
1

TDDD55 Compilers and interpreters

TDDB44 Compiler Construction

Formal Languages Part 1
Including Regular Expressions

Peter Fritzson
IDA, Linköpings universitet, 2011.

Basic Concepts for
Symbols, Strings, and Languages

 Alphabet
A finite set of symbols.

 Example:
∑b = { 0,1 } binary alphabet
∑s = { A,B,C,...,Z,Å,Ä,Ö } Swedish characters
∑r = { WHILE,IF,BEGIN,... } reserved words

2.2TDDD55/B44, P Fritzson, IDA, LIU, 2011.

r

 String
A finite sequence of symbols from an alphabet.

 Example:
10011 from ∑b
KALLE from ∑s
WHILE DO BEGIN from ∑r

Properties of Strings in Formal Languages
String Length, Empty String

 Length of a string

 Number of symbols in the string.

 Example:
 x arbitrary string, |x| length of the string x
 |10011| = 5 according to ∑b

2.3TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 |WHILE| = 5 according to ∑s
 |WHILE| = 1 according to ∑r

 Empty string

 The empty string is denoted ϵ, |ϵ| = 0

Properties of Strings in Formal Languages
Concatenation, Exponentiation
 Concatenation

 Two strings x and y are joined together x•y = xy

 Example:

 x = AB, y = CDE produce x•y = ABCDE

 |xy| = |x| + |y|

 xy  yx (not commutative)

2.4TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 xy  yx (not commutative)

 ϵ x = x ϵ = x

 String exponentiation

 x0 = ϵ

 x1 = x

 x2 = xx

 xn = x•xn-1, n >= 1

Substrings: Prefix, Suffix

 Example:

 x = abc

 Prefix: Substring at the beginning.

2.5TDDD55/B44, P Fritzson, IDA, LIU, 2011.

g g g

 Prefix of x: abc (improper as the prefix equals x), ab, a, ϵ

 Suffix: Substring at the end.

 Suffix of x: abc (improper as the suffix equals x), bc, c, ϵ

Languages

 A Language = A finite or infinite set of strings which can be
constructed from a special alphabet.

 Alternatively: a subset of all the strings which can be
constructed from an alphabet.

  = the empty language. NB! {ϵ}  .

2.6TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 Example: S = {0,1}

 L1 = {00,01,10,11} all strings of length 2

 L2 = {1,01,11,001,...,111, ...} all strings which finish on 1

 L3 =  all strings of length 1 which finish on 01

2

Closure

 ∑* denotes the set of all strings which can be constructed
from the alphabet

 Closure types:

 * = closure, Kleene closure

2.7TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 + = positive closure

 Example: S = {0,1}

 ∑* = {ϵ, 0,1,00,01,...,111,101,...}

 ∑+ = ∑* – {ϵ} = {0,1,00,01,...}

Operations on Languages
Concatenation

 L, M are languages.

 Concatenation operation • (or nothing) between languages

 L•M = LM = {xy|x  L and y  M}

 L{ϵ} = {ϵ}L = L

2.8TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 L{ϵ} {ϵ}L L

 L = L = 

 Example:

 L ={ab,cd} M={uv,yz}

 gives us: LM ={abuv,abyz,cduv,cdyz}

Exponents and Union of Languages

 Exponents of languages

 L0 = {ϵ}

 L1 = L

 L2 = L•L

 Ln = L•Ln-1 n >= 1

2.9TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 L L L , n > 1

 Union of languages

 L, M are languages.

 L  M = {x| x  L or x  M}

 Example: L = {ab,cd} , M = {uv,yz}

 gives us: L  M = {ab,cd,uv,yz}

Closure of Languages

 Closure

 L* = L0  L1  ...  L

 Positive closure

 L+ = L1  L2  ...  L LL* = L* – {ϵ} , if ϵ not in L

L* { } L+

2.10TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 L* = {ϵ}  L+

 Example: A = {a,b}

 A* = {ϵ,a,b,aa,ab,ba,bb,...}
= All possible sequences of a and b.

 A language over A is always a subset of A*.

Small Language Exercise

2.11TDDD55/B44, P Fritzson, IDA, LIU, 2011.

Regular expressions

 Regular expressions are used to describe simple languages,
e.g. basic symbols, tokens.

 Example: identifier = letter • (letter | digit)*

2.12TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 Regular expressions over an alphabet S denote a language
(regular set).

3

Rules for constructing regular expressions

 S is an alphabet,

 the regular expression r
describes the language Lr,

 the regular expression s
corresponds to the language
Ls, etc.

Regular expression r Language Lr

ϵ {ϵ}

a a  S { a }

union: (s) | (t) Ls  Lt

concatenation: (s).(t) Ls.Lt

2.13TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 Each symbol in the alphabet S is
a regular expression which
denotes {a}.

 * = repetition, zero or more
times.

 + = repetition, one or more
times.

 . concatenation can be left out

repetition: (s)* Ls*

repetition: (s)+ Ls
+

Highest * +

.

Lowest |

Priorities

Regular Expression Language Examples

 Examples: S = {a,b}

 1. r=a Lr={a}

 2. r=a* Lr={ϵ,a,aa,aaa, ...} = {a}*

 3. r=a|b Lr={a,b}={a}  {b}

 4. r=(a|b)* Lr={a,b}*={ϵ,a,b,aa,ab,ba,bb,aaa,aab,...}

 5 r=(a*b*)* L ={a b}*={ϵ a b aa ab ba bb aaa aab }

2.14TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 5. r=(a b) Lr={a,b} ={ϵ,a,b,aa,ab,ba,bb,aaa,aab,...}

 6. r=a|ba* Lr={a,b,ba,baa,baaa,...}={a or bai | i0}

 NB! {anbn | n>=0} cannot be described with regular expressions.

 r=a*b* gives us Lr={ai bj | i,j>=0} does not work.

 r=(ab)* gives us Lr={(ab)i | i>=0}={ϵ,ab,abab, ... } does not work.

 Regular expressions cannot ’’count’’ (have no memory).

Finite state Automata and Diagrams

 (Finite automaton)

 Assume:

 regular expression RU = ba+b+ = baa ... abb ... b

 L(RU) = { banbm | n, m  1 }

2.15TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 Recognizer

 A program which takes a string x and answers yes/no
depending on whether x is included in the language.

 The first step in constructing a recognizer for the language
L(RU) is to draw a state diagram (transition diagram).

State Transition Diagram

 state diagram (DFA) for banbm

1 2

start

b

a
a

bb

2.16TDDD55/B44, P Fritzson, IDA, LIU, 2011.

0

9 3

start

b

b

a

a, b

a

b

error state accepting state

Interpret a State Transition Diagram

 Start in the starting node 0.

 Repeat until there is no more input:

 Read input.

 Follow a suitable edge.

 When there is no more input:

2.17TDDD55/B44, P Fritzson, IDA, LIU, 2011.

p

 Check whether we are in a final state. In this case accept
the string.

 There is an error in the input if there is no suitable edge to
follow.
 Add one or several error nodes.

Input and State Transitions

 Example of input: baab

 Then accept when there is no
more input and state 3 is an
accepting state.

Step Current Input
0

1 2

start

b

a
a

b

a

b

2.18TDDD55/B44, P Fritzson, IDA, LIU, 2011.

State

1

2

3

4

5

0

1

2

2

3

baab

aab

ab

b

ϵ

9 3 ba

a, b

a

error state accepting state

4

Representation of State Diagrams by
Transition Tables

 The previous graph is a DFA
(Deterministic Finite Automaton).

 It is deterministic because at each
step there is exactly one state to
go to and there is no transition
marked ‘‘ϵ’’.

 A regular expression denotes a

State Accept Found Next
state

a

Next
state

b

0

1

2

no

no

ϵ

b

b +

9

2

2

1

9

3

2.19TDDD55/B44, P Fritzson, IDA, LIU, 2011.

g p
regular set and corresponds to an
NFA (Nondeterministic Finite
Automaton).

Transition Table
(Suitable for computer representation).

2

3

9

no

yes

no

ba+

ba+b+

2

9

3

3

9

NFA and Transition Tables

Example: NFA for (b|a)* ab

0 1 2
start

a

a b

state a b Accept

0 {0,1} {0} no

2.20TDDD55/B44, P Fritzson, IDA, LIU, 2011.

b

state diagram for (b|a)*ab

0

1

2

{0,1} {0}

{2}

no

no

yes

Transition table for (b|a)*ab

It requires more calculations to simulate an NFA with a computer program,
e.g. for input ab, compared to a DFA.

Transforming NFA to DFA

 Theorem

 Any NFA can be transformed to a corresponding
DFA.

 When generating a recognizer automatically, the
following is done:

 regular expression  NFA.

 NFA  DFA.

2.21TDDD55/B44, P Fritzson, IDA, LIU, 2011.

 DFA  minimal DFA.

 DFA  corresponding program code or table.

DFA for (b|a)*ab

a

0 1 2
start

b

a b

a

b

Small Regular Expression and
Transition Diagram/Table

Exercise

2.22TDDD55/B44, P Fritzson, IDA, LIU, 2011.

