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TDDD55 Compilers and interpreters

TDDB44 Compiler Construction

Formal Languages Part 1
Including Regular Expressions

Peter Fritzson
IDA, Linköpings universitet, 2011.

Basic Concepts for 
Symbols, Strings, and Languages

 Alphabet 
A finite set of symbols.

 Example: 
∑b = { 0,1 } binary alphabet
∑s = { A,B,C,...,Z,Å,Ä,Ö }  Swedish characters
∑r = { WHILE,IF,BEGIN,... }  reserved words 
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 String 
A finite sequence of symbols from an alphabet. 

 Example: 
10011 from ∑b
KALLE from ∑s
WHILE DO BEGIN from ∑r

Properties of Strings in Formal Languages 
String Length, Empty String

 Length of a string 

 Number of symbols in the string. 

 Example:
 x arbitrary string, |x| length of the string x 
 |10011| = 5 according to ∑b
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 |WHILE| = 5 according to ∑s
 |WHILE| = 1 according to ∑r

 Empty string

 The empty string is denoted ϵ,  |ϵ| = 0

Properties of Strings in Formal Languages
Concatenation, Exponentiation
 Concatenation

 Two strings x and y are joined together  x•y = xy

 Example: 

 x = AB, y = CDE  produce  x•y = ABCDE 

 |xy| = |x| + |y| 

 xy  yx (not commutative)
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 xy  yx  (not commutative) 

 ϵ x = x ϵ = x 

 String exponentiation 

 x0 = ϵ

 x1 = x 

 x2 = xx 

 xn = x•xn-1, n >= 1

Substrings: Prefix, Suffix

 Example: 

 x = abc 

 Prefix: Substring at the beginning. 
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 Prefix of x:  abc (improper as the prefix equals x), ab, a, ϵ

 Suffix: Substring at the end. 

 Suffix of x: abc (improper as the suffix equals x), bc, c, ϵ

Languages

 A Language = A finite or infinite set of strings which can be 
constructed from a special alphabet. 

 Alternatively: a subset of all the strings which can be 
constructed from an alphabet. 

  = the empty language.    NB!  {ϵ}  . 
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 Example:  S = {0,1} 

 L1 = {00,01,10,11}   all strings of length 2

 L2 = {1,01,11,001,...,111, ...}  all strings which finish on 1

 L3 =  all strings of length 1 which finish on 01



2

Closure

 ∑* denotes the set of all strings which can be constructed 
from the alphabet

 Closure types:

 * =  closure, Kleene closure
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 +  =  positive closure

 Example: S = {0,1}

 ∑* = {ϵ, 0,1,00,01,...,111,101,...} 

 ∑+ = ∑* – {ϵ} = {0,1,00,01,...} 

Operations on Languages
Concatenation

 L, M are languages.

 Concatenation operation • (or nothing) between languages

 L•M = LM = {xy|x  L and  y  M} 

 L{ϵ} = {ϵ}L = L

2.8TDDD55/B44, P Fritzson, IDA,  LIU, 2011.

 L{ϵ}  {ϵ}L  L 

 L = L = 

 Example: 

 L ={ab,cd}  M={uv,yz} 

 gives us:  LM ={abuv,abyz,cduv,cdyz} 

Exponents and Union of Languages

 Exponents of languages 

 L0 = {ϵ} 

 L1 = L 

 L2 = L•L 

 Ln = L•Ln-1 n >= 1
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 L  L L , n >  1

 Union of languages 

 L, M are languages. 

 L  M = {x| x  L  or  x  M} 

 Example: L = {ab,cd} , M = {uv,yz}

 gives us: L  M = {ab,cd,uv,yz} 

Closure of Languages

 Closure 

 L* = L0  L1  ...  L

 Positive closure 

 L+ = L1  L2  ...  L LL* = L* – {ϵ} , if ϵ not in L

L* { } L+
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 L* = {ϵ}  L+

 Example: A = {a,b} 

 A* = {ϵ,a,b,aa,ab,ba,bb,...} 
= All possible sequences of a and b. 

 A language over A is always a subset of A*. 

Small Language Exercise
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Regular expressions 

 Regular expressions are used to describe simple languages, 
e.g. basic symbols, tokens. 

 Example:  identifier = letter • (letter | digit)*
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 Regular expressions over an alphabet S denote a language 
(regular set). 
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Rules for constructing regular expressions 

 S is an alphabet, 

 the regular expression r 
describes the language  Lr, 

 the regular expression s 
corresponds to the language 
Ls, etc.

Regular expression r Language Lr

ϵ {ϵ}

a         a  S { a }

union:  (s) | (t) Ls  Lt

concatenation:  (s).(t) Ls.Lt
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 Each symbol in the alphabet S is 
a regular expression which 
denotes {a}. 

 * = repetition, zero or more 
times. 

 + = repetition, one or more 
times. 

 .  concatenation can be left out

repetition:  (s)* Ls*

repetition:  (s)+ Ls
+

Highest * +

.

Lowest |

Priorities

Regular Expression Language Examples

 Examples: S = {a,b} 

 1.  r=a   Lr={a} 

 2.  r=a* Lr={ϵ,a,aa,aaa, ...} = {a}* 

 3.  r=a|b Lr={a,b}={a}  {b} 

 4.  r=(a|b)*   Lr={a,b}*={ϵ,a,b,aa,ab,ba,bb,aaa,aab,...}

 5 r=(a*b*)* L ={a b}*={ϵ a b aa ab ba bb aaa aab }
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 5.  r=(a b )      Lr={a,b} ={ϵ,a,b,aa,ab,ba,bb,aaa,aab,...}

 6.  r=a|ba*     Lr={a,b,ba,baa,baaa,...}={a or bai | i0} 

 NB! {anbn | n>=0} cannot be described with regular expressions. 

 r=a*b*  gives us  Lr={ai bj | i,j>=0} does not work.

 r=(ab)* gives us Lr={(ab)i | i>=0}={ϵ,ab,abab, ... } does not work.

 Regular expressions cannot ’’count’’ (have no memory).

Finite state Automata and Diagrams

 (Finite automaton)

 Assume: 

 regular expression RU = ba+b+ = baa ... abb ... b

 L(RU) = { banbm | n, m  1 } 
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 Recognizer 

 A program which takes a string x and answers yes/no 
depending on whether x is included in the language. 

 The first step in constructing a recognizer for the language  
L(RU) is to draw a state diagram (transition diagram). 

State Transition Diagram

 state diagram (DFA) for banbm

1 2

start

b

a
a

bb
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Interpret a State Transition Diagram

 Start in the starting node 0. 

 Repeat until there is no more input: 

 Read input. 

 Follow a suitable edge. 

 When there is no more input: 
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 Check whether we are in a final state. In this case accept 
the string. 

 There is an error in the input if there is no suitable edge to 
follow. 
 Add one or several error nodes. 

Input and State Transitions

 Example of input:  baab

 Then accept when there is no 
more input and state 3 is an 
accepting state. 

Step Current Input
0

1 2

start

b

a
a

b

a

b
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Representation of State Diagrams by 
Transition Tables

 The previous graph is a DFA 
(Deterministic Finite Automaton). 

 It is deterministic because at each 
step there is exactly one state to 
go to and there is no transition 
marked ‘‘ϵ’’. 

 A regular expression denotes a 

State Accept Found Next 
state

a

Next 
state 

b

0

1

2

no

no

ϵ

b

b +

9

2

2

1

9

3
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regular set and corresponds to an 
NFA (Nondeterministic Finite 
Automaton).

Transition Table
(Suitable for computer representation). 
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NFA and Transition Tables

Example:  NFA for (b|a)* ab

0 1 2
start

a

a b

state a b Accept

0 {0,1} {0} no
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state diagram for (b|a)*ab

0

1

2

{0,1} {0}

{2}

no

no

yes

Transition table for (b|a)*ab

It requires more calculations to simulate an NFA with a computer program, 
e.g. for input ab, compared to a DFA.

Transforming NFA to DFA

 Theorem 

 Any NFA can be transformed to a corresponding 
DFA.

 When generating a recognizer automatically, the 
following is done: 

 regular expression   NFA.

 NFA   DFA.
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 DFA  minimal DFA.

 DFA  corresponding program code or table. 

DFA for  (b|a)*ab

a

0 1 2
start

b

a b

a

b

Small Regular Expression and
Transition Diagram/Table

Exercise
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