Linkdpings universitet
IDA Department of Computer and Information Sciences
Prof. Peter Fritzson and Doc. Christoph Kessler

TENTAMEN / EXAM

TDDB29 Kompilatorer och interpretatoreidompilers and

interpreters

TDDB44 Kompilatorkonstruktion Compiler construction

11 apr 2007, 08:00-12:00

Jour: Christoph Kessler (070-3666687, 013-282406)

Hj alpmedel /Admitted material:

— Engelsk ordbok Dictionary from English to your native language
— Miniraknare /Pocket calculator

General instructions

This exam has 9 assignments and 5 pages, including this one.
Read all assignments carefully and completely before yginbe

The first assignment (on formal languages and automataythiscd®NLY for TDDB29,
while the last one (on code generation for RISC...) is ONLYTDDB44.

It is recommended that you use a new sheet for each assignienber all your sheets,
and mark each sheet on top with your name, personnummemardtrse code.

You may answer in either English or Swedish.

Write clearly. Unreadable text will be ignored.

Be precise in your statements. Unprecise formulations mag to a reduction of points.
Motivate clearly all statements and reasoning.

Explain calculations and solution procedures.

The assignments ar®t ordered according to difficulty.

The exam is designed for 40 points (per course). You may tlamsgbout 5 minutes per
point.

Grading: U, 3, 4, 5. For exchange students (with & the personnummer) ECTS marks
will be applied.

The preliminary threshold for passing (grade 3) is 20 points

OBS C:are antagna tre 2001: Om du vill ha ditt betyg i det gamla betygsystemet (U,
G, VG) skriv detta tydligt pa omslaget av tentan. Annars kuenvi att anvanda det nya
systemet (U, 3, 4, 5).

There is an error in No 4, exam 11 april 2007.There should be Yastead of Yb in the
second case.

1. Only TDDB29: (6 p.) Formal languages and automata theory

Consider the languagk consisting of all strings over the alphabef0, 1} such that if
w containgo (i.e., at least 2 zeroes in sequence) then it must contaimeamreimber of
ones.

(a) Construct a regular expression far(1.5p)
(b) Construct from the regular expression an NFA recoggiZin(1.5p)

(c) Construct a DFA recognizing, either by deriving from the NFA of question (1b),
or by constructing one directly. (2.5p)

(d) Give an example of a formal language that is contextifkgecannot be recognized
by a finite automaton. (0.5p)

2. (4p)Phases and passes

(a) What are the advantages and disadvantages of a muttepagpiler? (1p)

(b) Describe what phases normally are found in a compileatughtheir purpose, how
they are connected, and what is their input and output. (3p)

3. (5p)Top-Down Parsing

(a) Given a grammar with nonterminadsand X and the following productions:
S — aS|aX
X — Xble
whereS is the start symbol.

What is/are the problem(s) with this grammar if it is to bedigar writing a re-
cursive descent parser with a single token lookahead? WRetw problem(s), and
write a recursive descent parser for the modified gram(®aseudocode is fine. Use
functionscan() to read the next input token(4.5p)

(b) We learned that any regular language can also be exprbgsecontext-free gram-
mar. So, why don’t we simply use the parser for lexical analyso? (0.5p)

4. (6 p.)LR parsing

Given the following grammeat for strings over the alphabét;, y, =}, with nonterminals
A and B, whereA is the start symbol:

X = aX | Xb|aYb|p
Y == b0Y |Yb|bXalq

Error in the original, here should be Ya instead of Yb in the seond case.

If G is SLR(1) or even LR(0), construct the canonical LR-itemd dre LR-item DFA
for the grammar and show with tables and stack how the saimab is parsedIf G is
notSLR(1) or LR(0), then explain why, and show how it could beniden to a (at least)
SLR(1) grammar that describes the same language.

2

5. (3 p.)Memory management

What is an activation record? What properties of a programgrtanguage lead to a need
for activation records? What does an activation recordainfit

6. (3 p.)Symbol table management

The C language allows static nesting of scopes for idergiféetermined by blocks en-
closed in braces.

Given the following C program:
int k;

int main(void)
{. -
int i;
/[l ... sonme statenents omtted
if (i==0) {
int j, k;
/[l ... sone statenents omtted
for (j=0; j<100; j++) {
int i;
/[l ... sone statenents omtted
i =k * 2;

}
}

For the program point containing the assignment k * 2, show how the program
variables are stored in the symbol table if the symbol table be realized as a hash table
with chaining and block scope control. Assume that your Hashtion yields value 2
fori , value 1 forj andk, and value 4 fomai n. (2p)

Show and explain how the right entry of the symbol table walldzcessed when looking
up identifierk in the assignment = k * 2. (0.5p)

When generating code for a block, one needs to allocateimm-$pace for all vari-
ables defined in the block. Given a hash table with chainirthldock scope control as
above, show how to enumerate all variables defined in thewcublock, without search-
ing through the entire table. (0.5p)

7. (6 p.)Syntax-directed translation

The REPEAT statement in a Pascal-like language could beidedaising this rule:

<rep-stnt> ::= REPEAT <stnt> UNTIL <expr>

The semantics of the REPEAT statement is that statemgssnitit > is executed and then
repeated as long as expressi@xpr > evaluates to zero.

Write the semantic rules — a syntax directed translatioeiseh— for translating the
REPEAT statement to quadruples. Assume that the translstioeeme is to be used in a

3

bottom-up parsing environment using a semantic stack. lissgrammar rule above as a
starting point, but maybe it has to be changed.

You are not allowed to define and use symbolic labels, i.eju@ps should have abso-
lute quadruple addresses as their destinations. Explaiheahttributes, functions, and
instructions that you introduce. State all your assumgtion

8. (7 p.)Intermediate code generation

(a) Translate the following code segment into quadruplesifix code, and abstract

(b)

syntax tree: (4.5 p)

le (x>60) {
if (y<20)
y = 2%y,
el se
y = x/4;
X =X -Y,
}
foo(x+1,y);

Given the following program fragment in pseudo-quatkdprm:

1. Tl:=a+b
2.y =T1

3: T2 :=- ¢

4. X =T2 * vy
50 T3 :=y >0
6: if T3 goto 12
7. T4 :=x <0
8: if T4 goto 1
9: T5 :=x +y
10: y = T5;

11: goto 3

12: m:=x * vy

Divide this program fragment inteasic blocksnd then draw theontrol flow graph
for the program fragment. (2.5p)

9. Only TDDB44: (6 p.) Code generation for RISC ...

(&) What is branch prediction, and when is it used? Give amei& Why is it impor-

(b)

tant for pipelined processors? (1.5p)

Given the following medium-level intermediate repmsgion of a program frag-
ment (derived from ahi | e loop):

1: c =3

2. e =1.0

3. goto 8

4. a=c/ 2

5: b=a+e

6: c=a*hb

7. e=e/ 2

8: f = (e >0.1)
9: if f goto 4

10: d=11/c

Identify the live ranges of program variables, and draw i fange interference
graph

(i) for the loop body in lines 4-8,

(ii) for the entire fragment.

For both (i) and (ii), assign registers to all live ranges byodng the live range
interference graph. How many registers do you need at laadtwhy? (3.5p)

(c) Register allocation and instruction scheduling arerofberformed separately (in
different phases). Explain the advantages and problentgso$éparation. (1p)

Good luck!

