TDDDS5 Compilers and interpreters _ir# “\\
TDDB44 Compiler Construction \ j

Symbol Tables

R
Symbol Tables in the Compiler '*}‘

P

source program
sequence of chars:
'IF sum=5 THEN.."

Lexical \
analysis
sequence of tokens:
'IF 'sum' ="

5
Syntactic
analysis \

parse tree, derivation tree
RSN

Semantic
analysis and
Intermediate

code gen

‘ internal form,
intermediate code

internal form
Code
Peter Fritzson, Christoph Kessler, object program
DA, LinkGpings universitet, 2011 TDDB44 / TDDDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 4
R R
Symbol Table Functionality #}-‘ Requirements and Concepts #}-‘
® Function: Gather information about names which are in a program. ® Requirements for symbol table management
e quick insertion of an identifier
= A symbol table is a data structure, where information about program o quick search for an identifier
objects is gathered. i .
. . . o efficient insertion of information (attributes) about an id
o Is used in both the analysis and synthesis phases. . . X o
. e quick access to information about a certain id
e The symbol table is built up during the lexical and syntactic analysis. . .
.) I o Space- and time- efficiency
m Provides help for other phases during compilation:
e Semantic analysis: type conflict? | tant ‘
n
e Code generation: how much and what type of mpor arj', concepts
run-time space is to be allocated? e Identifiers, names
o Error handling: Has the error message "Variable A undefined" e L-values and r-values
already been issued? e Environments and bindings
e Operators and various notations
® The symbol table phase or symbol table management refer to the symbol e Lexical- and dynamic- scope
table’s storage structure, its construction in the analysis phase and its use o Block structures
during the whole compilation. uctu
TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b3 TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 b4
R R
Identifiers and Names Be o L-value and R-value #}-‘

m |dentifiers — Names
e Anidentifier is a string, e.g.
ABC.

B A name can be denoted by
several identifiers, so-called
aliasing.

e A name denotes a space in

memory, i.e., it has a value * = Example:
s 1.6, 1L address: i - -
and various attributes, e.g. | { (x,c1), (y,c1),...} \ €1 Expression |has |- [hasr
type, scope. value value
i+
/ 1= i+l no yes
Yy
m Example: [i]:=[3 + 13 b-> yes yes
procedure A; a yes yes
var x f ...; L-value R-value -
a[i] yes yes
> same identifier x but
procedure B; different names 2 no yes
var x :
‘\/
TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4p5 TDDB44 / TDDDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 b6

® There is a difference between
what is meant by the right and the
left side of an assignment.

m Certain expressions have either |-
or r-value, while some have both
l-value and r-value.

IR TR
Binding: <names, attributes> Be o Static and Dynamic Language Concepts 1&}‘
® Names
° ;:rc]);yes;‘;om the lexical analysis and some additional Static Concepts Dynamic Counterparts

| attributes

e Come from the syntactic analysis, semantic analysis and
code generation phase.

® Binding is associating an attribute with a name, e.g.

procedure foo;
var k: char; {Bind k to char }
procedure fie;

var k: integer; {Bindktointeger}

Definition of a subprogram

Call by a subprogram

Declaration of a name

Binding of a name

Scope of a declaration

Lifetime of binding

TDDB44 1 TDDDSS, C. Kesser, P. Fitzson, IDA, LIU, 2009 a2 TDDB44 1 TODDSS, C. Kesser, P. Fitzson, IDA, LIU, 2009 a2
. 4 Bindi TR Scope R
Environments and Bindings R 1. Lexical Scope e Y
m Different environments are created ~® Example ® How do we find the object which program foo;
during execution, e.g. when calling a o Env={(x,Cl),y.C2),(zC3),..} is referenced by non-local names? |var x;
subprogram o State = {(C1,3),(C2,5),(C3,9)...} static fieC..)
i - | procedure fie(...);
® An environment consists of a = In the environment Env, binds x to o TWq different metthS are used: Sar Y
number of name bindings memory cell C1,... and memory cell Lexical and dynamlc scope begin
T . C1 has the value 3, ... y 1= %
m Distinguish between environment . A is bound t " end;
and state, e.g. the assignment name Is bound to a memory Cet,)) .
A=B storage location, which can contain a m 1. Lexical- or static- scope end
T2 value.

changes the current state, but not

. [] i
the environment. A name can have several different

bindings in different environments,
e.g. if a procedure calls itself

environment state

e The object is determined by investigating the program text,

statically, at compile-time

e The object with the same name in the nearest enclosing

recursively.
/’\/’\ scope according to the text of the program
M
name memory value e Is used in the languages Pascal, Algol, C, C++, Java,
Modelica, etc.
Env: name — memory State: memory — value|
TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4p9 TDDBA44 / TODDSS, C. Kessler, P. Fritzson, IDA, LIV, 2009 40,20
. AL _ _ TR
2. Dynamic Scope Be o Lexical or Dynamic Scope Be o
B The object is determined during run-time by investigating the ® Which x is program foo;
current call chain, to find the most recent in the chain. referenced in . Var X i _
® Is used in the languages LISP, APL, Mathematica (has both). procedure fie in - 5;‘20;3/ ure fie(...);
Example: Dynamic-scope the program below | ™27 begin
if y = x; (* which x? *)
1 . 2 . atic end;
P| varxi) PR var x o o lexical/static i “/:a’“'cf oy
H procedure tum(...);
p3; p3; applies? x begjfn 5
. . X = 5;
e dynamic dyfamic fie(O:
scoping v end;
® Which x is referenced in the assignment statement p3? applies? tie begin
It depends on whether p3is called from pl or p2. fum(...)
end.

TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.11

TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009

TR
Block Structures #}-‘

P

| Algol, Pascal, Simula, Ada are typical block-structured
languages.

m Blocks can be nested but may not overlap
| Static scoping applies for these languages:
e A name is visible (available) in the block the name is
declared in.

e If block B2 is nested in B1, then a name available in B1 is
also available in B2 if the name has not been re-defined in

B2.
BI

B2

TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b 1

Static and Dynamic Characteristics in f \
Language Constructs At

P

® Static characteristics
Characteristics which are determined during compilation. Examples:

e A Pascal-variable type

Name of a Pascal procedure

Scope of variables in Pascal

Dimension of a Pascal-array

The value of a Pascal constant

Memory assignment for an integer variable in Pascal

® Dynamic characteristics) . o
Characteristics that can not be determined during compilation, but can
only be determined during run-time.

m Examples
e The value of a Pascal variable

e Memory assignment for dynamic variables in Pascal (accessible via
pointer variables)

TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.14

: L
Advantages and Disadvantages '\a}i

P

.

m Static constructs
e - Reduced freedom for the programmer
e + Allows type checking during compilation
e + Compilation is easier
e + More efficient execution
® Dynamic constructs

o - Less efficient execution because of dynamic type
checking

e + Allows more flexible language constructions
(e.g. dynamic arrays)

m More about this will be included in the lecture on memory
management.

TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 415

Symbol Table Design TR
(decisions that must be made) Lo

m Structuring of various types of information (attributes) for each name:
e string space for names
o information for procedures, variables, arrays, ...
e access functions (operations) on the symbol table
e scope, for block-structured languages.

® Choosing data structures for the symbol table which enable efficient
storage and retrieval of information.)
Three different data structures will be examined:

e Linear lists
e Trees
o Hash tables

m Design choices:
e One or more tables
e Direct information or pointers (or indexes)

TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 416

: TR
Structuring Problems for Symbol Data #}-‘

ey L
®m When a name is declared, the

symbol table is filled with various bits
of information about the name:

= Normally the symbol table index is
used instead of the actual name. For
example, the parse tree for the

statement
0 <assignment>
m m <assop> true
(or index for ":=")
n

® This is both time- and space-efficient.

® How can the string which represents
the name be stored?

Next come two different ways.

TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4.1

R
String Space for Identifiers ‘*f

P

N

m Method 1: Fixed space of max
expected characters
FORTRAN4: 6 characters,
Hedrick Pascal: 10 characters

- 5 - attri
KALLE attributes I butes
SUM attributes N l‘
m Method 2: <length, pointer> . \RALLE[SUM[...

(e.g. Sun Pascal: 1024 characters

m Method 3: without specifying length: ...$KALLE$SUMS... where $
denotes end of string.

® The name and information must remain in the symbol table as long
as a reference can occur.

®m For block-structured languages the space can be re-used.

TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4p 1.

String Space for Identifiers TR o R
Method 3, cont. R Information in the Symbol Table -*w;
m |dentifiers can vary in length B name

H attribute

B Must be stored in token table
m Name field of symbol table just points to first character

Symbol table ...)
® To be kept as long as ame Attt ... link
=
references can occur Houble
— funct

[xJes]ulmloft]ofofofafrfo] [[[]

m Usually, full names kept only during compilation

e Exception:
Added to the program’s constant pool in the .data segment
if symbolic debugging or reflection should be enabled
(e.g., gcc —g filel.c to prepare for symbolic debugging)

e type (integer, boolean, array, procedure, ...)
e length, precision, packing density

e address (block, offset)

e declared or not, used or not

L [oave []
s~ 0
...8i8. ..

m You can directly allocate space in the symbol table for
attributes whose size is known, e.g. type and value of a
simple variable

_] iR Information in the Symbol Table for Arrays #Z4™
Compiler representation of names #}-‘ Fixed Allocation Be o

P

® A unique and compact internal representation for a name
is the index (address in compiler address space)
of its symbol table entry.

m Used instead of full name (string) in the internal

®
-

ime and s
meangs

Example: Parse-tree for expression xabcd <= yefgh;

TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009

P

® Fixed allocation (BASIC, FORTRAN4)
e The number of dimensions is known at compilation.
e FORTRAN4: max 3 dimensions, integer index.

KALLE
Array 3 <] Fixed in advance
L1 Ul -
T2 02 Dim. limits
lower/upper bound
L3 U3
INTEGER ~=— Element type

TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 m

Information in the Symbol Table for Arrays R
Flexible Allocation Y

m Flexible allocation (Pascal, Simula, ADA, Java)
e Arbitrary number of dimensions, elements of arbitrary type.
e Pascal: varv: array[1..20,’a’..’z’] of integer

array |1 |20 integer
type
/

I

array 'z'

type

integer

integer

® You can access an element v[i,j] in the above array by calculating
its address: adr = BAS + k*((i-1)*r)+j-1)

Symbol Table Data and Operations #}-‘

m Operations
e searchable by name + scope e lookup (name)

m Set of symbol table items

e insert (name)
m Data stored for each entry: e put (name, attribute, value)
® name e get (name, attribute)
e attributes e enterscope ()
» type e exitscope()

(int, bool, array, ptr, function)

» address
(block, offset)

» declared or not,

(&

ADT Dictionary

h ber of el ’ used or not +
o where r= number of elements/rows, i
) Scoping Control
e and k= number of memory cells/elements (bytes, words) L
TDDB44 1 TDDDSS, C. Kessier, P. Fitzson, IDA, LIU, 2000 4 TDDB44 1 TDDDSS, C. Kessier, P. Fitzson, IDA, LIU, 2000 424

TR
Data Structures for Symbol Tables =*-‘

For flat symbol tables:
(one block of scope)

® Linear lists
m Hash tables
]

For nested scopes:

m Trees of flat symbol tables

m Linear lists with scope control
e Only for 1-pass-compilers

(see data structures for
ADT Dictionary)

m Hash tables with scope control
(see following slides)

e Only for 1-pass-compilers

TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b 25

Y

Linear lists &

ST namel attr | —,—-|name| attr I —|—+|ame| attr | —'—0”

m Unsorted linear lists

© Easy to implement
© Space efficient
© Insertion itself is fast
but needs lookup to check if the name was already in
® Lookup is slow

Inserting n identifiers and doing m lookups
requires O(n(n+m)) string comparisons

TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b 26

Hash Table with Chaining (1) =*-‘ Hash Table with Chaining (2) =*-‘
ey ey
ﬂop—x Symbol table entries ﬂ;ﬁ Symbol table entries
a’> 6 Hash name block - link a’> 6 Hash name block - link
"> 3 table foo NULL "> 3 table foo NULL
"> 6 £ NULL e > 6 a NULL
b NULL b NULL]
c —
name Hash name Hash
function function
void foo (void) { void foo(void) {
inta, b, ¢; inta, b, c;
© Much faster lookup on average
® Degenerates towards linear list for bad hash functions
TODB44 / TODDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 4 TODB44 / TODDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 4

Hash Table with Chaining (3) 5*3

m Search
e Hash the name in a hash function, h(symbol) [0, k-1]
e where k = table size
o If the entry is occupied, follow the link field.

= |nsertion
e Search + simple insertion at the end of the symbol table (use the sympos
pointer).
m Efficiency

e Search proportional to n/k and the number of comparisons is (m + n) n/k
for n insertions and
m searches.

e k can be chosen arbitrarily large.
m Positive
e Very quick search
= Negative
o Relatively complicated
e Extra space required, k words for the hash table.
o More difficult to introduce scoping.

TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4029

TR

Hierarchical Symbol Tables

For nested scope blocks

TDDBA44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.30

TR
File/module scope: : E H File/module scope: : E
Tree-based Symbol Table ['emoduescop —*}- For One-Pass Compilers? emocuie scop —*}-
Global symbol table k._.. Global symbol table k._..
class Bar { name atlr e link class Bar { name__attr .. link
e [Bar | [Lo | e [Bar [|
void fool(...) {... } void fool(...) {... }
void foo2(...) { / void foo2(...) { /
intinner21(...) { symbol t48le for Bar intinner21(...) { Symbol t4ble for Bar
float x; name _attr link float x; name _attr link After code was
X inj X ing emitted for fool
fool | funct fool | funct resp. for inner21
intinner22(...) { foo2 | funct ~ intinner22(...) { foo2 | funct N7 could release its
double x, y; \ double x, y; symbol table
fool(x); SymbdTtable for fool Symbol table for foo2 fool(x); bdl table fo}a;(Symbol table for foo2
} name _attr ... link ame _ attr ... _link name r link ame _attr ... _link
nner21 funct nner21) funct
} nner22 fuper™ | » } nner22fypset™ | »
/ h /
= | / = ,/ N~ /
Symbol tatfef(nnlerﬁl Symbol table for inne|r2k2 SMD e fwl Symbol table for inne|r2k2
" ame _ attr ... _lin| ame _ attr ... |in - ame %, __lin| ame _ attr 2o |IN
- 9nterscope(), exitscope() s | % |TebE - 9nterscope(), exitscope() =)(% |TebE
- insert(), lookup() b - insert(), lookup() b
TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 y TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 y

ISR

fl.m_ fl.m_
Hash tables with chaining + scoping Re Hash tables with chaining + scoping &
(For One-Pass Compilers Only) o o
Current scope block: 0 Symbol table entries Block Current scope block: 1 Symbol table entries Block
Hash name block - link table Hash name block - link table
table table prog | O NULL
1
1
name Hash / prog Hash /
function function
module prog { module prog {
inta, b, c; inta, b, c;
void p1() { void p1() {
intb, c; intb, c;
insert p1 and enter a new scope block (2) insert prog and enter a new scope block (1)
TODB44 / TODDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 4 TODB44 / TODDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 434
fl.m_ fl.m_
Hash tables with chaining + scoping Re Hash tables with chaining + scoping &
Current scope block: 1 Symbol table entries Block Current scope block: 1 Symbol table entries Block
Hash name block - link table Hash name block - link table
table prog | O NULL table prog | O NULL
a 1 NULL T a 1 NULL 1
b 1 NULL
a Hash b Hash _—
function function
module prog { 6 module prog {
inta, b, c; inta, b, c;
void p1() { void p1() {
intb, c; intb, c;
TODB44 / TODDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.35 TODB44 / TODDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 436

At

Current scope block: 1 Symbol table entries Block
Hash name _block link table
table prog 0 NULL

a 1 NULL 1
b 1 NULL
c l —
c Hash
function
module prog { 6
inta, b, ¢;
void p1() {
inth, c;

aand c hash to the same hash value (6) — use chaining

TR
Hash tables with chaining + scoping =*-‘

TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 m

TR
Hash tables with chaining + scoping =*-‘

Current scope block: 1->2 Symbol table entries Block
Hash name block - link table
table prog 0 NULL

a 1 NULL 1
b 1 NULL 2
2 c l —
p1 Hash p1 1 NULL
function

module prog {
inta, b, c;
void p1() {
inth, c;

insert p1 and enter a new scope block (2)

TDDB44 / TDDDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 m

Hash tables with chaining + scoping & Hash tables with chaining + scoping &
Current scope block: 2 Symbol table entries Block Current scope block: 2 Symbol table entries Block
Hash name block - link table Hash name block - link table
table prog | O NULL table prog | O NULL
a 1 NULL T a 1 NULL 1
b 1 NULL 2 b 1 NULL 2
c 1 — c 1 —
LR ECl pl 1 NULL c s pl 1 NULL
function function
b 2 — b 2 —
c 2 —
module prog { module prog { 6
inta, b, c; inta, b, c;
void p1() { void p1() {
intb, c; intb, c;
make hash table point to (statically) closest b — will later find this one first in chain
TODB44 / TODDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 4b.39 TODB44 / TODDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 4b 40
f"'“\ Operatlons on Hash-Table with Chalnlng f"'“\
Hash tables with chaining + scoping Re Y and Scope (Block) Information Re Y
. X ® Declaring x
Current scope block: 2 Symbol table entries Block o Search along the chain for x’s hash value.
Hash name block - _link table » When a name (any name) in another block is found, x is not double-defined.
table prog | 0 NULL o Insert x at the beginning of the hash chain.
a 1 NULL 1
b 1 NULL 2 m Referencing x
c 1 = e Search along the chain for x’s hash value.
a Has_h ~{ p1 1 NULL e The first x to be found is the right one.
function b 2] , e If x is not found, x is undefined.
c 2 et .
® Anew block is started
m_odule prog { 6 e Insert block pointer in BLOCKTAB.
inta, b, c;
void p1i
ohot B End of the block
a=.. e Move the block down in BLOCKTAB.
® Move the block down in SYMTAB.
lookup(a): follow chain links .. » Move the hash pointer to point at the previous block.
TODB44 / TODDSS, C. Kessler, P. Fritzson, IDA, LIU, 2009 441 TODB44 / TODDSS, C. Kessler, P. Fritzson, DA, LIU, 2009 4b 4

