
1

TDDD55 Compilers and interpreters

TDDB44 Compiler Construction

Symbol Tables

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2011.

Symbol Tables in the Compiler

Lexical
analysis

Syntactic
analysis

Semantic

source program

sequence of tokens:
’IF’ ’sum’ ’=’ ’5’

sequence of chars:
’IF sum=5 THEN..’

parse tree, derivation tree

4b.2TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Error
Management

Symbol Table
management

Semantic
analysis and
Intermediate

code gen

Code
optimization

Code
generation

object program

internal form,
intermediate code

internal form

Symbol Table Functionality

 Function: Gather information about names which are in a program.

 A symbol table is a data structure, where information about program
objects is gathered.

 Is used in both the analysis and synthesis phases.

 The symbol table is built up during the lexical and syntactic analysis.

 Provides help for other phases during compilation:

4b.3TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

p p g p

 Semantic analysis: type conflict?

 Code generation: how much and what type of
run-time space is to be allocated?

 Error handling: Has the error message "Variable A undefined"
already been issued?

 The symbol table phase or symbol table management refer to the symbol
table’s storage structure, its construction in the analysis phase and its use
during the whole compilation.

Requirements and Concepts

 Requirements for symbol table management

 quick insertion of an identifier

 quick search for an identifier

 efficient insertion of information (attributes) about an id

 quick access to information about a certain id

 Space- and time- efficiency

4b.4TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Important concepts

 Identifiers, names

 L-values and r-values

 Environments and bindings

 Operators and various notations

 Lexical- and dynamic- scope

 Block structures

Identifiers and Names

 Identifiers — Names
 An identifier is a string, e.g.

ABC.
 A name denotes a space in

memory, i.e., it has a value
and various attributes, e.g.
type, scope.

 A name can be denoted by
several identifiers, so-called
aliasing.

{(x,C1),(y,C1),...}
15

address: C1
x

4b.5TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Example:

procedure A;
var x : ...;

procedure B;
var x : ...;

same identifier x but
different names

y

L-value and R-value

 There is a difference between
what is meant by the right and the
left side of an assignment.

 Example:

 Certain expressions have either l-
or r-value, while some have both
l-value and r-value.

a := b * c;

Expression has l-
value

has r-
value

i+1 no yes

4b.6TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

i := i + 1;

L-value R-value

;

b-> yes yes

a yes yes

a[i] yes yes

2 no yes

2

Binding: <names, attributes>

 Names

 Come from the lexical analysis and some additional
analysis.

 attributes

C f th t ti l i ti l i d

4b.7TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Come from the syntactic analysis, semantic analysis and
code generation phase.

 Binding is associating an attribute with a name, e.g.

procedure foo;
var k: char; { Bind k to char }

procedure fie;
var k: integer; { Bind k to integer }

Static and Dynamic Language Concepts

Static Concepts Dynamic Counterparts

Definition of a subprogram Call by a subprogram

Declaration of a name Binding of a name

4b.8TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Declaration of a name Binding of a name

Scope of a declaration Lifetime of binding

Environments and Bindings
 Different environments are created

during execution, e.g. when calling a
subprogram

 An environment consists of a
number of name bindings

 Distinguish between environment
and state, e.g. the assignment

A B

 Example

 Env = {(x,C1),(y,C2),(z,C3),...}

 State = {(C1,3),(C2,5),(C3,9),...}

 In the environment Env, binds x to
memory cell C1,... and memory cell
C1 has the value 3, ...

 A name is bound to a memory cell,
storage location, which can contain a

4b.9TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

A := B;
changes the current state, but not
the environment.

g ,
value.

 A name can have several different
bindings in different environments,
e.g. if a procedure calls itself
recursively.

name memory value

environment state

Env: name memory State: memory  value

Scope
1. Lexical Scope
 How do we find the object which

is referenced by non-local names?

 Two different methods are used:
Lexical and dynamic scope

 1 Lexical- or static- scope

program foo;
var x;

procedure fie(...);
var y
begin
y := x;

end;
...

end

static

4b.10TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 1. Lexical or static scope

 The object is determined by investigating the program text,
statically, at compile-time

 The object with the same name in the nearest enclosing
scope according to the text of the program

 Is used in the languages Pascal, Algol, C, C++, Java,
Modelica, etc.

end.

2. Dynamic Scope

 The object is determined during run-time by investigating the
current call chain, to find the most recent in the chain.

 Is used in the languages LISP, APL, Mathematica (has both).
Example: Dynamic-scope

var x;
...

p1 var x;
...

p2

p3

4b.11TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Which x is referenced in the assignment statement p3?
It depends on whether p3 is called from p1 or p2.

p3;
...

p3;
...

...
y:= x;
...

p3

Lexical or Dynamic Scope

 Which x is
referenced in
procedure fie in
the program below
if

 lexical/static

main
 x

static

program foo;
var x;

procedure fie(...);
var y
begin
y := x; (* which x? *)

end;

static

dynamic

4b.12TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

scoping
applies?

 dynamic
scoping
applies?

fum
x

fie

procedure fum(...);
var x;
begin
x := 5;
fie(x);

end;

begin
x:= 10;
fum(...);

end.

dynamic

3

Block Structures

 Algol, Pascal, Simula, Ada are typical block-structured
languages.

 Blocks can be nested but may not overlap

 Static scoping applies for these languages:

 A name is visible (available) in the block the name is
d l d i

4b.13TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

declared in.

 If block B2 is nested in B1, then a name available in B1 is
also available in B2 if the name has not been re-defined in
B2.

B1

B2

Static and Dynamic Characteristics in
Language Constructs
 Static characteristics

Characteristics which are determined during compilation. Examples:
 A Pascal-variable type
 Name of a Pascal procedure
 Scope of variables in Pascal
 Dimension of a Pascal-array
 The value of a Pascal constant

4b.14TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Memory assignment for an integer variable in Pascal

 Dynamic characteristics
Characteristics that can not be determined during compilation, but can
only be determined during run-time.

 Examples
 The value of a Pascal variable
 Memory assignment for dynamic variables in Pascal (accessible via

pointer variables)

Advantages and Disadvantages

 Static constructs

 - Reduced freedom for the programmer

 + Allows type checking during compilation

 + Compilation is easier

 + More efficient execution

4b.15TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Dynamic constructs

 - Less efficient execution because of dynamic type
checking

 + Allows more flexible language constructions
(e.g. dynamic arrays)

 More about this will be included in the lecture on memory
management.

Symbol Table Design
(decisions that must be made)
 Structuring of various types of information (attributes) for each name:

 string space for names
 information for procedures, variables, arrays, ...
 access functions (operations) on the symbol table
 scope, for block-structured languages.

 Choosing data structures for the symbol table which enable efficient
storage and retrieval of information

4b.16TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

storage and retrieval of information.
Three different data structures will be examined:
 Linear lists
 Trees
 Hash tables

 Design choices:
 One or more tables
 Direct information or pointers (or indexes)

Structuring Problems for Symbol Data

 When a name is declared, the
symbol table is filled with various bits
of information about the name:

 Normally the symbol table index is
used instead of the actual name. For
example, the parse tree for the
statement

0

...

<assignment>

4b.17TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 This is both time- and space-efficient.

 How can the string which represents
the name be stored?

Next come two different ways.

...

m

...

n

m <assop> true
(or index for ":=")

String Space for Identifiers

 Method 1: Fixed space of max
expected characters
FORTRAN4: 6 characters,
Hedrick Pascal: 10 characters

5 - attri
butes

3 -

- -

KALLE attributes

SUM attributes

...

4b.18TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Method 2: <length, pointer>
(e.g. Sun Pascal: 1024 characters

 Method 3: without specifying length: ...$KALLE$SUM$... where $
denotes end of string.

 The name and information must remain in the symbol table as long
as a reference can occur.

 For block-structured languages the space can be re-used.

...|KALLE|SUM|...

4

String Space for Identifiers
Method 3, cont.

 Identifiers can vary in length

 Must be stored in token table

 Name field of symbol table just points to first character

 To be kept as long as
references can occur

Symbol table …
name attr link...

double

double

4b.19TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Usually, full names kept only during compilation

 Exception:
Added to the program’s constant pool in the .data segment
if symbolic debugging or reflection should be enabled
(e.g., gcc –g file1.c to prepare for symbolic debugging)

x \0 s u m f\0 oo b a r \0

funct

Information in the Symbol Table

 name

 attribute

 type (integer, boolean, array, procedure, ...)

 length, precision, packing density

 address (block, offset)

4b.20TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 declared or not, used or not

 You can directly allocate space in the symbol table for
attributes whose size is known, e.g. type and value of a
simple variable

...i...

int value.. ...

Compiler representation of names

 A unique and compact internal representation for a name
is the index (address in compiler address space)
of its symbol table entry.

 Used instead of full name (string) in the internal
representation of a program

 Time and space efficient

4b.21TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Time and space efficient

Example: Parse-tree for expression xabcd <= yefgh;

<expression>

<identifier>

xabcd

Symbol table …
name attr link...

yefgh
double

double

<lteq_token> <identifier>

Information in the Symbol Table for Arrays
Fixed Allocation

 Fixed allocation (BASIC, FORTRAN4)

 The number of dimensions is known at compilation.

 FORTRAN4: max 3 dimensions, integer index.

KALLE

4b.22TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Array
L1
L2
L3
INT

3
U1
U2
U3

EGER

Fixed in advance

Dim. limits
lower/upper bound

Element type

}

Information in the Symbol Table for Arrays
Flexible Allocation

 Flexible allocation (Pascal, Simula, ADA, Java)

 Arbitrary number of dimensions, elements of arbitrary type.

 Pascal: var v: array[1..20,’a’..’z’] of integer

array
type

1 20 integer

4b.23TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 You can access an element v[i,j] in the above array by calculating
its address: adr = BAS + k*((i-1)*r)+j-1)

 where r= number of elements/rows,

 and k= number of memory cells/elements (bytes, words)

v
array
type

'a' 'z' integer

integer

Symbol Table Data and Operations

 Set of symbol table items

 searchable by name + scope

 Data stored for each entry:

 name

 attributes

 Operations

 lookup (name)

 insert (name)

 put (name, attribute, value)

 get (name, attribute)

 enterscope ()

4b.24TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 type
(int, bool, array, ptr, function)

address
(block, offset)

declared or not,
used or not

 ...

p ()

 exitscope()

ADT Dictionary
+

Scoping Control

5

Data Structures for Symbol Tables

For flat symbol tables:
(one block of scope)

 Linear lists

 Hash tables

 ...
(see data structures for
ADT Dictionary)

For nested scopes:

 Trees of flat symbol tables

 Linear lists with scope control

 Only for 1-pass-compilers

 Hash tables with scope control
(see following slides)

4b.25TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

ADT Dictionary)
 Only for 1-pass-compilers

Linear lists

 Unsorted linear lists

 Easy to implement

 Space efficient

name attr name attr name attrST

4b.26TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

p

 Insertion itself is fast

but needs lookup to check if the name was already in

 Lookup is slow

Inserting n identifiers and doing m lookups
requires O(n(n+m)) string comparisons

Hash Table with Chaining (1)

Hashname

Hash
table

Symbol table entries

name block link...name

foo

a

b

NULL

NULL

NULL

”foo”  1

”a”  6

”b”  3

”c”  6

4b.27TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

name

void foo (void) {
int a, b, c;
...

Hash Table with Chaining (2)

Hashname

Hash
table

Symbol table entries

name block link...name

foo

a

b

c

NULL

NULL

NULL

”foo”  1

”a”  6

”b”  3

”c”  6

4b.28TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

name

void foo(void) {
int a, b, c;
...

 Much faster lookup on average

 Degenerates towards linear list for bad hash functions

Hash Table with Chaining (3)
 Search

 Hash the name in a hash function, h(symbol)  [0, k-1]
 where k = table size
 If the entry is occupied, follow the link field.

 Insertion
 Search + simple insertion at the end of the symbol table (use the sympos

pointer).
 Efficiency

4b.29TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 Search proportional to n/k and the number of comparisons is (m + n) n / k
for n insertions and
m searches.

 k can be chosen arbitrarily large.
 Positive

 Very quick search
 Negative

 Relatively complicated
 Extra space required, k words for the hash table.
 More difficult to introduce scoping.

Hierarchical Symbol Tables

F t d bl k

4b.30TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

For nested scope blocks

6

Tree-based Symbol Table
class Bar {

int x;
void foo1(…) { … }
void foo2(…) {

int inner21(…) {
float x;
…

}
int inner22(…) {

Bar

Global symbol table
name attr link...

File/module scope:

x int

Symbol table for Bar
name attr link...

foo1 funct
foo2 funct

4b.31TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

double x, y;
…
foo1(x);

}
…

}
…

}
…

Symbol table for foo1
name attr link...

inner21

Symbol table for foo2
name attr link...

inner22

x

Symbol table for inner21
name attr link...

x

Symbol table for inner22
name attr link...

y

- enterscope(), exitscope()
- insert(), lookup()

double

double

float

funct

funct

foo1 funct
foo2 funct

For One-Pass Compilers?
class Bar {

int x;
void foo1(…) { … }
void foo2(…) {

int inner21(…) {
float x;
…

}
int inner22(…) {

Bar

Global symbol table
name attr link...

File/module scope:

x int

Symbol table for Bar
name attr link... After code was

emitted for foo1
resp. for inner21,
could release its

4b.32TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

inner22

inner21

double x, y;
…
foo1(x);

}
…

}
…

}
…

Symbol table for foo1
name attr link...

Symbol table for foo2
name attr link...

x

Symbol table for inner21
name attr link...

x

Symbol table for inner22
name attr link...

y

- enterscope(), exitscope()
- insert(), lookup()

could release its
symbol table

double

double

funct

funct

Hash tables with chaining + scoping

Hashname

Hash
table

Symbol table entries

name block link...
Block
table

0

Current scope block: 0

(For One-Pass Compilers Only)

4b.33TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

name

insert p1 and enter a new scope block (2)

module prog {
int a, b, c;
void p1() {

int b, c;
...

Hash tables with chaining + scoping

Hashprog

Hash
table

Symbol table entries

name block link...

1

prog 0

Block
table

NULL 0

1

Current scope block: 1

4b.34TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

prog

insert prog and enter a new scope block (1)

module prog {
int a, b, c;
void p1() {

int b, c;
...

Hash tables with chaining + scoping

Hasha

Hash
table

Symbol table entries

name block link...

prog 0

Block
table

NULL 0

1
a 1 NULL

Current scope block: 1

4b.35TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

a

6module prog {
int a, b, c;
void p1() {

int b, c;
...

Hash tables with chaining + scoping

Hashb

Hash
table

Symbol table entries

name block link...

3

prog 0

Block
table

NULL 0

1
a 1 NULL

b 1 NULL

Current scope block: 1

4b.36TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

b 3

module prog {
int a, b, c;
void p1() {

int b, c;
...

7

Hash tables with chaining + scoping

Hashc

Hash
table

Symbol table entries

name block link...

prog 0

Block
table

NULL 0

1
a 1 NULL

b 1 NULL

c 1

Current scope block: 1

4b.37TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

c

6

a and c hash to the same hash value (6) – use chaining

module prog {
int a, b, c;
void p1() {

int b, c;
...

Hash tables with chaining + scoping

Hashp1

Hash
table

Symbol table entries

name block link...

2

prog 0

Block
table

NULL 0

1
a 1 NULL

b 1 NULL

c 1

1 1

2

Current scope block: 1->2

4b.38TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

p1 p1 1 NULL

insert p1 and enter a new scope block (2)

module prog {
int a, b, c;
void p1() {

int b, c;
...

Hash tables with chaining + scoping

Hashb

Hash
table

Symbol table entries

name block link...

3

prog 0

Block
table

NULL 0

1
a 1 NULL

b 1 NULL

c 1

1 1

2

Current scope block: 2

4b.39TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

b 3 p1 1 NULL

b 2

make hash table point to (statically) closest b – will later find this one first in chain

module prog {
int a, b, c;
void p1() {

int b, c;
...

Hash tables with chaining + scoping

Hashc

Hash
table

Symbol table entries

name block link...

prog 0

Block
table

NULL 0

1
a 1 NULL

b 1 NULL

c 1

1 1

2

Current scope block: 2

4b.40TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

c

6

p1 1 NULL

b 2

c 2

module prog {
int a, b, c;
void p1() {

int b, c;
...

Hash tables with chaining + scoping

Hasha

Hash
table

Symbol table entries

name block link...

prog 0

Block
table

NULL 0

1
a 1 NULL

b 1 NULL

c 1

1 1

2

Current scope block: 2

4b.41TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

Hash
function

a

6

p1 1 NULL

b 2

c 2

module prog {
int a, b, c;
void p1() {

int b, c;
a = ...;

...
lookup(a): follow chain links ...

Operations on Hash-Table with Chaining
and Scope (Block) Information

 Declaring x
 Search along the chain for x’s hash value.
 When a name (any name) in another block is found, x is not double-defined.
 Insert x at the beginning of the hash chain.

 Referencing x
 Search along the chain for x’s hash value.
 The first x to be found is the right one

4b.42TDDB44 / TDDD55, C. Kessler, P. Fritzson, IDA, LIU, 2009

 The first x to be found is the right one.
 If x is not found, x is undefined.

 A new block is started
 Insert block pointer in BLOCKTAB.

 End of the block
 Move the block down in BLOCKTAB.
 Move the block down in SYMTAB.
 Move the hash pointer to point at the previous block.

