TDDD55 Compilers and interpreters _ir# “\\
TDDB44 Compiler Construction %

P

Formal Languages Part 1
Including Regular Expressions

Basic Concepts for TR

Symbols, Strings, and Languages :\t 2
m Alphabet

A finite set of symbols.
m Example:

>p={01} binary alphabet

Ys={ABC,...ZAAO}

Y. ={WHILE,IF,BEGIN,... }
| String

A finite sequence of symbols from an alphabet.

Swedish characters
reserved words

m Example:
10011 from 3,
KALLE from 3
WHILE DO BEGIN from ¥,
Peter Fritzson
IDA, Linkdpings universitet, 2011. TODDSSBA, P Fritzson, DA, LIU. 2011
Properties of Strings in Formal Languages R Properties of Strings in Formal Languages R
String Length, Empty String ey Concatenation, Exponentiation R o

®m Length of a string
e Number of symbols in the string.
m Example:
e x arbitrary string, |x| length of the string x
® [10011] = 5 according to 3,
o |WHILE| = 5 according to 3 ¢
o |WHILE| = 1 according to 3,
® Empty string
e The empty string is denoted €, |€] =0

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 5

m Concatenation

e Two strings x and y are joined together xe<y = xy
m Example:

e x=AB, y = CDE produce x<y = ABCDE

o |xy| =Ix| +ly|

e xy # yx (not commutative)

®E X=XE=X
B String exponentiation

oex0=¢

.X1

=X
.X2=XX

o X" =xx™1 n>=1

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 4

TR
Substrings: Prefix, Suffix B o

P

m Example:
e x =abc

m Prefix: Substring at the beginning.

e Prefix of x: abc (improper as the prefix equals x), ab, a, €

m Suffix: Substring at the end.

o Suffix of x: abc (improper as the suffix equals x), bc, c, €

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 &

TR
Languages #}-‘

P

m A Language = A finite or infinite set of strings which can be
constructed from a special alphabet.

m Alternatively: a subset of all the strings which can be
constructed from an alphabet.

e J =the empty language. NB! {€} = &.

® Example: S={0,1}
e L1={00,01,10,11} all strings of length 2
e L2={1,01,11,001,...,111, ...} all strings which finish on 1

el3=9 all strings of length 1 which finish on 01

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 o

R
S

P

Closure

m ™ denotes the set of all strings which can be constructed
from the alphabet

m Closure types:
e * = closure, Kleene closure

e + = positive closure

® Example: S={0,1}
e >*={0,1,00,01,..,111,101,...}
o y*=3*—{€}={0,1,0001,..}

TDDDS5/B44, P Fritzson, IDA, LIU, 2011

Operations on Languages TR
Concatenation i P

P

m L, M are languages.

m Concatenation operation ¢ (or nothing) between languages
eL-M=LM={xylx e Land y e M}
o L{e}={e}L=L
ol B=0L=0

m Example:
e L ={ab,cd} M={uv,yz}
e gives us: LM ={abuv,abyz,cduv,cdyz}

TDDDS5/B44, P Fritzson, IDA, LIU, 2011

P P
Exponents and Union of Languages #}-‘ Closure of Languages '\a:é
m Exponents of languages m Closure

o L0={e} el *=L00UL'u..UL

ol'=L m Positive closure

o L2=L.L el*=L"ULl2u..ul® LL*=L*-{e},if€notinL

eln=1Lem n>=1

m Union of languages
e L, M are languages.
eLUuM={x|]xelL or xe M}
L ={ab,cd}, M = {uv,yz}
L u M = {ab,cd,uv,yz}

e Example:

® gives us:

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 o

o L*={eUL"
m Example: A = {a,b}

e A* ={e,a,b,aa,ab,ba,bb,...}
= All possible sequences of a and b.

m Alanguage over A is always a subset of A*.

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 10

5Ty

P

Small Language Exercise

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 11

R
Regular expressions #}‘

P

m Regular expressions are used to describe simple languages,
e.g. basic symbols, tokens.

e Example: identifier = letter « (letter | digit)*

m Regular expressions over an alphabet S denote a language
(regular set).

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 1.

TR
Rules for constructing regular expressions {i}

g

Regular expression r |Language L,

m Sis an alphabet,

e the regular expression r

describes the language L, € 13
. a aeS {a}
o the regular expression s —
corresponds to the language | YUnion: (s) | () Lul
L, etc. concatenation: (s).(t) |Lg.L;
repetition: (s)* L
repetition: (s)* Lg*

m Each symbol in the alphabet S is
a regular expression which

denotes {a}. Priorities
e * = repetition, zero or more Highest * 4
times.

e + = repetition, one or more
times. Lowest
e . concatenation can be left out

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 ;-

TR
Regular Expression Language Examples *}
m Examples: S = {a,b} o
e 1. r=a L={a}
e 2. r=a* L={¢,a,aa,aaa, ...} = {a}*

e 3. r=alb L={a,b}={a} U {b}

o 4. r=(alb)* L={a,b}*={€,a,b,aa,ab,ba,bb,aaa,aab,...}
e 5. r=(a*b*)* L,={a,b}*={€,a,b,aa,ab,ba,bb,aaa,aab,...}
e 6. r=alba* L,={a,b,ba,baa,baaa,...}={a or bal | i>0}

m NB! {a"b"| n>=0} cannot be described with regular expressions.

® r=a*b* gives us Lr={ai bl | i,j>=0} does not work.

o r=(ab)* gives us Lr={(ab)! | i>=0}={¢,ab,abab, ... } does not work.
B Regular expressions cannot "count” (have no memory).

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 14

R TR
Finite state Automata and Diagrams #}-‘ State Transition Diagram #}-‘
m (Finite automaton) m state diagram (DFA) for ba"b™
H Assume:
e regular expression RU =ba*b*=baa...abb ... b a Qa
o L(RU)={ba"b™|n,m=>1} b
start ¢ b b
m Recognizer 0 ‘
e A program which takes a string x and answers yes/no \@
depending on whether x is included in the language. - :a—@ b
e The first step in constructing a recognizer for the language / C_b) 1
L(RU) is to draw a state diagram (transition diagram). a
(RU) 9 (gram) error state accepting state
TDDDSSB44, P Frtzson, DA, LU, 2011 - TDDDSSB44, P Frtzson, DA, LU, 2011 L
" . TR " TR
Interpret a State Transition Diagram #}-‘ Input and State Transitions Be o

m Start in the starting node 0.

® Repeat until there is no more input:
e Read input.
e Follow a suitable edge.

® When there is no more input:

e Check whether we are in a final state. In this case accept
the string.

m There is an error in the input if there is no suitable edge to
follow.
e Add one or several error nodes.

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 1

oy

m Example of input: baab

® Then accept when there is no a
more input and state 3 is an B Qa
accepting state. /

start b b

LN
Step Current | Input 3

State AN a 3 b
1 0 baab U

, b

2 1 aab error state 2 accepting state
3 2 ab
4 2 b
5 3 €

TDDDS5/B44, P Fritzson, IDA, LIU, 2011 1

Representation of State Diagrams by TR
Transition Tables TN

m The previous graph is a DFA
(Deterministic Finite Automaton).

® ltis deterministic because at each | S | AcCt | Found | Next | ext
step there is exactly one state to a b
go to and there is no transition state a b Accept
o 0 no € 9 1
marked “€”.
A | ion d 1 1 no b 2 9
n
regular expression denotes a 2 o ba* 2 3 0 {0,1} {0} |no
regular set and corresponds to an 1 @ |no
NFA (Nondeterministic Finite 3 | ves [pa'b*| 9 3 b
Automaton). 9 no 9 2 yes
H *.
Transition Table state diagram for (bla)*ab Transition table for (b|a)*ab
(Suitable for computer representation).
It requires more calculations to simulate an NFA with a computer program,
e.g. for input ab, compared to a DFA.
TODDSS/B44, P Fritzson, IDA, LIU, 2011 210 TODDSS/B44, P Fritzson, IDA, LIU, 2011 220

NFA and Transition Tables &

Example: NFA for (bja)* ab

R
X

N

Transforming NFA to DFA

® Theorem

e Any NFA can be transformed to a corresponding
DFA.

m When generating a recognizer automatically, the
following is done:

e regular expression — NFA.

o NFA — DFA.

e DFA — minimal DFA.

e DFA — corresponding program code or table.

DFAfor (bja)*ab

TDDDS5/B44, P Fritzson, IDA, LIU, 2011

R
X

N

Small Regular Expression and
Transition Diagram/Table
Exercise

TDDDS5/B44, P Fritzson, IDA, LIU, 2011

