
1

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Interpreters

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2011.

Direct Interpretation

 Given the program source code and the run-time input,

 Interpret the source code directly,
i.e. parse and simulate it, statement by statement
(syntax-directed interpretation)

 UNIX shells (command line interpreter)

 Early interpreters for BASIC, LISP, APL

S

2 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Symbol table

 contains also storage for run-time values of program variables

 Full information about source-level program entities

 Good for debugging

 Very slow

 But ok for small scripts

Hybrid Compiler/Interpreter Scenario

Step 1:
 Translate the source program to an internal form

 E.g. quadruples, postfix, abstract syntax tree
 Or to instructions for an abstract machine

 E.g. P-code for Pascal and Modula-2, Diana for Ada,
JVM bytecode for Java, CIL for C#/.NET

Step 2:

3 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Execute the interpreter
 given the internal form / abstract machine program
 simulate the abstract machine step by step

 More efficient than direct interpretation, but
 still much slower than compiled code, typ. by a factor ~10 to ~100
 Still portable – intermediate form is not processor specific
  Source code cannot be reconstructed completely from intermediate form
 Can be stored compactly
 Easy to write an interpreter (virtual machine)

Example: JVM Bytecode

 Instructions for the JVM (Java Virtual Machine),
an abstract stack machine

 Executes .class or .jar files (loaded when first referenced)

Heap of loaded classes (program text and static data)

 Program counter PC

 Bytecode instructions (postfix order) have

4 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

1 byte opcode with 0 or 1 operand

 span 1 or more bytes, depending on operand size

 Run-time stack: Frame pointer fp, Stack pointer sp

 Could even be implemented in hardware (e.g. Sun MAJC)

JVM Bytecode Interpretation

JVM Instruction
(examples)

Interpretation (by C code) Stack top
before

Stack top
afterwards

iconst_0 Stack[sp++] = 0;
PC++; // code needs 1 byte

()
= don’t care

(I)
= int-value

istore v Stack[fp + v] = Stack[--sp];
PC += 2; // needs 2 bytes

(I) ()

5 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

iload v Stack[sp++] = Stack[fp + v];
PC += 2;

() (I)

iadd Stack[sp-1] = Stack[sp] +
Stack[sp-1]; sp--; PC++;

(I, I) (I)

goto a PC = a; () ()

ifeq a if (Stack[sp--] == 0) PC = a;
else PC += 3;

(I) ()

Just-In-Time (JIT) Compiling

 A.k.a. dynamic translation

 Program execution starts in interpreter as before

 Whenever control flow enters a new unit of bytecode
(unit could be e.g. a class file, a function, a loop, or a basic block):

 Do not interpret it, but call the JIT compiler that translates it to target
code and replaces the unit with a branch to the new target code

6 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 JIT compiling overhead  delay at run-time

 paid once per unit (if code can be kept in memory)

 pays often only off if translated code is executed several times
(e.g., a loop body)

Can also be done lazily: Interpret the unit when executed for the first
time. When re-entering the unit, JIT-compile.

Or pre-compile/pre-JIT to native code ahead of time

 Trade-off:
JIT-generated code quality vs. JIT compiler speed (run-time delay)

2

Just-In-Time (JIT) Compiling (cont.)

 Typically performance boost by at least one order of magnitude

 Typically still somewhat slower,
but may even be faster than statically compiled code in some cases

 Can use on-line information from performance counters (e.g. #cache
misses) for dynamic re-optimization and memory re-layout

 Example for Java: Sun JDK HotSpot JVM;
for C#: NET CLR NGEN

7 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

for C#: .NET CLR, NGEN

