Why automata models?

- Automaton: Strongly limited computation model compared to ordinary computer programs

A weak model (with many limitations) ...

- allows to do static analysis
- e.g. on termination (decidable for finite automata)
- which is not generally possible with a general computation model

Extra slide material (see whiteboard)

- is easy to implement in a general-purpose programming mode
- e.g. scanner generation/coding, parser generation/coding
- source code generation from UML statecharts
- Generally, we are interested in the weakest machine model (automaton model) that is still able to recognize a class of

Finite Automaton / Finite State Machine

- Given by quintuple ($\Sigma, \mathrm{S}, \mathrm{S}_{0}$ in S , subset F of S, δ)

NFA and DFA

NFA (Nondeterministic Finite Automaton)

■ "empty moves" (reading ε) with state change are possible, i.e. entries $\left(\mathrm{s}_{\mathrm{i}}, \varepsilon, \mathrm{s}_{\mathrm{j}}\right)$ may exist in δ
\square ambiguous state transitions are possible, i.e. entries ($\mathrm{s}_{\mathrm{i}}, \mathrm{t}, \mathrm{s}_{\mathrm{j}}$) and ($\mathrm{s}_{\mathrm{i}}, \mathrm{t}, \mathrm{s}_{\mathrm{l}}$) may exist in δ

NFA accepts input string if there exists a computation (i.e., a sequence of state transitions) that leads to "accept and halt"

DFA (Deterministic Finite Automaton)

- No ε-transitions, no ambiguous transitions (δ is a function)
- Special case of a NFA

Computation of a Finite Automaton

- Initial configuration:

- current state := start state s0
- read head points to first symbol of the input string
- 1 computation step:
- read next input symbol, t
- look up δ for entry (current state, t, new state) to determine new state
- current state := new state
- move read head forward to next symbol on tape
- if all symbols consumed and new state is a final state: accept and halt
- otherwise repeat

DFA Example

- DFA with

Alphabet $\Sigma=\{0,1$
State set $S=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}\right\}$
initial state: s_{0}
$\mathrm{F}=\left\{\mathrm{s}_{1}\right\}$
$\delta=\left\{\left(\mathrm{s}_{0}, 0, \mathrm{~s}_{0}\right)\right.$
$\left(\mathrm{s}_{0}, 1, \mathrm{~s}_{1}\right)$
($\mathrm{s}_{1}, 0, \mathrm{~s}_{1}$),
$\left.\left(\mathrm{s}_{1}, 1, \mathrm{~s}_{0}\right)\right\}$

- recognizes (accepts)
strings containing an odd
number of 1 s

Computation for input string 10110:
s_{0} read 1
s_{1} read 0
s_{1} read 1
oread 1
s_{1} read 0
s_{1} accept

From regular expression to code

4 Steps:

■ For each regular expression r there exists a NFA that accepts $\mathrm{L}_{r} \quad$ [Thompson 1968 - see whiteboard]

- For each NFA there exists a DFA accepting the same language
- For each DFA there exists a minimal DFA (min. \#states) that accepts the same language
- From a DFA, equivalent source code can be generated. [\rightarrow Lecture on Scanners]

(cont.)

4 recursive decomposition cases:

Case 3: $r=r_{1} \mid r_{2}$: By Ind.-hyp. exist NFA $\left(r_{1}\right)$, NFA $\left(r_{2}\right)$
$\mathrm{NFA}(r)=$
recognizes $L\left(r_{1} \mid r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$
Case 4: $r=r_{1} \cdot r_{2}: \quad$ By Ind.-hyp. exist NFA $\left(r_{1}\right)$, NFA $\left(r_{2}\right)$
NFA $(r)=$
recognizes $\mathrm{L}\left(r_{1} \cdot r_{2}\right)=\mathrm{L}\left(r_{1}\right) \cdot \mathrm{L}\left(r_{2}\right)$
(cont.)
Case 5: $r=r_{1}{ }^{*}: \quad$ By ind.-hyp. exists NFA $\left(r_{1}\right)$
$\mathrm{NFA}(r)=$
recognizes $\mathrm{L}\left(r_{1}{ }^{*}\right)=\left(\mathrm{L}\left(r_{1}\right)\right)^{*}$ (similarly for $r=r_{1}{ }^{+}$)

Case 6: Parentheses: $r=\left(r_{1}\right)$
NFA $(r)=$
(no modifications).

The theorem follows by induction.

