
Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 263

Code generation for superscalar RISC-
processors

What are RISC and CISC?

 • CISC:
(Complex Instruction Set Computers)

Example:

mem(r1+r2) = mem(r1+r2)*mem(r3+disp)

 • RISC:
(Reduced Instruction Set Computers)

Example:

loadf fp1 = mem(r1+r2) # load first fl.p. number
loadf fp2 = mem(r3+disp) # load the next
multf fp3 = fp1,fp2 # multiplication of fl.p.n
storef mem(r1+r2) = fp3 # store result

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 264

Characteristics of RISC processors

 • Instructions perform primitive operations
(simply load, store or register operation)

 • All instructions with memory references either load
into a register, or store contents from a register
(load-store architectures)

 • Often several sets of registers
integer registers, floating-point number registers,
shadow registers

Moreover

 • All instructions are of the same length
(quick decoding)

 • No implicitly set conditional registers
(To be set explicitly, tested by branch instructions)

Advantages

 • The compiler has direct access to and can
manipulate performance-improving code features

 • Code generation “is simplified” as there are fewer
primitives to choose from

 • Fewer instructions - smaller chip area
(the area can be used to make the remaining
instructions run faster)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 265

Processors with and without pipelining

 • Traditional processor without pipelining

One instruction takes 4 processor cycles, i.e. 0.25
instructions/cycle

 •

 •

 •

 •

 •

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#2

#2

#2

#2

#1#3

#3

Instr 1 Instr 2 Instr 3

1 2 3 4 6 7 8 9 10 115

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 266

Processor with simple pipelining

An instruction takes 1 cycle on average with pipeline
i.e. 1 instruction/cycle

This pipeline achieves 4-way parallelism

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#1#9

#9

1 2 3 4 6 7 8 9 10 11

Instr

#2

#2

#2

#2

#3

#3

#3

#3

#4

#4

#4

#4

#5

#5

#5

#5

#6

#6

#6

#6

#7

#7

#7

#7

#8

#8

#8

#8

5

 1
Instr
 2

Instr
 3

Instr
 4

Instr
 5

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 267

Processor with super-pipelining

A new instruction can begin before the previous one is
finished.

Thus you manage on average 3 instr/cycle when the
pipeline is full.

Processor cycle no.

R= Instr. retrieval

D= Instr. decoding

E= Execution

S= Store result

R1

1 2 3 4 6 7 8 9 10

D1 E1 S1

5

R2 D2 E2 S2

R3 D3 E3 S3

R4 D4 E4 S4

R5 D5 E5 S5

R6 D6 E6 S6

Instruction 1 readyInstruction 1 starts

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 268

Superscalar processors
A superscalar processor has several function units that
can work in parallel and which can load more than 1
instruction per cycle.

The word superscalar comes from the fact that the
processor executes more than 1 instruction per cycle.

The diagram below shows how a maximum of 4 units
can work in parallel, which in theory means they work 4
times faster.

The type of parallelism used depends on the type of
instruction and dependencies between instructions.

Processor cycle no:

R= Instr. retrieval
D= Instr.decoding
E= Execution
S= Store result

R1

1 2 3 4 6 7 8 9 10

D1 E1 S1

5

R2 D2 E2 S2

R3 D3 E3 S3

R4 D4 E4 S4

R5 D5 E5 S5

R6 D6 E6 S6

Instruction 1 readyInstruction 1 starts

R7 D7 E7 S7

R8 D8 E8 S8

H9 D9 E9 S9

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 269

A parallel pipeline

(Weiss & Smith, figure 1.11)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 270

A superscalar pipeline

(Weiss & Smith, figure 1.12)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 271

Comparison between superscalar processors
and VLIW processors

Superscalar

PU PU PU PU

Several processor units are loaded simultaneously

VLIW (Very Long Instruction Word):

PU PU PU PU

with different instructions

Several processor units are loaded simultaneously by
 operations in the same instruction.
(E.g. The multiflow machine, 1024 bits, 28 operations)

with multiple loading of instructions (multi-issue):

Instruction flow

different

(E.g. some specialized graphic processors.)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 272

Problems using branch instructions on simple
pipelined processors

Branch instructions force the pipeline to restart and
thus reduce performance.

The diagram below shows execution of a branch (cbr =
conditional branch) to instruction #3, which makes the
pipeline restart.

The grey area indicates lost performance. Only 4
instructions start in 6 cycles instead of the maximum of
6.

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

1 2 3 4 6 7 8

#2 cbr

#2 cbr

#2 cbr

#2

#3

#3

 #3

#3

#4

#4

#4

5

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 273

Branch effects on performance for deeply
pipelined superscalar processors

Branch-instructions force the pipeline to restart and
thus reduce performance.

The diagram below shows execution of a branch (cbr =
conditional branch) to instruction #3, which makes the
pipeline restart.

The grey area indicates lost performance. Only 6
instructions start during 5 cycles instead of a maximum
of 20.

Cycle no.

Instr. retr.

Instr. decode 1

Store

1 2 3 4 6 7 85

#1 #3
#2 cbr #4

#5
#6

#1 #3
#2 cbr #4

#5
#6

#1 #3
#2 cbr #4

#5
#6

#1 #3
#4
#5
#6

#1 #3
#2 cbr #4

#5
#6

Instr. decode 2

Execution 1

Execution 2

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 274

Various problems the compiler must deal with
on superscalar RISC-processors

 • Efficient global register allocation.

This is becoming increasingly important as memory
access takes longer compared with executing
instructions with new fast processors.

 • Instruction scheduling.

Major performance gains can be made by proper
scheduling (= timetabling) of instructions on
function units working in parallel.

 • Branch prediction

To see in advance the direction a branch takes so
that code can be optimized so that a particular case
leads to a full pipeline.

 • Loop unfolding

Reduce the number of branches so the pipeline is
filled better.

 • "Software pipelining"
Overlap: Load, Execute, Save in a Loop

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 275

“Software pipelining”

(Weiss & Smith, figure 1.1 6)

for i := l to n

get values;

compute;

store;

end for

get values 1 get values 2 get values 3

compute 1 compute 2 In

store 1 parallel

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 276

The code-scheduling problem

 • Schedule the instructions in such an order that
parallel function units are used to the greatest
possible degree.

 • Input:

• Instructions to be scheduled
• A data dependency graph
• A processor architecture
• Register allocation has been performed

 • Output:

• A scheduling of instructions which minimises
delays

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 277

Code to be scheduled:

Dependency graph for this code:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

ld [%sp + 0x64], %g1
ld [%sp + 0x68], %l1
add %l4, %g1, %l2
add %l2, %l1, %o1
sethi %hi(0x2000), %l7
or %l7, 0x240, %l7 ! 0x2240
clr %o0
mov 0x5, %o2
sethi %hi(0x80000000), %o3
or %o3, 0x2, %o3 ! -0x7ffffffe
mov %l6, %o4

1

2

3

4

5 6

7

8

9 10

11

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 278

Example: Highest-Level-First algorithm used on a tree-
structured task graph.

• The level of a task node is the maximal number of
nodes that are passed on the way to the final
node, itself included.

• The algorithm:

- The level of each node is used as priority.

- When a processor/function unit is free, assign
the unexecuted task which has highest priority
and which is ready to be executed.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 279

Example of the Highest-level-first algorithm applied to
an arbitrary task graph for 2 processors

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 280

Global Register Allocation

A global register allocator decides the content of the
limited set of processor registers during execution.

It tries to use the registers so that the number of
memory references is minimised over an area
which covers up to one procedure body.

“adds the largest single improvement”,
20%-30% improvement, sometimes factor of 1-2

Important for other optimisations which create many
temporaries.

If these have to be stored and retrieved from memo-
ry, these optimisations can even increase execution
time.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 281

When ?

Register allocation is normally performed at the end
of global optimisation, when the final structure of
the code and all potential use of registers is known.

It is performed on abstract machine code where you
have access to an unlimited number of registers or
some other intermediary form of program.

The code is divided into sequential blocks (basic
blocks) with accompanying control flow graph.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 282

Basic concepts

A variable in register allocation can be a program
variable, one temporarily generated by the compiler
or a constant.

A variable is defined at a point in the program if the
variable is given a value.

A variable is used at a point in the program if its val-
ue is referenced in an expression.

A variable is alive at a point if it is referenced there
or at some following point which has not been pre-
ceded by any redefinition.

A variable is reaching at a point if an (arbitrary) defi-
nition, or usage (because a variable can be used
before it is defined) reaches the point.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 283

Live range

A variable’s live range is the area in the code (set of
all basic blocks) where the variable is both alive and
reaching. This range does not need to be consecu-
tive.

(Procedure calls are treated specially depending on
the linking convention)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 284

Examples of various
live ranges

Start

Stop

v=1 =v

=v

v=2

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 285

Interference graph

Each connected component in the live range is a
“proper” live range for the variable. Each of these
can be assigned a separate register. Certain algo-
rithms do not make this distinction (explicitly).

The live ranges of two variables interfere if their in-
tersection is not empty.

Each live range builds a node in the interference
graph (or conflict graph), and if two live ranges inter-
fere, an edge is drawn between the nodes.

Two adjacent nodes in the graph can not be as-
signed the same register.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 286

Colouring

Register allocation can be compared with the clas-
sic colouring problem. That is, to find a way of col-
ouring - with a maximum of k colours - the
interference graph which does not assign the same
colour to two adjacent nodes.

k = the number of registers. On a RISC-machine
there are, for example, 16 or 32 general registers.
Certain methods use some registers for other tasks.
e.g., for spill code.

The chromatic number γ(G) of a graph G is the
smallest number of colours needed to colour the
graph.

Determining whether a graph is colourable using k
colours is NP-complete.

In other words, it is unmanageable always to find an
optimal solution.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 287

Colouring (continued)

•We have thus two problems:
1. How can we colour in a good, quick way?

This is needed in order to perform global (at proce-
dure level) register allocation in a reasonable time.

2. What do we do if more than k colours are need-
ed?

That is, if there are not enough registers.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 288

Chaitin’s Algorithm (1981)

 • Performs colouring of an interference graph

 • 1 register per colour

Example of an interference graph:
2.

x

y

z

w

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 289

Conflict with
instruction scheduling.

If register allocation is performed before, false de-
pendencies arise with re-use of registers. This limits
possibilities of moving code.

If scheduling is performed first, the live range will be
larger and therefore allocation will be more difficult
with more spill code.

Furthermore the exact register assignment is need-
ed in some cases by the scheduler.

This can be solved by joining these two steps to-
gether.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 290

Register allocation using
hierarchical, cyclic interval graphs

Interference graphs have some weaknesses:

• Imprecise information on how and when live ranges
interfere.

• No special consideration is taken of loop variables’
live ranges (except when calculating priority).

In a cyclic interval graph:

• The time relationships between the live ranges are
explicit.

• Live ranges are represented for a variable whose
live range crosses iteration limits by cyclic intervals.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 291

Example

x3 = 7
for i = 1 to 100 {

x1 = ... x3 ...
x2 = ... x1 ...
x3 = ... x2 ...

}
y = x3 + 42

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 292

Example, continued.

x3 = 7

i = 1

x2 =...x1...

y = x3 + 42

i <= 100

x3 =...x2...

x1 =...x3...

i = i + 1

True

False

1

2

3

4

5

6

7

8

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 293

x1

i x2

x3

Example (continued)

lri = {2, 3, 4, 5, 6, 7}

lrx1 = {4, 5}

lrx2 = {5, 6}

lrx3 = {1, 2, 3, 4, 6, 7, 8}

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 294

Live intervals for loops

We examine single loops, inner loops first.

To achieve a compact notation:

• Intervals for loop variables which do not cross the
iteration limit are included precisely once.

• Intervals which cross the iteration limit are
represented as an interval pair, cyclic interval:
([0, t’), [t, tend])

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 295

Cyclic interval graph

Somewhat modified example:

i <= 100

x2 = x1 + x3

x3 = x2 + x1

x1 = x3 + 2

foo(x2)

False
1

2

3

4

5

6

True

i = i + 1

0;

7;

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 296

Cyclic interval graph (continued)

The following are used for the example:

i: ([0, 6), [6, 7])
x1: [2, 4)
x2: [3, 5)
x3: ([0, 3), [4, 7])

i

x1

x2

x3

0 2 3 4 5 6 71

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 297

Circular edge graph

i

x1

x2

x3

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 10 Autumn 99

Lecture 10 Code generation for RISC processors Page 298

Tests

The circular interval method has been compared with
the methods which are used in three advanced C-
compilers (highest level of optimisation) for:

• IBM RS6000

• Sun Sparc (SunOS 4.1.1)

• MIPS

Very good results, often by a factor of 2 to 3 fewer load/
store instructions, or even better.

The only one using "chameleon intervals". Other
approaches involve costly register waste.

