

NFA and DFA

NFA (Nondeterministic Finite Automaton)

- "empty moves" (reading ϵ) with state change are possible, i.e. entries (s_i, ϵ , s_i) may exist in δ
- ambiguous state transitions are possible,
 i.e. entries (s_i, t, s_j) and (s_i, t, s_j) may exist in δ
- NFA **accepts** input string if there *exists* a computation (i.e., a sequence of state transitions) that leads to "accept and halt"

DFA (Deterministic Finite Automaton)

- **•** No ε -transitions, no ambiguous transitions (δ is a function)
- Special case of a NFA

DD16/B44, P. Fritzson, C. Kessler, IDA, LIU, 2008

From regular expression to code

4 Steps:

- For each regular expression r there exists a NFA that accepts
 L_r [Thompson 1968 see whiteboard]
- For each NFA there exists a DFA accepting the same language
- For each DFA there exists a minimal DFA (min. #states) that accepts the same language
- From a DFA, equivalent source code can be generated. [→Lecture on Scanners]

recognizes L(a) = { a }.

(cont.) (cont.) <u>Case 5</u>: $r = r_1^*$: 4 recursive decomposition cases: By ind.-hyp. exists NFA(r₁) By Ind.-hyp. exist NFA(r_1), NFA(r_2) <u>Case 3</u>: $r = r_1 | r_2$: NFA(r) =NFA(r) =recognizes $L(r_1^*) = (L(r_1))^*$. (similarly for $r = r_1^+$) recognizes $L(r_1 | r_2) = L(r_1) U L(r_2)$ <u>Case 6</u>: Parentheses: $r = (r_1)$ <u>Case 4</u>: $r = r_1 \cdot r_2$: By Ind.-hyp. exist NFA(r_1), NFA(r_2) NFA(r) =NFA(r) =(no modifications). recognizes $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$ The theorem follows by induction.