
Linköpings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM
TDDB29 Kompilatorer och interpretatorer / Compilers and

interpreters
TDDB44 Kompilatorkonstruktion / Compiler construction

17 aug 2007, 14:00–18:00

Jour: Christoph Kessler (070-3666687, 013-282406)

Hjälpmedel / Admitted material:

– Engelsk ordbok / Dictionary from English to your native language;
– Miniräknare / Pocket calculator

General instructions

� This exam has 9 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

� The first assignment (on formal languages and automata theory) is ONLY for TDDB29,
while the last one (on code generation for RISC...) is ONLY for TDDB44.

� It is recommended that you use a new sheet for each assignment. Number all your sheets,
and mark each sheet on top with your name, personnummer, and the course code.

� You may answer in either English or Swedish.

� Write clearly. Unreadable text will be ignored.

� Be precise in your statements. Unprecise formulations may lead to a reduction of points.

� Motivate clearly all statements and reasoning.

� Explain calculations and solution procedures.

� The assignments are not ordered according to difficulty.

� The exam is designed for 40 points (per course). You may thus plan about 5 minutes per
point.

� Grading: U, 3, 4, 5. For exchange students (with a P in the personnummer) ECTS marks
will be applied.

The preliminary threshold for passing (grade 3) is 20 points.

� OBS C:are antagna före 2001: Om du vill ha ditt betyg i det gamla betygsystemet (U,
G, VG) skriv detta tydligt på omslaget av tentan. Annars kommer vi att använda det nya
systemet (U, 3, 4, 5).

1

1. Only TDDB29: (6 p.) Formal languages and automata theory

Consider the language L consisting of all strings w over the alphabet f�� �g such that if
w ends with �� (i.e., at least 2 zeroes in sequence) then it must contain an even number
of ones.

(a) Construct a regular expression for L. (1.5p)

(b) Construct from the regular expression an NFA recognizing L. (1.5p)

(c) Construct a DFA recognizing L, either by deriving from the NFA of question (1b),
or by constructing one directly. (2.5p)

(d) Give an example of a formal language that is context-free but cannot be recognized
by a finite automaton. (0.5p)

2. (4p) Phases and passes

(a) What are the advantages and disadvantages of a multi-pass compiler? (1p)

(b) Describe what phases normally are found in a compiler, what is their purpose, how
they are connected, and what is their input and output. (3p)

3. (5p) Top-Down Parsing

(a) Given a grammar with nonterminals S and X and the following productions:
S � aS j aX

X � Xb j c

where S is the start symbol.
What is/are the problem(s) with this grammar if it is to be used for writing a re-
cursive descent parser with a single token lookahead? Resolve the problem(s), and
write a recursive descent parser for the modified grammar. (Pseudocode is fine. Use
function scan() to read the next input token.) (4.5p)

(b) We learned that any regular language can also be expressed by a context-free gram-
mar. So, why don’t we simply use the parser for lexical analysis, too? (0.5p)

4. (6 p.) LR parsing

Given the following grammar G for strings over the alphabet fx� y� zg, with nonterminals
A, B and C, where A is the start symbol:

A ��� Bx j C

B ��� yB j y

C ��� xCz j y

Is the grammar G in LR(0)? Motivate with the LR-item sets.

Show with tables and stack how the string xxyzz is parsed.

5. (3 p.) Memory management

What is an activation record? What properties of a programming language lead to a need
for activation records? What does an activation record contain?

2

6. (3 p.) Symbol table management

The C language allows static nesting of scopes for identifiers, determined by blocks en-
closed in braces.

Given the following C program:

int k;

int main(void)
{

int i;
// ... some statements omitted
if (i==0) {

int k, j;
// ... some statements omitted
for (j=0; j<100; j++) {

int i;
// ... some statements omitted
i = k * 2;

}
}

}

For the program point containing the assignment i = k * 2, show how the program
variables are stored in the symbol table if the symbol table is to be realized as a hash table
with chaining and block scope control. Assume that your hash function yields value 1
for i, value 2 for j and k, and value 4 for main. (2p)

Show and explain how the right entry of the symbol table will be accessed when looking
up identifier k in the assignment i = k * 2. (0.5p)

When generating code for a block, one needs to allocate run-time space for all vari-
ables defined in the block. Given a hash table with chaining and block scope control as
above, show how to enumerate all variables defined in the current block, without search-
ing through the entire table. (0.5p)

7. (6 p.) Syntax-directed translation

The following grammar rule describes a for loop

hloopi ��� for hidi in hexpri��hexpri do hstmt listi enddo

where loop variable hidi will, at run time, take the values between the two expressions
(the endpoints included) one by one, and for each value, hstmt listi is executed. For
example,

for i in 2..7 do
print(i);

enddo

3

prints the numbers 2 to 7.

Write a syntax-directed translation scheme, using attributes and semantic rules, for the
grammar rule above. The values of the two hexpri are computed in the beginning and
cannot be changed during the execution of the loop. Neither can the loop variable hidi
be changed inside the loop.

You may either use symbolic labels (generated by newlabel()) or work directly on quadru-
ple numbers, using backpatching if necessary, but be consistent. Temporary variables can
be generated by gentemp().

8. (7 p.) Intermediate code generation

(a) Translate the following code segment into quadruples, postfix code, and abstract
syntax tree: (4.5 p)

x = 123;
y = 3;
while (x>y) {
y = 3*y;
if (y<20)
foo(x-y,y);

}
x = y - x;

(b) Given the following program fragment in pseudo-quadruple form:

1: T1 := a + b
2: y := T1
3: T2 := - c
4: x := T2 * y
5: T3 := y > 0
6: if T3 goto 12
7: T4 := x < 0
8: if T4 goto 1
9: T5 := x + y
10: y := T5;
11: goto 3
12: m := x * y

Divide this program fragment into basic blocks and then draw the control flow graph
for the program fragment. (2.5p)

9. Only TDDB44: (6 p.) Code generation for RISC ...

(a) What is branch prediction, and when is it used? Give an example! Why is it impor-
tant for pipelined processors? (1.5p)

(b) Given the following medium-level intermediate representation of a program frag-
ment (derived from a while loop):

4

1: c = 3
2: e = 1.0
3: goto 9
4: a = c / 2
5: b = a + e
6: c = a - b
7: d = e
8: e = e * 0.5
9: f = (e > 0.1)
10: if f goto 4
11: d = d / b

Identify the live ranges of program variables, and draw the live range interference
graph

(i) for the loop body in lines 4–9,

(ii) for the entire fragment.

For both (i) and (ii), assign registers to all live ranges by coloring the live range
interference graph. How many registers do you need at least, and why? (3.5p)

(c) Register allocation and instruction scheduling are often performed separately (in
different phases). Explain the advantages and problems of this separation. (1p)

Good luck!

5

