TDDD55 Compilers and Interpreters
TDDB44 Compiler Construction

LR Parsing, Part 2

Constructing Parse Tables

Parse table construction

Grammar conflict handling

Categories of LR Grammars and Parsers

Peter Fritzson, Christoph Kessler, IDA, Linköpings universitet, 2011.

Classes of LR Parsers/Grammars

- LR(0) Too weak (no lookahead)
- SLR(1) Simple LR, 1 token lookahead
- LALR(1) Most common, 1 token lookahead
- LR(1) 1 token lookahead big tables
- LR(k) k tokens lookahead Even bigger tables

Differences between LR parsers:

- Table size varies widely.
- Errors not discovered as quickly by some variants.
- Different limitations in the language definitions, grammars.

P. Fritzson, C. Kessler, IDA, Linköpings universite

DDD55/TDDB44 Comp

An NFA Recognizing Viable Prefixes

A.k.a. the "characteristic finite automaton" for a grammar G

- States: LR(0) items (= context-free items) of extended Grammar (definition, see next page)
- Input stream: The grammar symbols on the stack
- Start state: $[S' \rightarrow -|.S]$ Final state: $[S' \rightarrow -|S]$
- Transitions:
 - "move dot across symbol" if symbol found next on stack: $A \to \alpha.B\gamma$ to $A \to \alpha B.\gamma$ $A \to \alpha.b\gamma$ to $A \to \alpha b.\gamma$
 - ε-transitions to LR(0)-items for nonterminal productions from items where the dot precedes that nonterminal:
 - $A \rightarrow \alpha.B\gamma$ to $B \rightarrow .\beta$

con C Kaselar IDA Linkönings universitet

TDDD55/TDDB44 Compiler Construction. 2

Handle, Viable Prefix

- Consider a rightmost derivation $S \Rightarrow_{m}^{*} \beta Xu \Rightarrow_{rm} \beta \alpha u$ for a context-free grammar G.
- α is called a **handle** of the right sentential form βαu, associated with the rule $X \Rightarrow_{rm} α$
- Each prefix of βα is called a viable prefix of G.

Example: Grammar G with productions $\{ S \rightarrow aSb \mid c \}$

- Right sentential forms: e.g. c, acb, aSb, aaaaaSbbbbb,
- For c: Handle: c Viable prefixes: ε , c ■ For acb: Handle: c ε , a, ac
- For aSb: Handle: aSb ε, a, aSb
- For aaSbb: Handle: aSb ε, a, aa, aaS, aaSb

Fritzson, C. Kessler, IDA, Linköpings universitet. 5 TDDD55/TDDB44 Compiler Construction, 20

Right Derivation and Viable Prefixes

Input: a, b, a

Right derivation (handles are underlined, and blue)

 $\begin{tabular}{ll} $<|s| &>_{rm} < |s| &>$

Some Viable prefixes of the sentential form: t> , b, a

 $\{\,\epsilon; \,\, {\color{red} < list>}\,, \,\, {\color{red} < list>}\,, \,\, {\color{red} < list>}, \,\, {\color{red} b}\,\,, \,\, {\color{red} < list>}, \,\, {\color{red} b}\,\,, \,\, {\color{red} a} \quad \, \}$

In which column(s) should reduce x be written?

LR(0) fills in for all input.

SLR(1) fills in for all input in FOLLOW(<A>).

LALR(1) fills in for all those that can follow a certain instance of <A>, see later

P Fritzenn C Keesler IDA I inkönings universitet

TDDD55/TDDB44 Compiler Construction

Computing the LR(0) Item Closure (Detailed Algorithm)

For a set I of LR(0) items compute Closure(I) (union of Kernel and Closure):

- 1. Closure(I) := I (start with the kernel)
- 2. If $\exists [A \rightarrow \alpha.B\beta]$ in Closure(I) and $\exists production <math>B \rightarrow \gamma$ then add $[B \rightarrow .\gamma]$ to Closure(I) (if not already there)
- 3. Repeat Step 2 until no more items can be added to Closure(I).

Remarks:

- For s=[A → α.Bγ], Closure(s) contains all NFA states reachable from s via ε-transitions, i.e., starting from which any substring derivable from Bβ could be recognized. A.k.a. ε-closure(s).
- Then apply the well-known subset construction to transform Closure-NFA -> DFA.
- DFA states will be sets unioning closures of NFA states

P. Fritzson, C. Kessler, IDA, Linköpings universite

DDD55/TDDB44 Compiler Construction, 2

Representing Sets of Items Implementation in Parser Generator

- Any item $[A \rightarrow \alpha.\beta]$ can be represented by 2 integers:
 - production number
 - position of the dot within the RHS of that production
- The resulting sets often contain "closure" items (where the dot is at the beginning of the RHS).
 - Can easily be reconstructed (on demand) from other ("kernel") items
 - **Kernel items**: start state [S' \rightarrow -|.S], plus all items where the dot is not at the left end.
 - Store only kernel items explicitly, to save space

P. Fritzson, C. Kessler, IDA, Linköpings universitet.

TDDD55/TDDB44 Compiler Construction, 2

GOTOgraph Function and DFA States Detailed algorithm

Given: Set I of items, grammar symbol X

- GOTOgr(\emph{I} , X) := $U_{[A \rightarrow \alpha.X\beta] \text{ in } \emph{I}}$ Closure ({ $[A \rightarrow \alpha X.\beta]$ })
 - To become the state transitions in the DFA
- Now do the **subset construction** to obtain the DFA states:

 $\label{eq:continuity} \textit{C} := \textit{Closure}(\,\{\,[S' \to -|.S]\,\}\,) \qquad \text{// } \text{C: Set of sets of NFA states}$ repeat

for each set of items I of C:

for each grammar symbol X

if (GOTOgr(I,X) is not empty and not in C)
add GOTOgr(I,X) to C

until no new states are added to C on a round.

P. Fritzson, C. Kessler, IDA, Linköpings universitet.

TDDD55/TDDB44 Compiler Construction, 2011

Resulting DFA

- All states correspond to some viable prefix
- Final states: contain at least one item with dot to the right
 - recognized some handle → reduce may (must) follow
- Other states: handle recognition incomplete -> shift will follow
- The DFA is also called the GOTO graph (not the same as the LR GOTO Table!!).
- This automaton is deterministic as a FA (i.e., selecting transitions considering only input symbol consumption) but can still be nondeterministic as a pushdown automaton (e.g., in state I₁ above: to reduce or not to reduce?)

P. Fritzson, C. Kessler, IDA, Linköpings universitet.

TDDD55/TDDB44 Compiler Construction, 201

Observe conflicts in DFA (GOTO graph) kernels or at the latest when filling the ACTION table.

- Shift-Reduce conflict
 - A DFA accepting state has an outgoing transition,
 i.e. contains items [X→α.] and [Y→β.Zγ] for some Z in NυΣ
- Reduce-Reduce conflict
 - A DFA accepting state can reduce for multiple nonterminals i.e. contains at least 2 items [X→α.] and [Y→β.], X!= Y
- (Shift/Reduce-Accept conflict)
 - A DFA accepting state containing [S'→S.|--] contains another item [X→αS.] or [X→αS.bβ]

Only for LR(0) grammars there are no conflicts.

Fritzson, C. Kessler, IDA, Linköpings universitet. 23 TDDD55/TDDB44 Compiler Construction, 2

Handling Conflicts in LR Grammars

(Overview):

- Use lookahead
 - if lucky, the LR(0) states + a few fixed lookahead sets are sufficient to eliminate all conflicts in the LR(0)-DFA
 - > SLR(1), LALR(1)
 - otherwise, use LR(1) items $[X\!\to\!\alpha.\beta,\,a]$ (a is look-ahead) to build new, larger NFA/DFA
 - → expensive (many items/states → very large tables)
 - if still conflicts, may try again with k>1 \rightarrow even larger tables
- Rewrite the grammar (factoring / expansion) and retry...
- If nothing helps, re-design your language syntax
 - Some grammars are not LR(k) for any constant k and cannot be made LR(k) by rewriting either

ritzson, C. Kessler, IDA, Linköpings universitet. 24 TDDD55/TDDB44 Compiler Construction, 20:

Look-Ahead (LA) Sets

■ For a LR(0) item $[X \rightarrow \alpha.\beta]$ in DFA-state I_i , define $\textbf{lookahead set} \quad \mathsf{LA}(\ \textit{I}_{i}, [\mathsf{X} \rightarrow \alpha.\beta]\) \quad \text{(a subset of } \Sigma)$

For SLR(1), LALR(1) etc., the LA sets only differ for reduce items:

For SLR(1):

LA_{SLR}(I_i , [X $\rightarrow \alpha$.]) = { a in Σ : S' =>* β Xa γ } = FOLLOW₁(X) for all I_i with $[X \rightarrow \alpha.]$ in I_i

- depends on nonterminal X only, not on state Ii
- For LALR(1):

 $LA_{LALR}(I_{i_2}[X \rightarrow \alpha.]) = \{ a \text{ in } \Sigma: S' =>^* \beta Xaw \text{ and the } \}$ LR(0)-DFA started in I_0 reaches I_i after reading $\beta\alpha$ }

- usually a subset of FOLLOW₁(X), i.e. of SLR LA set
- depends on state I_i

Made it simple: Is my grammar SLR(1)?

- Construct the (LR(0)-item) characteristic NFA and its equivalent DFA (= GOTO graph) as above.
- Consider all conflicts in the DFA states:
 - Shift-Reduce:

Consider all pairs of conflicting items $[X \rightarrow \alpha.]$, $[Y \rightarrow \beta.b\gamma]$: If b in FOLLOW₁(X) for any of these \rightarrow not SLR(1).

Reduce-Reduce:

Consider all pairs of conflicting items $[X \rightarrow \alpha.]$, $[Y \rightarrow \beta.]$: If $FOLLOW_1(X)$ intersects with $FOLLOW_1(Y) \rightarrow not SLR(1)$

• (Shift-Accept: similar to Shift-Reduce)

Example: L-Values in C Language

- L-values on left hand side of assignment. Part of a C grammar:
 - $1. \quad S' \to S$
 - 2. $S \rightarrow L = R$
 - | R
 - 4. $L \rightarrow *R$
 - | id 6. $R \rightarrow L$
- Avoids that R (for R-values) appears as LHS of assignments
- But *R = ... is ok.
- This grammar is LALR(1) but not SLR(1):

Example (cont.)

LR(0) parser has a shift-reduce conflict in kernel of state I₂:

- $\blacksquare I_0 = \{ [S' \rightarrow .S], [S \rightarrow .L = R], [S \rightarrow .R], [L \rightarrow .*R], [L \rightarrow .id], R \rightarrow .L] \}$
- $I_1 = \{ [S'->S.] \}$
- I₂ = { [S->L.=R], [R->L.] } Shift = or reduce to R?
- $I_3 = \{ [S->R.] \}$
- I_4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }
- \blacksquare $I_5 = \{ [L->id.] \}$
- $I_6 = \{ [S->L=.R], [R->.L], [L->.*R], L->.id] \}$
- $I_7 = \{ [L->*R.] \}$
- I₈ = {[R->L.]}
- I₉ = {[S->L=R.]}

FOLLOW₁(R) = { |-, =| \rightarrow SLR(1) still shift-reduce conflict in I_2 as = does not disambiguate

Example (cont.)

- $I_0 = \{ [S'->.S], [S->.L=R], [S->.R], [L->.*R], [L->.id], R->.*R \}$
- $I_1 = \{ [S'->S.] \}$
- I₂ = { [S->L.=R], [R->L.] }
- $I_3 = \{ [S->R.] \}$
- I_4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }
- $I_5 = \{ [L->id.] \}$
- I₆ = { [S->L=.R], [R->.L], [L->.*R], L->.id] }
- $I_7 = \{ [L->*R.] \}$
- I₈ = { [R->L.] }
- I₉ = { [S->L=R.] }

 LA_{LALR} (I_2 , [R->L.]) = { |-| \rightarrow LALR(1) parser is conflict-free as computation path $I_0...I_2$ does not really allow = following R. = can only occur after R if "*R" was encountered before.

LALR(1) Parser Construction

(simple but not practical)

- 1. Construct the LR(1) items (see later). (If there is already a conflict, stop.)
- 2. Look for sets of LR(1) items that have the same kernel, and merge them.
- Construct the ACTION table as for LR(1). If a conflict is detected, the grammar is not LALR(1).
- Construct the GOTOgraph function: For each merged $J = I_1 \cup I_2 \cup ... \cup I_n$ the kernels of $GOTOgr(I_1, X)$, ..., $GOTOgr(I_r, X)$ are identical because the kernels of $I_1,...,I_r$ are identical.

Set GOTOgr(J, X) := U { I: I has the same kernel as GOTOgr(I_1 ,X) }

Method 2: (practical, used) (details see textbook)

- 1. Start from LR(0) items and construct kernels of DFA states I_0 , I_1 , ...
- Compute lookahead sets by propagation along the $GOTOgr(I_i,X)$ edges (fixed point iteration).

Some grammars are not LR(k) for any fixed k

■ Grammar with productions

 $S \rightarrow aSa \mid \epsilon$

is unambiguous but not LR(k) for any fixed k.

(Why?)

An equivalent LR grammar for the same language is

 $S \rightarrow a a S \mid \epsilon$

Fritzenn C Kaselar IDA Linkönings universitet

LR(1) Items and LR(k) Items

LR(*k*) **parser**: Construction similar to LR(0) / SLR(1) parser, but plan for distinguishing between states for *k*>0 tokens **lookahead** already from the beginning

- States in the LR(0) GOTO graph may be split up
- LR(1) items:

[A-> α . β , a] for all productions A-> $\alpha\beta$ and all a in Σ

- Can be combined for lookahead symbols with equal behavior: $[A->\alpha.\beta$, [A] for a subset L of [A]
- Generalized to k>1: [A-> α . β , $a_1a_2...a_k$]

Interpretation of [A-> α . β , a] in a state:

- If β not ε, ignore second component (as in LR(0))
- If $\beta = \varepsilon$, $i \in [A > \alpha]$, reduce only if next input symbol = a

LR(1) Parser

- NFA start state is [S'->.S, |-]
- Modify computation of *Closure(I)*, GOTO(*I*,X) and the subset computation for LR(1) items
 - Details see [ASU86, p.232] or [ALSU06, p.261]
- Can have many more states than LR(0) parser
 - Which may help to resolve some conflicts

Fritzson, C. Kessler, IDA, Linköpings universitet

TDDD55/TDDB44 Compiler Construction,

Interesting to know...

- For each LR(k) grammar with some constant k>1 there exists an equivalent* grammar G' that is LR(1).
- For any LL(k) grammar there exists an equivalent LR(k) grammar (but not vice versa!)
 - e.g., language { aⁿ bⁿ: n>0 } U { aⁿ cⁿ: n > 0 } has a LR(0) grammar but no LL(k) grammar for any constant k.
- Some grammars are LR(0) but not LL(k) for any k
 - e.g., S → A b

 $A \rightarrow Aa \mid a$ (left recursion, could be rewritten)

* Two grammars are equivalent if they describe the same language.

Fritzson, C. Kessler, IDA, Linköpings universitet.

TDDD55/TDDB44 Compiler Construction, 20