LR Parsing, Part 2
Constructing Parse Tables

Parse table construction
Grammar conflict handling
Categories of LR Grammars and Parsers

Need to Automatically Construct LR Parse Tables: Action and GOTO Table

Construct parse tables from the grammar as follows:
- First build a GOTOgraph (an NFA) to recognize viable prefixes
- Make it deterministic (DFA)
- Then fill in Action and GOTO tables

Example Grammar G
1. \(L \rightarrow L , E \)
2. \(\mid E \)
3. \(E \rightarrow a \)
4. \(\mid b \)

Classes of LR Parsers/Grammars
- LR(0) – Too weak (no lookahead)
- SLR(1) – Simple LR, 1 token lookahead
- LALR(1) – Most common, 1 token lookahead
- LR(1) – 1 token lookahead – big tables
- LR\((k)\) – \(k\) tokens lookahead – even bigger tables

Differences between LR parsers:
- Table size varies widely.
- Errors not discovered as quickly by some variants.
- Different limitations in the language definitions, grammars.

An NFA Recognizing Viable Prefixes

A.k.a. the "characteristic finite automaton" for a grammar G
- States: LR(0) items (= context-free items) of extended Grammar (definition, see next page)
- Input stream: The grammar symbols on the stack
- Start state: \([S' \rightarrow _ | . S \] \) Final state: \([S' \rightarrow _ | S] \)
- Transitions:
 - "move dot across symbol" if symbol found next on stack:
 \(A \rightarrow \alpha . B \gamma \) to \(A \rightarrow \alpha B . \gamma \)
 \(A \rightarrow \alpha . b \gamma \) to \(A \rightarrow \alpha b . \gamma \)
 - \(\epsilon \)-transitions to LR(0)-items for nonterminal productions from items where the dot precedes that nonterminal:
 \(A \rightarrow \alpha . B \gamma \) to \(B \rightarrow _ \gamma \)

Example Grammar G
1. \(L \rightarrow L , E \)
2. \(\mid E \)
3. \(E \rightarrow a \)
4. \(\mid b \)

Handle, Viable Prefix
- Consider a rightmost derivation \(S \Rightarrow _ _ \) \(|Xu = \alpha _ _ \) \(|\alpha u \)
 for a context-free grammar G.
- \(\alpha \) is called a handle of the right sentential form \(\beta . u \), associated with the rule \(X \Rightarrow _ _ \alpha \)
- Each prefix of \(|\alpha u \) is called a viable prefix of G.

Example: Grammar G with productions \(\{ S \rightarrow aSb \mid c \} \)
- Right sentential forms: e.g. \(c , abc , aSb , aaaaSbbbb , \ldots \)
- For c: Handle: c Viable prefixes: c, c
- For acb: Handle: c Viable prefixes: c, a, ac
- For aSb: Handle: aS Viable prefixes: c, a, aS, aSb
- For aaSbb: Handle: aSb Viable prefixes: c, a, aa, aaS, aaSb
- ...

Right Derivation and Viable Prefixes

Input: a, b, a

Right derivation (handles are underlined, and blue)
\(\langle \text{list} \rangle \Rightarrow _ _ \langle \text{list} \rangle , \langle \text{element} \rangle \)
\(\Rightarrow _ _ \langle \text{list} \rangle , a \)
\(\Rightarrow _ _ \langle \text{list} \rangle , \langle \text{element} \rangle , a \)
\(\Rightarrow _ _ \langle \text{list} \rangle , b , a \)
\(\Rightarrow _ _ \langle \text{element} \rangle , b , a \)
\(\Rightarrow _ _ \langle \text{list} \rangle , b , a \)

Some Viable prefixes of the sentential form: \(\langle \text{list} \rangle , b , a \)
are
\(\{ c , \langle \text{list} \rangle ; , \langle \text{list} \rangle , ; \langle \text{list} \rangle , b ; , \langle \text{list} \rangle , b , ; \langle \text{list} \rangle , b , a \} \)
Definition of LR(0) Item

- An LR(0) item of a rule P is a rule with a dot "•" somewhere in the right side.

Example:
- All LR(0) items of the production
 1. \(<\text{list}> \rightarrow <\text{list}>, <\text{element}> \)
 are
 \(<\text{list}> \rightarrow •, <\text{element}> \), \(<\text{list}> \rightarrow <\text{list}>, •, <\text{element}> \)
 \(<\text{list}> \rightarrow <\text{list}>, •, <\text{element}> \)

Intuitively an item is interpreted as how much of the rule we have found and how much remains.
- Items are put together in sets which become the LR analyser’s state.

Informal Construction of GOTO-Graph

We want to construct a DFA which recognises all viable prefixes of \(G(<\text{sys}>) \):\n
GOTO-graph
(A GOTO-graph is not the same as a GOTO-table but corresponds to an ACTION + GOTO-table. The graph discovers viable prefixes.)

Augmented Grammar \(G(<\text{sys}>) \):
- \(0. <\text{SYS}> \rightarrow <\text{SYS}>, - \)
- \(1. <\text{SYS}> \rightarrow <\text{SYS}>, <\text{element}> \)
- \(2. <\text{element}> \rightarrow •, <\text{element}> \)
- \(3. <\text{element}> \rightarrow a \)
- \(4. \mid b \)

Construction Sets of LR(0) Items

Set \(I_0 \): Kernel (Basis)
- \(0. <\text{SYS}> \rightarrow <\text{SYS}>, - \)
- \(1. <\text{SYS}> \rightarrow <\text{SYS}>, <\text{element}> \)
- \(2. <\text{element}> \rightarrow •, <\text{element}> \)
- \(3. <\text{element}> \rightarrow a \)
- \(4. \mid b \)

Set \(I_1 \): Additional Closure
- \(0. <\text{SYS}> \rightarrow <\text{SYS}>, - \)
- \(1. <\text{SYS}> \rightarrow <\text{SYS}>, <\text{element}> \)
- \(2. <\text{element}> \rightarrow •, <\text{element}> \)
- \(3. <\text{element}> \rightarrow a \)
- \(4. \mid b \)

Set \(I_2 \): Additional Closure
- \(0. <\text{SYS}> \rightarrow <\text{SYS}>, - \)
- \(1. <\text{SYS}> \rightarrow <\text{SYS}>, <\text{element}> \)
- \(2. <\text{element}> \rightarrow •, <\text{element}> \)
- \(3. <\text{element}> \rightarrow a \)
- \(4. \mid b \)

Set \(I_3 \): Additional Closure
- \(0. <\text{SYS}> \rightarrow <\text{SYS}>, - \)
- \(1. <\text{SYS}> \rightarrow <\text{SYS}>, <\text{element}> \)
- \(2. <\text{element}> \rightarrow •, <\text{element}> \)
- \(3. <\text{element}> \rightarrow a \)
- \(4. \mid b \)

GOTO Graph with States as Sets of LR(0) Items

Based on the canonical collection of LR(0) items draw the GOTO graph.

The GOTO graph discovers those prefixes of right-sentential forms which have (at most) one handle furthest to the right in the prefix.

Example Grammar
- \(0. L \rightarrow L, E \)
- \(1. E \rightarrow E \)
- \(2. E \rightarrow a \)
- \(3. E \rightarrow b \)
- \(4. E \rightarrow b \)

Fill in Action Table from GOTO Graph

1. If there is an item \(<\text{A}> \rightarrow \alpha \cdot a \beta \in I_j \) and \(\text{GOTOgraph}(i, x) = I_j \)
2. If there is a complete item (i.e., ends in a dot "•"): \(<\text{A}> \rightarrow \alpha \cdot \beta \in I_j \)
3. If we have \(\text{GOTOgraph}(i, x) \)}
 - accept the symbol \(- \)
4. Otherwise error
Table Differences LR(0), SLR(1), LALR(1)

in which column(s) should reduce x be written?
LR(0) fills in for all input.
SLR(1) fills in for all input in FOLLOW(<A>).
LALR(1) fills in for all those that can follow a certain instance of <A>, see later.

Computing the LR(0) Item Closure (Detailed Algorithm)

For a set I of LR(0) items compute Closure(I) (union of Kernel and Closure):

1. Closure(I) := I (start with the kernel)
2. If [A → α.B] in Closure(I)
 then add [B → γ] to Closure(I) (if not already there)
3. Repeat Step 2 until no more items can be added to Closure(I).

Remarks:
- For s = [A → α.B], Closure(s) contains all NFA states reachable from ε via δ-transitions, i.e., starting from which any substring derivable from B|j| could be recognized. A.k.a. ε-closure(s).
- Then apply the well-known subset construction to transform Closure-NFA -> DFA.
- DFA states will be sets unioning closures of NFA states.

GOTOgraph Function and DFA States Detailed algorithm

Given: Set I of items, grammar symbol X

- \text{GOTOgr}(I, X) := \bigcup [A \rightarrow \alpha.X] \in I \, \text{Closure}(\{[A \rightarrow \alpha.X] \})
 - To become the state transitions in the DFA.
- Now do the subset construction to obtain the DFA states:
 \[C := \text{Closure}(\{S \rightarrow \cdot |.S| \}) \quad \text{// C: Set of sets of NFA states} \]
 \[\text{repeat} \]
 - for each set of items I of C:
 - for each grammar symbol X
 - If (GOTOgr(I,X) is not empty and not in C)
 - add GOTOgr(I,X) to C
 \[\text{until} \] no new states are added to C on a round.

Filling in the GOTO Table

Example Grammar
1. L → L.E
2. L → E
3. E → a
4. E → b

\[\begin{array}{ccc}
\text{GOTO table:} & \text{Nonterminals} \\
\text{state} & \text{L} & \text{E} \\
0 & 1 & 6 \\
1 & * & 3 \\
2 & * & * \\
3 & * & * \\
4 & * & * \\
5 & * & * \\
\end{array} \]

Representing Sets of Items Implementation in Parser Generator

- Any item [A → α.B] can be represented by 2 integers:
 - production number
 - position of the dot within the RHS of that production
- The resulting sets often contain “closure” items (where the dot is at the beginning of the RHS).
 - Can easily be reconstructed (on demand) from other (“kernel”) items
 - Kernel items: start state [S' \rightarrow \cdot |.S|], plus all items where the dot is not at the left end.
 - Store only kernel items explicitly, to save space.

Resulting DFA

- All states correspond to some viable prefix
- Final states: contain at least one item with dot to the right
 - recognized some handle \rightarrow reduce may (must) follow
- Other states: handle recognition incomplete -> shift will follow
- The DFA is also called the GOTO graph (not the same as the LR GOTO Table!!)
- This automaton is deterministic as a FA (i.e., selecting transitions considering only input symbol consumption) but can still be nondeterministic as a pushdown automaton (e.g., in state I3 above: to reduce or not to reduce?)
From DFA to parser tables: **ACTION**
Detailed Algorithm, Summary

1. For each DFA transition \(I_i \rightarrow I_j \) reading a terminal \(a \) in \(\Sigma \)
 (thus, \(I_i \) contains items of kind \([X \rightarrow \alpha.a, \beta] \))
 - enter \(S_j \) (shift, new state \(I_j \)) in ACTION[\(I_i, a \)]

2. For each DFA final state \(I_i \)
 (containing a complete item \([X \rightarrow \alpha.] \))
 - enter \(R_\alpha \) in ACTION table:

<table>
<thead>
<tr>
<th>State</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X X S4 B5</td>
<td>S4 S5</td>
</tr>
<tr>
<td>1</td>
<td>A S2 *</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>X X S4 B5</td>
<td>B5</td>
</tr>
<tr>
<td>3</td>
<td>R1 R1 *</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>R3 R3 *</td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td>R4 R4</td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td>R2 R2</td>
<td>*</td>
</tr>
</tbody>
</table>

3. For each DFA state containing \([S' \rightarrow S.|--.] \)
 - enter \(A \) in ACTION[\(I_i, |--. \)] (accept). NB - Conflict? (as in 2.)

GOTO Table

<table>
<thead>
<tr>
<th>State</th>
<th>L</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conflicts and Categories of LR Grammars and Parsers

Conflicts in LR Grammars

- **Observe conflicts** in DFA (GOTO graph) kernels or at the latest when filling the ACTION table.

 - **Shift-Reduce conflict**
 - A DFA accepting state has an outgoing transition, i.e. contains items \([X \rightarrow \alpha.] \) and \([Y \rightarrow \beta.Z] \) for some \(Z \) in \(\text{Nu} \).

 - **Reduce-Reduce conflict**
 - A DFA accepting state can reduce for multiple nonterminals, i.e. contains at least 2 items \([X \rightarrow \alpha.] \) and \([Y \rightarrow \beta.] \), \(X \neq Y \).

 - **(Shift/Reduce-Accept conflict)**
 - A DFA accepting state containing \([S \rightarrow S.|--.] \) contains another item \([X \rightarrow \alpha.S.|] \) or \([X \rightarrow \alpha.S.b] \)

Only for LR(0) grammars there are no conflicts.

Conflict Examples in LR Grammars

- **Shift – Reduce conflict**:
 - \(E \rightarrow \text{id + E} \) (shift +)
 - \(\text{id} \) (reduce id)

- **Reduce – Reduce conflict**:
 - \(E \rightarrow \text{id} \) (reduce id)
 - \(\text{Pcall} \rightarrow \text{id} \) (reduce id)

- **(Shift – Accept conflict)**
 - \(S' \rightarrow L \) (accept)
 - \(L \rightarrow \text{L} \), \(E \) (shift .)

Handling Conflicts in LR Grammars

(Overview):

- Use lookahead
 - if lucky, the LR(0) states + a few fixed lookahead sets are sufficient to eliminate all conflicts in the LR(0)-DFA
 - SLR(1), LALR(1)
 - otherwise, use LR(1) items \([X \rightarrow \alpha.\beta, a] \) (a is look-ahead) to build new, larger NFA/DFA
 - expensive (many items/states \(\rightarrow \) very large tables)
 - if still conflicts, may try again with \(k > 1 \) \(\rightarrow \) even larger tables

- Rewrite the grammar (factoring / expansion) and retry...

- If nothing helps, re-design your language syntax
 - Some grammars are not LR(\(k \)) for any constant \(k \) and cannot be made LR(\(k \)) by rewriting either

TDDD55 Compilers and Interpreters
TDDD44 Compiler Construction

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2011.
Look-Ahead (LA) Sets

- For a LR(0) item \([X \rightarrow \alpha \beta]_l\) in DFA-state \(I_l\), define look ahead set \(LA(I_l, [X \rightarrow \alpha \beta]_l)\) (a subset of \(\Sigma\))
- For SLR(1), LALR(1) etc., the LA sets only differ for reduce items.
- For LR(1):
 \[LA_{LR(1)}(I_l, [X \rightarrow \alpha \beta]_l) = \{ a \in \Sigma : \text{S' \Rightarrow^* aXw and the LR(0)-DFA started in } I_l \text{ reaches } I_l \text{ after reading } \mu \} \]
 - usually a subset of \(FOLLOW(X)\), i.e. of SLR LA set
 - depends on state \(I_l\)

Example: L-Values in C Language

- L-values on left hand side of assignment.
 - Part of a C grammar:
 1. \(S \rightarrow S\)
 2. \(S \rightarrow L \rightarrow R\)
 3. \(L \rightarrow R\)
 4. \(L \rightarrow \ast R\)
 5. \(\ast id\)
 6. \(R \rightarrow L\)

- Avoids that \(R\) (for R-values) appears as LHS of assignments
- But \(\ast R \ldots\) is ok.

- This grammar is LALR(1) but not SLR(1):

Made it simple: Is my grammar SLR(1)?

- Construct the (LR(0)-item) characteristic NFA and its equivalent DFA (= GOTO graph) as above.
- Consider all conflicts in the DFA states:
 - Shift-Reduce:
 \[\frac{\text{Shift-Reduce:}}{\text{Consider all pairs of conflicting items } [X \rightarrow \alpha \beta], [Y \rightarrow \beta \gamma]; \text{If } b \in FOLLOW(X) \text{ for any of these } \rightarrow \text{not SLR(1).}}\]
 - Reduce-Reduce:
 \[\frac{\text{Reduce-Reduce:}}{\text{Consider all pairs of conflicting items } [X \rightarrow \alpha \beta], [Y \rightarrow \beta \gamma]; \text{If FOLLOW}(X) \text{ intersects with FOLLOW}(Y) \rightarrow \text{not SLR(1)}}\]
 - (Shift-Accept: similar to Shift-Reduce)

Example (cont.)

- LR(0) parser has a shift-reduce conflict in kernel of state \(I_2\):
 \[I_2 = \{ [S \rightarrow S], [S \rightarrow \ast R], [S \rightarrow R], [L \rightarrow \ast R], [L \rightarrow \ast \ast R], [L \rightarrow \ast id], [L \rightarrow \ast \ast id], [R \rightarrow \ast L], [R \rightarrow \ast \ast L], [R \rightarrow \ast \ast \ast L] \}
 \[I_3 = \{ [S \rightarrow S], [S \rightarrow \ast R], [S \rightarrow R], [L \rightarrow \ast R], [L \rightarrow \ast \ast R], [L \rightarrow \ast id], [L \rightarrow \ast \ast id], [R \rightarrow \ast L], [R \rightarrow \ast \ast L], [R \rightarrow \ast \ast \ast L] \}
 \[I_4 = \{ [L \rightarrow \ast R], [L \rightarrow \ast \ast R], [L \rightarrow \ast id], [L \rightarrow \ast \ast id], [R \rightarrow \ast L], [R \rightarrow \ast \ast L], [R \rightarrow \ast \ast \ast L] \}
 \[I_5 = \{ [S \rightarrow \ast R], [S \rightarrow \ast \ast R], [S \rightarrow \ast id], [S \rightarrow \ast \ast id], [L \rightarrow \ast R], [L \rightarrow \ast \ast R], [L \rightarrow \ast id], [L \rightarrow \ast \ast id], [R \rightarrow \ast L], [R \rightarrow \ast \ast L], [R \rightarrow \ast \ast \ast L] \}
 \[I_6 = \{ [L \rightarrow \ast R], [L \rightarrow \ast \ast R], [L \rightarrow \ast id], [L \rightarrow \ast \ast id], [R \rightarrow \ast L], [R \rightarrow \ast \ast L], [R \rightarrow \ast \ast \ast L] \}
 \[I_7 = \{ [R \rightarrow \ast L], [R \rightarrow \ast \ast L], [R \rightarrow \ast \ast \ast L] \}
 \[I_8 = \{ [L \rightarrow \ast \ast id], [L \rightarrow \ast \ast \ast id], [R \rightarrow \ast \ast \ast L] \}
 \[I_9 = \{ [L \rightarrow \ast \ast \ast id], [R \rightarrow \ast \ast \ast \ast L] \}
 \[LA_{LR(1)}(I_2, [R \rightarrow \ast L]) = \{ [\rightarrow] \} \rightarrow \text{SLR(1)} \text{ still shift-reduce conflict in } I_2 \text{ as } \rightarrow \text{does not disambiguate}

Example (cont.)

- LALR(1) Parser Construction
 - Method 1: (simple but not practical)
 1. Construct the LR(1) items (see later). (If there is already a conflict, stop.)
 2. Look for sets of LR(1) items that have the same kernel, and merge them.
 3. Construct the ACTION table as for LR(1).
 If a conflict is detected, the grammar is not LALR(1).
 4. Construct the GOTO graph function:
 For each merged \(J = I_1 \cup I_2 \cup ... \cup I_n\)
 - the kernels of GOTOGr(\(i_j, X\)) = identical because the kernels of \(I_1, ..., I_n\) are identical.
 - Set GOTOGr(\(J, X\)) = \(U \{ I_j \text{ has the same kernel as GOTOGr}(I_j, X) \})
 - Method 2: (practical, used) (details see textbook)
 1. Start from LR(0) items and construct kernels of DFA states \(I_0, I_1, ...
 2. Compute lookahead sets by propagation along the GOTOGr(\(i_j, X\)) edges (fixed point iteration).
Solve Conflicts by Rewriting the Grammar

- **Eliminate Reduce-Reduce Conflict:**
 - **Factoring**

 $S \rightarrow (A) \mid (B)$

 $A \rightarrow \text{char} \mid \text{integer} \mid \text{ident}$

 $B \rightarrow \text{float} \mid \text{double} \mid \text{ident}$

 - **Eliminate Shift-Reduce Conflict:** (one token lookahead: ‘’)

 Inline-Expansion

 $S \rightarrow \{ A \} \mid \text{OptY} \{ B \}$

 $\text{OptY} \rightarrow Y \{ \}$

 $Y \rightarrow \ldots$

 $A \rightarrow \ldots$

 $B \rightarrow \ldots$

Some grammars are not LR(k) for any fixed k

- Example: $S \rightarrow a \ B \ c$

 $B \rightarrow b \ B \ b \ b \ | \ b$

 describes language $\{a^b b^r c^s : s \geq 0\}$

 - This grammar is not LR(k) for any fixed k.

 Proof: As k is fixed (constant), consider for any $n > k$:

 - $S \Rightarrow^* a^b b^r c^s = a^b (b^r)^n c^s$
 - $S \Rightarrow^* a^b b^r (b^r)^n c = a^b b^{r+1} b^{r^n} c$

 By the LR(k) definition:

 - $\alpha = a^b$
 - $\beta = b$
 - $\gamma = b^{r+1} b^{r^n} c$

 Although $w[1:k] = y[1:k]$ and production rule $S' \Rightarrow^* Y = Y$ imply $\alpha = \gamma$ and $x = y = w$. The handle cannot be localized with only limited lookahead size k.

- Although $w[1:k] = y[1:k]$, we have $\alpha \Rightarrow^* \gamma$; grammar is not LR(k).

LR(k) Grammar - Formal Definition

- Let G' be the augmented grammar for G (i.e., extended by new start symbol S' and production rule $S' \Rightarrow S$)

 - G is called a LR(k) grammar if

 - $S' \Rightarrow^* a \ X \ W \Rightarrow^* a \ j w$ and
 - $S' \Rightarrow^* \gamma X \ W \Rightarrow^* a \ j \ y$ and
 - $w[1:k] = y[1:k]$

 imply that $\alpha \Rightarrow^* \gamma$ and $X = Y$ and $x = y = w$. Remark: $w, x, y \in \Sigma^*$

No ambiguous grammar is LR(k) for any fixed k

- **S** \rightarrow \text{if} E \text{ then } S \text{ else } S \text{ other statements...}

 is ambiguous – the following statement has 2 parse trees:

 - if E_1 then if E_2 then S_1 else S_2

Rewriting the grammar...
Some grammars are not LR(k) for any fixed k

- Grammar with productions
 \[S \rightarrow a S a | \varepsilon \]
 is unambiguous but not LR(k) for any fixed k. (Why?)

- An equivalent LR grammar for the same language is
 \[S \rightarrow a a S | \varepsilon \]

LR(1) Items and LR(k) Items

LR(k) parser: Construction similar to LR(0) / SLR(1) parser, but plan for distinguishing between states for \(k \geq 0 \) tokens lookahead already from the beginning

- States in the LR(0) GOTO graph may be split up

LR(1) items:
- \([A \rightarrow \alpha \beta, a]\) for all productions \(A \rightarrow \alpha \beta \) and all \(a \in \Sigma \)
- Can be combined for lookahead symbols with equal behavior:
 \([A \rightarrow \alpha \beta, a[b]]\) or \([A \rightarrow \alpha \beta, L]\) for a subset \(L \) of \(\Sigma \)
- Generalized to \(k > 1 \):
 \([A \rightarrow \alpha \beta, a_1a_2...a_k]\)

Interpretation of \([A \rightarrow \alpha \beta, a]\) in a state:
- If \(\beta \) not \(\varepsilon \), ignore second component (as in LR(0))
- If \(\beta = \varepsilon \), i.e., \([A \rightarrow a_1...a_k]\), reduce only if next input symbol = \(a \)

LR(1) Parser

- NFA start state is \([S' \rightarrow S, \cdot]\)
- Modify computation of \(\text{Closure}(I) \), \(\text{GOTO}(I,X) \) and the subset computation for LR(1) items
 - Details see [ASU86, p.232] or [ALSU06, p.261]
- Can have many more states than LR(0) parser
 - Which may help to resolve some conflicts

Interesting to know...

- For each LR(k) grammar with some constant \(k \geq 1 \) there exists an equivalent* grammar \(G' \) that is LR(1).
- For any LL(k) grammar there exists an equivalent LR(k) grammar (but not vice versa!)
 - e.g., language \(\{ a^n b^n : n > 0 \} \cup \{ a^n c^n : n > 0 \} \)
 has a LR(0) grammar but no LL(k) grammar for any constant \(k \).
- Some grammars are LR(0) but not LL(k) for any \(k \)
 - e.g., \(S \rightarrow A b \)
 \(A \rightarrow a A | a \) (left recursion, could be rewritten)

* Two grammars are equivalent if they describe the same language.