, 2022

Exception Concept
2 sorts of run-time errors:
 Error: cannot be handled by application program – terminate execution
 Exception: may be handled by the program itself

 Triggered (thrown) by run-time system when recognizing a run-time
issue, or by the program itself

 Message (signal) to the program
 Run-time object defining an uncommon or error situation

has a type (Exception class)
May have parameters, e.g. a string with clear-text error message
Also user-defined exceptions e.g. for boundary cases

 Exception Handler:
Contains a code block for treatment
 is statically associated with the monitored code block,

which it replaces in the case of an exception

38 TDDD55/TDDB44 Compiler Construction, 2022

Exception Example (in Java)
public class class1 {

public static void main (String[] args) {
try {

System.out.println("Hello, " + args[0]);
}
catch (ArrayIndexOutOfBoundsException e) {

System.out.println(”Please provide an argument! " + e);
}

System.out.println(”Goodbye");
}

}

% java class1
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0
at class1.main(class1.java:4)

% java class1
Please provide an argument! java.lang.ArrayIndexOutOfBoundsException
Goodbye

39 TDDD55/TDDB44 Compiler Construction, 2022

Propagating Exceptions
 If an exception is not handled in the current method, program control

returns from the method and triggers the same exception to the caller.
This schema will repeat until either
 a matching handler is found, or
 main() is left (then error message and program termination).

 Optional finally-block will always be executed, though.
 E.g. for releasing of allocated resources or held locks

 To be determined:
 When does a handler match?
 How can we guarantee statically that a certain exception is eventually

handled within the program?
 Implementation?

40 TDDD55/TDDB44 Compiler Construction, 2022

When Does a Handler ”match”?
 Exception Class Hierarchy
 User-defined exceptions

by subclassing

 Handler catch(XYException e) {…}
matches, if XYException is of the
same type or a supertype of the
thrown exception.

Object

Throwable

Error Exception

RunTimeException

ArrayIndexOutOfBoundsE

ArithmeticException

NullPointerException

IllegalAccessException

NoSuchMethodException
…

VirtualMachineError

ThreadDeath

…

41 TDDD55/TDDB44 Compiler Construction, 2022

Checked and Unchecked Exceptions
 Checked Exception: must be

 Treated in a method, or
 Explicitly declared in method declaration as propagated exception:

void writeEntry(…) throws IOException { … }

 Unchecked Exception: will be propagated implicitly

 In Java: All Exceptions are checked,
except RunTimeException and its subtypes.

 Checked Exceptions:
 Encapsulation
 Consistency can be checked statically
 become part of the contract of the method’s class/interface
 suitable for component systems, e.g. CORBA ( TDDC18)
 Extensibility

42 TDDD55/TDDB44 Compiler Construction, 2022

AR(main)

-> catch(…)
AR(foo)

Implementation
Simple solution:
 Stack of handlers
 When entering a monitored block (try {…}):

 Push all its handlers (catch(…) {…})
 When an exception occurs:

 Pop topmost handler and start (test of exception type).
If it does not match, re-throw and repeat.
(If the last handler in current method did not match either,
pop also the method’s activation record  exit method.)

 If leaving the try-block normally: pop its handlers
 Simple
 Overhead (push/pop) also if no exception occurs

More efficient solution:
 Compiler generates table of pairs (try-block, matching handler)

 When exception occurs: find try-block by binary search (PC)

main:
fp(foo):

-> catch(E2)
AR(bar)fp(bar):

void bar(…) {
try { … }
catch(E1 e) {…}
catch(E2 e) {…}
…

}

-> catch(E2)
-> catch(E1)

43 TDDD55/TDDB44 Compiler Construction, 2022

Exceptions: Summary, Literature
 Exceptions

 Well-proven concept for treatment of run-time errors
 Efficiently implementable
 Suitable for component based software development

M. Scott: Programming Language Pragmatics. Morgan Kaufmann, 2000.
Section 8.5 about Exception Handling.
J. Goodenough: Structured Exception Handling. ACM POPL, Jan. 1975
J. Goodenough: Exception Handling: Issues and a proposed notation.
Communications of the ACM, Dec. 1975
B. Ryder, M. Soffa: Influences on the Design of Exception Handling, 2003
Adrian Pop, Kristian Stavåker, and Peter Fritzson. Exception Handling for
Modelica. In Proceedings of the 6th International Modelica Conference
(Modelica'2008), Bielefeld, Germany, March.3-4, 2008

Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2022.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Interpreters

45 TDDD55/TDDB44 Compiler Construction, 2022

Direct Interpretation
 Given the program source code and the run-time input
 Interpret the source code directly,

i.e. parse and simulate it, statement by statement
(syntax-directed interpretation)
 UNIX shells (command line interpreter)
 Early interpreters for BASIC, LISP, APL

 Symbol table
 contains also storage for run-time values of program variables

 Full information about source-level program entities
 Good for debugging

 Very slow
 But ok for small scripts

46 TDDD55/TDDB44 Compiler Construction, 2022

Hybrid Compiler/Interpreter Scenario
Step 1:
 Translate the source program to an internal form

 E.g. quadruples, postfix, abstract syntax tree
 Or to instructions for an abstract machine

 E.g. P-code for Pascal and Modula-2, Diana for Ada,
JVM bytecode for Java, CIL for C#/.NET

Step 2:
 Execute the interpreter

 given the internal form / abstract machine program
 simulate the abstract machine step by step

 More efficient than direct interpretation, but
 still much slower than compiled code, typ. by a factor ~10 to ~100
 Still portable – intermediate form is not processor specific
  Source code cannot be reconstructed completely from intermediate form
 Can be stored compactly
 Easy to write an interpreter (virtual machine)

47 TDDD55/TDDB44 Compiler Construction, 2022

Example: JVM Bytecode
 Instructions for the JVM (Java Virtual Machine),

an abstract stack machine
 Executes .class or .jar files (loaded when first referenced)

Heap of loaded classes (program text and static data)
 Program counter PC
 Bytecode instructions (postfix order) have

1 byte opcode with 0 or 1 operand
span 1 or more bytes, depending on operand size

 Run-time stack: Frame pointer fp, Stack pointer sp

 Could even be implemented in hardware (e.g. Sun MAJC)

48 TDDD55/TDDB44 Compiler Construction, 2022

JVM Bytecode Interpretation
JVM Instruction
(examples)

Interpretation (by C code) Stack top
before

Stack top
afterwards

iconst_0 Stack[sp++] = 0;
PC++; // code needs 1 byte

()
= don’t care

(I)
= int-value

istore v Stack[fp + v] = Stack[--sp];
PC += 2; // needs 2 bytes

(I) ()

iload v Stack[sp++] = Stack[fp + v];
PC += 2;

() (I)

iadd Stack[sp-1] = Stack[sp] +
Stack[sp-1]; sp--; PC++;

(I, I) (I)

goto a PC = a; () ()

ifeq a if (Stack[sp--] == 0) PC = a;
else PC += 3;

(I) ()

49 TDDD55/TDDB44 Compiler Construction, 2022

Just-In-Time (JIT) Compiling
 A.k.a. dynamic translation
 Program execution starts in interpreter as before
 Whenever control flow enters a new unit of bytecode

(unit could be e.g. a class file, a function, a loop, or a basic block):
 Do not interpret it, but call the JIT compiler that translates it to target

code and replaces the unit with a branch to the new target code
 JIT compiling overhead  delay at run-time

 paid once per unit (if code can be kept in memory)
 pays often only off if translated code is executed several times

(e.g., a loop body)
Can also be done lazily: Interpret the unit when executed for the first

time. When re-entering the unit, JIT-compile.
Or pre-compile/pre-JIT to native code ahead of time

 Trade-off:
JIT-generated code quality vs. JIT compiler speed (run-time delay)

50 TDDD55/TDDB44 Compiler Construction, 2022

Just-In-Time (JIT) Compiling (cont.)
 Typically performance boost by at least one order of magnitude
 Typically still somewhat slower,

but may even be faster than statically compiled code in some cases
 Can use on-line information from performance counters (e.g. #cache

misses) for dynamic re-optimization and memory re-layout
 Example for Java: Sun JDK HotSpot JVM;

for C#: .NET CLR, NGEN

51 TDDD55/TDDB44 Compiler Construction, 2022

Thank you!
 Any questions?
 Next week

 L14 – Compiler frameworks & Bootstrapping
 TDDB44 & TDDD55
Last Seminar: Exam preparation

	Error Management�in Compilers and Run-time Systems
	Program Errors …
	Classification of Program Errors (1)
	Classification of Program Errors (2)
	Error Prevention, Diagnosis, Treatment
	Some Debugging Research at PELAB�(Needs a lot of compiler technology, integrated with compiler)
	More Debugging Research at PELAB�(Needs a lot of compiler technology, integrated with compiler)
	The Task of the Compiler…
	Handling Syntactic Errors
	Local or Global Errors
	When is a Syntax Error Discovered?
	Example; Global vs Local Correction
	Minimum Distance Error Correction
	Parser-Defined Error Correction
	Some Methods for Syntax Error Management
	Synchronization Points �for Recovery after a Syntax Error
	Panic Mode Recovery after a Syntax Error
	Panic mode (for predictive (LL) parsing)
	Error Productions
	Error Entries in the ACTION table (LR)
	Language-Independent Error Management Methods - "Röhrich Continuation Method"
	Röhrich Continuation Method (Cont.)
	Automatic Error Recovery, Burke & Fisher (2)�(PLDI Conference 1982)
	Automatic Error Recovery, Burke & Fisher (2)
	Automatic Error Recovery, Burke & Fisher (3)
	Automatic Error Recovery, Burke & Fisher (2)
	Example Test Program for Error Recovery
	Error Messages from Old Hedrick Pascal - Bad!
	Error Messages from Old Sun Pascal - Better!
	Error Messages from Burke & Fisher's �"Automatic Error Recovery" – Best!
	Handling Semantic Errors
	Semantic Errors
	Exception handling
	Exception Concept
	Exception Concept
	Exception Example (in Java)
	Propagating Exceptions
	When Does a Handler ”match”?
	Checked and Unchecked Exceptions
	Implementation
	Exceptions: Summary, Literature
	Interpreters
	Direct Interpretation
	Hybrid Compiler/Interpreter Scenario
	Example: JVM Bytecode
	JVM Bytecode Interpretation
	Just-In-Time (JIT) Compiling
	Just-In-Time (JIT) Compiling (cont.)
	Thank you!

