
Linköpings universitet
IDA Department of Computer and Information Sciences
Prof. Peter Fritzson and Doc. Christoph Kessler

TENTAMEN / EXAM
TDDB29 Kompilatorer och interpretatorer /Compilers and

interpreters
TDDB44 Kompilatorkonstruktion /Compiler construction

11 apr 2007, 08:00–12:00

Jour: Christoph Kessler (070-3666687, 013-282406)

Hj älpmedel /Admitted material:

– Engelsk ordbok /Dictionary from English to your native language;
– Miniräknare /Pocket calculator

General instructions

• This exam has 9 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

• The first assignment (on formal languages and automata theory) is ONLY for TDDB29,
while the last one (on code generation for RISC...) is ONLY for TDDB44.

• It is recommended that you use a new sheet for each assignment. Number all your sheets,
and mark each sheet on top with your name, personnummer, and the course code.

• You may answer in either English or Swedish.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements. Unprecise formulations may lead to a reduction of points.

• Motivate clearly all statements and reasoning.

• Explain calculations and solution procedures.

• The assignments arenot ordered according to difficulty.

• The exam is designed for 40 points (per course). You may thus plan about 5 minutes per
point.

• Grading: U, 3, 4, 5. For exchange students (with aP in the personnummer) ECTS marks
will be applied.

The preliminary threshold for passing (grade 3) is 20 points.

• OBS C:are antagna f̈ore 2001:Om du vill ha ditt betyg i det gamla betygsystemet (U,
G, VG) skriv detta tydligt på omslaget av tentan. Annars kommer vi att använda det nya
systemet (U, 3, 4, 5).

1

There is an error in No 4, exam 11 april 2007.There should be Yainstead of Yb in the
second case.

1. Only TDDB29: (6 p.) Formal languages and automata theory

Consider the languageL consisting of all stringsw over the alphabet{0, 1} such that if
w contains00 (i.e., at least 2 zeroes in sequence) then it must contain an even number of
ones.

(a) Construct a regular expression forL. (1.5p)

(b) Construct from the regular expression an NFA recognizing L. (1.5p)

(c) Construct a DFA recognizingL, either by deriving from the NFA of question (1b),
or by constructing one directly. (2.5p)

(d) Give an example of a formal language that is context-freebut cannot be recognized
by a finite automaton. (0.5p)

2. (4p)Phases and passes

(a) What are the advantages and disadvantages of a multi-pass compiler? (1p)

(b) Describe what phases normally are found in a compiler, what is their purpose, how
they are connected, and what is their input and output. (3p)

3. (5p)Top-Down Parsing

(a) Given a grammar with nonterminalsS andX and the following productions:
S → aS | aX

X → Xb | c

whereS is the start symbol.
What is/are the problem(s) with this grammar if it is to be used for writing a re-
cursive descent parser with a single token lookahead? Resolve the problem(s), and
write a recursive descent parser for the modified grammar.(Pseudocode is fine. Use
functionscan() to read the next input token.)(4.5p)

(b) We learned that any regular language can also be expressed by a context-free gram-
mar. So, why don’t we simply use the parser for lexical analysis, too? (0.5p)

4. (6 p.)LR parsing

Given the following grammarG for strings over the alphabet{x, y, z}, with nonterminals
A andB, whereA is the start symbol:

X ::= aX | Xb | aY b | p

Y ::= bY | Y b | bXa | q

Error in the original, here should be Ya instead of Yb in the second case.

If G is SLR(1) or even LR(0), construct the canonical LR-items and the LR-item DFA
for the grammar and show with tables and stack how the stringabpab is parsed.If G is
notSLR(1) or LR(0), then explain why, and show how it could be rewritten to a (at least)
SLR(1) grammar that describes the same language.

2

5. (3 p.)Memory management

What is an activation record? What properties of a programming language lead to a need
for activation records? What does an activation record contain?

6. (3 p.)Symbol table management

The C language allows static nesting of scopes for identifiers, determined by blocks en-
closed in braces.

Given the following C program:

int k;

int main(void)
{

int i;
// ... some statements omitted
if (i==0) {

int j, k;
// ... some statements omitted
for (j=0; j<100; j++) {

int i;
// ... some statements omitted
i = k * 2;

}
}

}

For the program point containing the assignmenti = k * 2, show how the program
variables are stored in the symbol table if the symbol table is to be realized as a hash table
with chaining and block scope control. Assume that your hashfunction yields value 2
for i, value 1 forj andk, and value 4 formain. (2p)

Show and explain how the right entry of the symbol table will be accessed when looking
up identifierk in the assignmenti = k * 2. (0.5p)

When generating code for a block, one needs to allocate run-time space for all vari-
ables defined in the block. Given a hash table with chaining and block scope control as
above, show how to enumerate all variables defined in the current block, without search-
ing through the entire table. (0.5p)

7. (6 p.)Syntax-directed translation

The REPEAT statement in a Pascal-like language could be described using this rule:

<rep-stmt> ::= REPEAT <stmt> UNTIL <expr>

The semantics of the REPEAT statement is that statement<stmt> is executed and then
repeated as long as expression<expr> evaluates to zero.

Write the semantic rules — a syntax directed translation scheme — for translating the
REPEAT statement to quadruples. Assume that the translation scheme is to be used in a

3

bottom-up parsing environment using a semantic stack. Use the grammar rule above as a
starting point, but maybe it has to be changed.

You are not allowed to define and use symbolic labels, i.e., all jumps should have abso-
lute quadruple addresses as their destinations. Explain all the attributes, functions, and
instructions that you introduce. State all your assumptions.

8. (7 p.) Intermediate code generation

(a) Translate the following code segment into quadruples, postfix code, and abstract
syntax tree: (4.5 p)

x = 123;
y = 3;
while (x>60) {
if (y<20)

y = 2*y;
else

y = x/4;
x = x - y;

}
foo(x+1,y);

(b) Given the following program fragment in pseudo-quadruple form:

1: T1 := a + b
2: y := T1
3: T2 := - c
4: x := T2 * y
5: T3 := y > 0
6: if T3 goto 12
7: T4 := x < 0
8: if T4 goto 1
9: T5 := x + y
10: y := T5;
11: goto 3
12: m := x * y

Divide this program fragment intobasic blocksand then draw thecontrol flow graph
for the program fragment. (2.5p)

9. Only TDDB44: (6 p.) Code generation for RISC ...

(a) What is branch prediction, and when is it used? Give an example! Why is it impor-
tant for pipelined processors? (1.5p)

(b) Given the following medium-level intermediate representation of a program frag-
ment (derived from awhile loop):

4

1: c = 3
2: e = 1.0
3: goto 8
4: a = c / 2
5: b = a + e
6: c = a * b
7: e = e / 2
8: f = (e > 0.1)
9: if f goto 4
10: d = 1 / c

Identify the live ranges of program variables, and draw the live range interference
graph

(i) for the loop body in lines 4–8,

(ii) for the entire fragment.

For both (i) and (ii), assign registers to all live ranges by coloring the live range
interference graph. How many registers do you need at least,and why? (3.5p)

(c) Register allocation and instruction scheduling are often performed separately (in
different phases). Explain the advantages and problems of this separation. (1p)

Good luck!

5

