
Adrian Pop, Martin Sjölund,
Peter Fritzson, Christoph Kessler,

PELAB/IDA, Linköpings universitet, 2022

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Code Generation

2 TDDD55 / TDDB44: Code Generation

Code Generation
Requirements for code generation
 Correctness
 High code quality
 Efficient use of the resources of the target machine
 Quick code generation (for interactive use)
 Retargetability (parameterization in target machine spec.)

In practice:
 Difficult to generate good code
 Simple to generate bad code
 There are code generator generators ...

3 TDDD55 / TDDB44: Code Generation

Intermediate Code vs. Target Code

Intermediate code
 High-level IR (Intermediate Repr)

e.g. Abstract Syntax Tree (AST)
 Medium-level IR

e.g. Control flow graph of complex
operations (calls, array refs left)

 Low-level IR
e.g. Quadruples, DAGs

 Code for abstract stack machine
e.g. Postfix code

Target code
 Very low-level IR

(using target instructions only)
 Assembler code / Object code

 Absolute machine code
 Relocatable machine code

(often generate asm (text) code
and use an assembler tool to
convert this to binary (object)
code – easier, but slower compile

 Code for concrete stack machine
e.g. JVM byte code

Code generation

Symbol table

Lowering the IR

4 TDDD55 / TDDB44: Code Generation

Absolute vs. Relocatable Target Code
Absolute code
 Final memory area for program is statically known
 Hard-coded addresses
 Sufficient for very simple (typically, embedded) systems
 fast
 no separate compilation
 cannot call modules from other languages/compilers

Relocatable code
 Needs relocation table and relocating linker + loader

or run-time relocation in MMU (memory management unit)
 most flexible

5 TDDD55 / TDDB44: Code Generation

Stack Machines vs. Register Machines
Generate code for C assignment

On a stack machine:

PUSH _A // static address of A
PUSH _B // static address of B
LOAD // dereference _B
PUSH fp // stack frame ptr reg
ADD #4 // C at stack adr. FP+4

(step1 above)
LOAD // load C value (step 2)
MUL // multiply two stack values

(step 3 above)
STORE // store via address of A

A = B * C;

where A, B global, C local var.

On a register machine:

LDCONST _A, R1
LDCONST _B, R2
LOAD (R2), R2 // dereference _B
ADD FP, #4, R3 // addr. of C
LOAD (R3), R3 // dereference &C
MUL R2, R3, R2
STORE R2, (R1)

B value
C addr

B value
C value

B*C value
Stack:

step 1 step 2 step 3

6 TDDD55 / TDDB44: Code Generation

3 Main Tasks in Code Generation
 Instruction Selection

 Choose set of instructions equivalent to IR code
 Minimize (locally) execution time, # used registers, code size
 Example: INCRM #4(fp) vs. LOAD #4(fp), R1

ADD R1, #1, R1
STORE R1, #4(fp)

 Instruction Scheduling
 Reorder instructions to better utilize processor architecture
 Minimize temporary space (#registers, #stack locations) used,

execution time, or energy consumption

 Register Allocation
 Keep frequently used values in registers (limited resource!)

Some registers are reserved, e.g. sp, fp, pc, sr, retval …
 Minimize #loads and #stores (which are expensive instructions!)
 Register Allocation: Which variables to keep when in some register?
 Register Assignment: In which particular register to keep each?

7 TDDD55 / TDDB44: Code Generation

Machine Model (here: a simple register machine)

 Register set
 E.g. 32 general-purpose registers R0, R1, R2, …

some of them reserved (sp, fp, pc, sr, retval, par1, par2 …)

 Instruction set with different addressing modes
 Cost (usually, time / latency)

depends on the operation and the addressing mode

 Example: PDP-11 (CISC), instruction format OP src, dest

Source operand Destination address Cost
register register 1

register memory 2

memory register 2

memory memory 3

8 TDDD55 / TDDB44: Code Generation

Two Example Machine Models
 Simple CISC machine model (CISC = Complex Instruction Set

Computer). src, dest can be either memory or register
 MOVE src, dest (or LOAD src, reg; STORE reg, dest)
 OP src, dest

 Simple RISC machine model (RISC = Reduced Instruction
Set Computer)
 LOAD reg, mem
 STORE mem, reg
 OP reg, reg, reg // Operations only between registers

9 TDDD55 / TDDB44: Code Generation

There is a lot to be
gained with good
register allocation!

Example: A = B + C;

1. MOVE _B, R0 ; 2
ADD _C, R0 ; 2
MOVE R0, _A ; 2  total cost = 6

2. MOVE _B, _A ; 3
ADD _C, _A ; 3  total cost = 6

3. (B already in R2, C already in R3, C in R3 not used later)
ADD R2, R3 ; 1
MOVE R3, _A ; 2  total cost = 3

4. (B already in R2, C in R3 and not needed later, A will be kept in R3)
ADD R2, R3 ; 1  total cost = 1

10 TDDD55 / TDDB44: Code Generation

Some Code Generation Algorithms

 Macro-expansion of IR operations (quadruples)

 ”Simple code generation algorithm” (textbook Section 8.6)

 Code generation for expression trees (textbook Section 8.10)
 Labeling algorithm [Ershov 1958] [Sethi, Ullman 1970]

 Code generation using pattern matching
 For trees: Aho, Johnsson 1976 (dynamic programming),

Graham/Glanville 1978 (LR parsing),
Fraser/Hanson/Proebsting 1992 (IBURG tool), …

 For DAGs: [Ertl 1999], [K., Bednarski 2006] (DP, ILP)

11 TDDD55 / TDDB44: Code Generation

Macro Expansion of Quadruples
 Each quadruple is translated to a sequence of one or several

target instructions that performs the same operation.

 very simple, quick to implement
 bad code quality

 Cannot utilize powerful instructions/addressing modes
that do the job of several quadruples in one step

 Poor usage of registers

12 TDDD55 / TDDB44: Code Generation

Simple Code Generation Algorithm (1)
 Input: Basic block graph (quadruples grouped in BB’s)

 Principle:
Keep a (computed) value in a register as long as possible,
and move it to memory only
1. if the register is needed for another calculation
2. at the end of a basic block

 A variable x is used locally after a point p
if x’s value is used within the block after p
before an assignment to x (if any) is made.

 All variables (except temporaries) are assumed to be live
(may be used later before possibly being reassigned)
after a basic block.

BB3:
(ADD, a, b, x)
…
(MUL, x, y, t1)
…
(ASGN, t1, 0, x)
…

13 TDDD55 / TDDB44: Code Generation

”is used locally” and ”live”

… …

a := b + c
d := a – b + d

1. e is used locallya := e

2. e is live

3. a, b, d used locally
4. b, c used locally

5. b, c, d, e live

”live variables”

is a backward data-
flow analysis problem.

(Textbook Sec 9.2.5)

14 TDDD55 / TDDB44: Code Generation

Simple Code Generation Algorithm (2)
reg(R): current content (variable) stored in register R
adr(A): list of addresses (”home” memory location, register)

where the current value of variable A resides

Generate code for a quadruple Q = (op, B, C, A): (op a binary oper.)
 (RB, RC, RA)  getreg(Q); // selects registers for B, C, A – see later
 If reg(RB) != B

generate LOAD B, RB; reg(RB)  B; adr(B)  adr(B) U { RB }
 If reg(RC) != C // This step is not needed in the CISC case

generate LOAD C, RC; reg(RC)  C; adr(C)  adr(C) U { RC }
 generate OP RB, RC, RA (where OP implements op)

adr(A)  { RA }; // old value of A in memory is now obsolete
reg(RA)  A;

 If B and/or C no longer used locally and are not live after the current basic
block, free their registers RB, RC (update reg, adr)

After all quadruples in the basic block have been processed,
generate STOREs for all non-temporary var’s that only reside in a register

15 TDDD55 / TDDB44: Code Generation

Simple Code Generation Algorithm RISC
and CISC (3)
getreg (quadruple Q = (op, B, C, A)) determines (RB, RC, RA):
 Determine RB:

 If adr(B) contains a register RB
and reg(RB) == B, then use RB.

 If adr(B) contains a register RB with reg(RB) != B
or adr(B) contains no register at all:
 Use an empty register as RB if one is free.
 If no register is free: Select any victim register R that does not hold C.
 V  { v: R in adr(V) } (there may be several v’s, due to control flow)

– If for all v in V, adr(v) contains some other place except R:
OK, use R for RB.

– If C in V, retry with another register R instead.
– If A in V: OK, use R=RA for RB.
– If all v in V not live after this basic block and not used locally after Q:

OK, use R for RB
– Otherwise: for each v in V,

» generate STORE R, v; // spill register R contents to memory
» adr(v) = adr(v) – { R } U { &v };

 Determine RC: similarly//not needed for CISC
Prefer candidates R

that require least spills

v1 in R v2 in R

R? reg(R)
={v1,v2}

16 TDDD55 / TDDB44: Code Generation

Simple Code Generation Algorithm (4)
 Determine RA: similarly, where…

 Any R with reg(R) = { A } can be reused as RA
 If B is not used after Q, and reg(RB) = { B },

can use RA=RB.
 (similarly for C and RC)

17 TDDD55 / TDDB44: Code Generation

Example
Generate code for this basic block in pseudo-quadruple notation:

T1 := a + b;
T2 := c + d;
T3 := e + f;
T4 := T2 * T3;
g := T1 – T4;

Initially, no register is used.
Assume a, b, c, d, e, f, g are live after the basic block,

but the temporaries are not
Machine model: RISC machine model, only operations between registers,

but only 3 registers R0, R1, R2

18 TDDD55 / TDDB44: Code Generation

Solution (NB – several possibilities, dep. on victim selection)

1. LOAD a, R0 // now adr(a) = { &a, R0 }, reg(R0)={a}
2. LOAD b, R1
3. ADD R0, R1, R2 // now adr(T1) = {R2}, reg(R2)={T1}

// reuse R0, R1 for c, d, as a, b still reside in memory
// use R0 for T2, as c still available in memory.

4. LOAD c, R0
5. LOAD d, R1
6. ADD R0, R1, R0 // now adr(T2) = {R0}, reg(R0)={T2}

// reuse R1 for e, need a register for f – none free! Pick victim R0
7. STORE R0, 12(fp) // spill R0 to memory - a stack location for T2, e.g. at fp+12
8. LOAD e, R1
9. LOAD f, R0
10. ADD R1, R0, R1 // now adr(T3) = {R1}, reg(R1)={T3}
11. LOAD T2, R0 // reload T2 to R0
12. MUL R0, R1, R0 // T4 in R0
13. SUB R2, R0, R2 // g in R2
14. STORE R2, g

T1 := a + b;
T2 := c + d;
T3 := e + f;
T4 := T2 * T3;
g := T1 – T4;

14 instructions,

including 9 memory accesses

(2 due to spilling)

19 TDDD55 / TDDB44: Code Generation

Example – Slightly Reordered
Generate code for this basic block in pseudo-quadruple notation:

T2 := c + d;
T3 := e + f;
T4 := T2 * T3;
T1 := a + b;
g := T1 – T4;

Initially, no register is used.
Assume a, b, c, d, e, f, g are live after the basic block,

but the temporaries are not
Machine model: as above, but only 3 registers R0, R1, R2

Moving T1 := a + b; here does not modify the
semantics of the code. (Why?)

20 TDDD55 / TDDB44: Code Generation

Solution for Reordered Example
1. LOAD c, R0
2. LOAD d, R1
3. ADD R0, R1, R2 // now adr(T2)={R2}, reg(R2)={T2}

// reuse R0 for e, R1 for f:
4. LOAD e, R0
5. LOAD f, R1
6. ADD R0, R1, R0 // now adr(T3) = {R0}, reg(R0)={T3}

// reuse R0 for T4:
7. MUL R0, R1, R0 // now adr(T4)={R0}, reg(R0)={T4}

// reuse R1 for a, R2 for b, R1 for T1:
8. LOAD a, R1
9. LOAD b, R2
10. ADD R1, R2, R1 // now adr(T1) = {R1}, reg(R1)={T1}

// reuse R1 for g:
11. SUB R1, R0, R1 // g in R1
12. STORE R1, g

T2 := c + d;
T3 := e + f;
T4 := T2 * T3;
T1 := a + b;
g := T1 – T4;

12 instructions,

including 7 memory accesses

No spilling! Why?

21 TDDD55 / TDDB44: Code Generation

Explanation
 Consider the data flow graph (here, an expression tree)

of the example:
T1 := a + b;
T2 := c + d;
T3 := e + f;
T4 := T2 * T3;
g := T1 – T4;

f

SUB

ADD

MULADD

ADD
a b

d ec

g

T4T1

T2 T3

Idea:

For each subtree T(v) rooted at node v:
How many registers do we need (at least) to compute T(v) without spilling?

Call this number label(v) (a.k.a. ”Ershov numbers”)

If possible, at any v, code for ”heavier” subtree of v (higher label) should come first.

Need 1 register to hold value
loaded for a leaf node

Need 2 registers to compute
this subtree

Need 3 registers to compute this subtree.
1 register will be occupied until last use of T4

Need 2 registers to
compute this sub-
tree. 1 register will
be occupied until

last use of T1

Need 4 registers if subtree for T1 is
computed first, 3 registers otherwise!

22 TDDD55 / TDDB44: Code Generation

Generating Code from Labeled Expression Trees
Labeling Algorithm [Ershov 1958] (textbook Section 8.10)

 Yields space-optimal code (proof: [Sethi, Ullman 1970])
(using a minimum #registers without spilling, or min. # stack locations)
for expression trees.
 (Time is fixed as no spill code is generated.)

 The problem is NP-complete for expression DAGs! [Sethi’75]
 Solutions for DAGs: [K., Rauber ’95], [K. ’98], [Amaral et al.’00]

 If #machine registers exceeded: Spill code could be inserted afterwards for
excess registers, but not necessarily (time-) optimal then…

2 phases:
 Labeling phase

 bottom-up traversal of the tree
 computes label(v) recursively for each node v

 Code generation phase
 top-down traversal of the tree
 recursively generating code for heavier subtree first

23 TDDD55 / TDDB44: Code Generation

Labeling Phase for RISC Machine Model
Bottom-up, calculate the register need for each subtree T(v):

 If v is a leaf node,
label(v)  1

 If v is a unary operation with operand node v1,
label(v)  label(v1)

 If v is a binary operation with operand nodes v1, v2:
m  max(label(v1), label(v2));
if (label(v1) = label(v2)) label(v)  m + 1;
else label(v)  m;

T(v1) T(v2)

T(v1)

v

v1

v

v2v1

compute T(v1)
using label(v1)

registers 1 reg. holding v1 v

#
regs

compute T(v2)
using label(v2)

registers

time

24 TDDD55 / TDDB44: Code Generation

Example – Labeling Phase
RISC Machine Model

f

SUB

ADD

MULADD

ADD
a b

d ec

g

T4T1

T2 T3

1 1

11 11

2

22

3

3

25 TDDD55 / TDDB44: Code Generation

Labeling Phase for CISC Machine Model
Bottom-up, calculate the register need for each subtree T(v):
 If n is a left leaf

⇒ LABEL(n):= 1

 If n is a right leaf
⇒ LABEL(n):= 0

 If v is a unary operation with operand node v1,
label(v)  label(v1)

 If v is a binary operation with operand nodes v1, v2:
m  max(label(v1), label(v2));
if (label(v1) = label(v2)) label(v)  m + 1;
else label(v)  m;

T(v1) T(v2)

v

v2v1

compute T(v1)
using label(v1)

registers 1 reg. holding v1 v

#
regs

compute T(v2)
using label(v2)

registers

time

+

A B

T1

+

A B

T1

MOVE A,R0

ADD B,R0

26 TDDD55 / TDDB44: Code Generation

Example – Labeling Phase
CISC Machine Model

f

SUB

ADD

MULADD

ADD
a b

d ec

g

T4T1

T2 T3

1 0

01 01

1

11

2

2

The CISC Machine model needs fewer registers than RISC since
it can perform operations with an operand in memory

27 TDDD55 / TDDB44: Code Generation

Code Generation Phase
RISC Machine Model
 Register stack freeregs of currently free registers, initially full
 Register assignment function reg from values to registers, initially empty

gencode(v) { // generate space-opt. code for subtree T(v)
 If v is a leaf node:

1. R  freeregs.pop(); reg(v)  R; // get a free register R for v
2. generate(LOAD v, R);

 If v is a unary node with operand v1 in a register reg(v1)=R1:
1. generate(OP R1, R1); reg(v)  R1;

 If v is a binary node with operands v1, v2 in reg(v1)=R1, reg(v2)=R2:
1. if (label(v1) >= label(v2)) // code for T(v1) first:

gencode(v1);
gencode(v2);

else // code for T(v2) first:
gencode(v2);
gencode(v1);

2. generate(OP R1, R2, R1);
3. freeregs.push(R2); // return register R2, keep R1 for v

}

28 TDDD55 / TDDB44: Code Generation

Code Generation Phase – More Detailed
for CISC Machine with memory-register ops
Data structures:

 RSTACK:the register stack,
initialised with all available registers.

 TSTACK:Stack for temporary variables.
Procedures:
 Gencode(n):

 Recursive procedure which generates code for sub-trees with root n.
 The result is placed in RSTACK[TOP]

 Swap(RSTACK)
 swaps the top two elements at the top of the stack

R0

R1

TOP

R0

R1

-

A B32
SUB R1,R0

 i R0 i R1

R0-R1 R0
A-B R0

29 TDDD55 / TDDB44: Code Generation

CISC Gencode(n) – 5 different cases (0 – 4)
depending on the register needs for the sub-trees

 Case 0: n = left leaf ⇒
Print(’LOAD ’, name, RSTACK[TOP]);

 Case 1: If n is a node with children n1 and n2 (left and
right children, resp.) and LABEL(n2)= 0 ⇒
Gencode(n1);
Print(op, name, RSTACK[TOP]);

n
name

n2
name

op

n1

30 TDDD55 / TDDB44: Code Generation

Gencode – case 2
 Case 2:

If 1 ≤ LABEL(n1)< LABEL(n2) and LABEL(n1)< r where r
is the number of registers in the machine.
Swap(RSTACK);
Gencode(n2);
savereg := Pop(RSTACK);
Gencode(n1);
Print(op, savereg, RSTACK[TOP]);
Push(savereg, RSTACK);
Swap(RSTACK);

n2

op

n1

31 TDDD55 / TDDB44: Code Generation

Gencode – case 3 and case 4
 Case 3: If 1 ≤ LABEL(n2)≤ LABEL(n1)

and LABEL(n2)< r where r is the number of registers in the
machine.
Gencode(n1);
savereg := Pop(RSTACK);
Gencode(n2);
Print(op, RSTACK[TOP], savereg);
Push(savereg,RSTACK);

 Case 4: Both n1 and n2 have register needs ≥ r ⇒ store the
result in the temporary stack TSTACK.
Gencode(n2); { recursive call }
T := Pop(TSTACK);
Print(’STORE ’, RSTACK[TOP], T);
Gencode(n1);
Print(op, T, RSTACK[TOP]);
Push(T, TSTACK);

n2

op

n1 n2

op

n1

different or same labels

32 TDDD55 / TDDB44: Code Generation

Remarks on the Labeling Algorithm
 Still one-to-one or one-to-many translation

from quadruple operators to target instructions
 The code generated by gencode() is contiguous

(a subtree’s code is never interleaved with a sibling subtree’s
code).
 E.g., code for a unary operation v immediately follows the

code for its child v1.
 Good for space usage, but

sometimes bad for execution time on pipelined processors!
 There are expression DAGs for which a non-contiguous

code exists that uses fewer registers than any contiguous
code for it. [K., Rauber 1995]

 The labeling algorithm can serve as a heuristic (but not as
optimal algorithm) for DAGs if gencode() is called for common
subexpressions only at the first time.

33 TDDD55 / TDDB44: Code Generation

Exercise Ershov Labeling + Code gen
 Draw an AST tree for the expression: (A+B)-(E-(C+D))
 Perform the Ershov Labeling algorithm on the tree to

compute the register needs labels for each node,
assuming a CISC machine model (ops between regs
and memory allowed)

 Generate code for the expression

34 TDDD55 / TDDB44: Code Generation

Towards Code Generation by Pattern Matching
 Example: Data flow graph (expression tree) for i = c + 4

 in LCC-IR (DAGs of quadruples) [Fraser,Hanson’95]
 i, c: local variables

Intermediate code in quadruple form:

(Convention: last letter of opcode gives
result type: I=int, C=char, P=pointer)

(ADDRLP, i, 0, t1) // t1  fp+4; addr i

(ADDRLP, c, 0, t2) // t2  fp+12; addr c

(INDIRC, t2, 0, t3) // t3  M(t2); c value

(CVCI, t3, 0, t4) // convert char to int

(CNSTI, 4, 0, t5) // create int-const 4

(ADDI, t4, t5, t6)

(ASGNI, t6, 0, t1) // M(t1)  t6; store i

35 TDDD55 / TDDB44: Code Generation

Pattern Matching Idea
 Given: Tree fragment of the intermediate code
 Given: Tree fragment describing a target machine instruction

 If the intermediate code tree fragment match the target
machine instruction tree fragment, generate code with that
instruction

 This method generates better code, since a single target
machine instruction can match a whole tree fragment in the
intermediate code

36 TDDD55 / TDDB44: Code Generation

Recall: Macro Expansion
 For the example tree:

 s1, s2, s3...: ”symbolic” registers (allocated but not assigned yet)
 Target processor has delayed load (1 delay slot)

R0 assumed 0

cc - compute cycles

37 TDDD55 / TDDB44: Code Generation

Using Tree Pattern Matching...
 Utilizing the available addressing modes of the target processor,

3 instructions and only 2 registers are sufficient to cover the entire tree:

38 TDDD55 / TDDB44: Code Generation

Code Generation by Pattern Matching
 Powerful target instructions / addressing modes may cover the effect of

several quadruples in one step.

 For each instruction and addressing mode,
define a pattern that describes its behavior in terms of quadruples resp.
data-flow graph nodes and edges
(usually limited to tree fragment shapes: tree pattern).

 A pattern matches at a node v
if pattern nodes, pattern operators and pattern edges coincide with a tree
fragment rooted at v

 Each instruction (tree pattern) is associated with a cost,
e.g. its time behavior or space requirements

 Optimization problem: Cover the entire data flow graph (expression tree)
with matching tree patterns such that each node is covered exactly once,
and the accumulated cost of all covering patterns is minimal.

39 TDDD55 / TDDB44: Code Generation

Tree Grammar (Machine Grammar)
(E.g. to be used for code gen pattern maching by parsing)

costtarget instruction for pattern

40 TDDD55 / TDDB44: Code Generation

Derivation Using an LR Parser:

CVCI

INDIRC

ADDRLP

ASGNI

CNSTI

ADDIADDRLP

CVCI

INDIRC

ADDRLP

ASGNI

CNSTI

ADDIaddr
0 0

CVCI

INDIRC

addr

ASGNI

CNSTI

ADDIaddr
…

2
reg

ASGNI

CNSTI

ADDIaddr
0

reg

ASGNI

cnst

ADDIaddr

1 stmt

1 reg

ASGNI

addr …

cost of chosen rule for covering ASGNI
(= time for a STORE instruction)

41 TDDD55 / TDDB44: Code Generation

Some Methods for Tree Pattern Matching
 Use a LR-parser for matching [Graham, Glanville 1978]

 compact specification of the target machine
using a context-free grammar (”machine grammar”)

 quick matching
 not total-cost aware

(greedy local choices at reduce decisions  suboptimal)
 Combine tree pattern matching with dynamic programming for total cost

minimization ( More details in TDDC86 course)
[Aho, Ganapathi, Tjiang ’89] [Fraser, Hanson, Proebsting’92]

 An LR parser is stronger than what is really necessary
for matching tree patterns in a tree.
 Right machine model is a tree automaton

= a finite automaton operating on input trees
rather than flat strings [Ferdinand, Seidl, Wilhelm ’92]

 By Integer Linear Programming [Wilson et al.’94] [K., Bednarski ’06]

	Code Generation
	Code Generation
	Intermediate Code vs. Target Code
	Absolute vs. Relocatable Target Code
	Stack Machines vs. Register Machines
	3 Main Tasks in Code Generation
	Machine Model (here: a simple register machine)
	Two Example Machine Models
	Example: A = B + C;
	Some Code Generation Algorithms
	Macro Expansion of Quadruples
	Simple Code Generation Algorithm (1)
	”is used locally” and ”live”
	Simple Code Generation Algorithm (2)
	Simple Code Generation Algorithm RISC�and CISC (3)
	Simple Code Generation Algorithm (4)
	Example
	Solution (NB – several possibilities, dep. on victim selection)
	Example – Slightly Reordered
	Solution for Reordered Example
	Explanation
	Generating Code from Labeled Expression Trees�Labeling Algorithm [Ershov 1958] (textbook Section 8.10)
	Labeling Phase for RISC Machine Model
	Example – Labeling Phase�RISC Machine Model
	Labeling Phase for CISC Machine Model
	Example – Labeling Phase�CISC Machine Model
	Code Generation Phase�RISC Machine Model
	Code Generation Phase – More Detailed�for CISC Machine with memory-register ops
	CISC Gencode(n) – 5 different cases (0 – 4) �depending on the register needs for the sub-trees
	Gencode – case 2
	Gencode – case 3 and case 4
	Remarks on the Labeling Algorithm
	Exercise Ershov Labeling + Code gen
	Towards Code Generation by Pattern Matching
	Pattern Matching Idea
	Recall: Macro Expansion
	Using Tree Pattern Matching...
	Code Generation by Pattern Matching
	Tree Grammar (Machine Grammar)�(E.g. to be used for code gen pattern maching by parsing)
	Derivation Using an LR Parser:
	Some Methods for Tree Pattern Matching

