
Linköpings universitet
IDA Department of Computer and Information Sciences
Prof. Peter Fritzson and Doc. Christoph Kessler

TENTAMEN / EXAM
TDDB29 Kompilatorer och interpretatorer / Compilers and

interpreters
TDDB44 Kompilatorkonstruktion / Compiler construction

16 aug 2006, 14:00–18:00

Jour: Christoph Kessler (070-3666687, 013-282406)

Hjälpmedel / Admitted material:

– Engelsk ordbok / Dictionary from English to your native language;
– Miniräknare / Pocket calculator

General instructions

� This exam has 9 assignments and 4 pages, including this one.
Read all assignments carefully and completely before you begin.

� The first assignment (on formal languages and automata theory) is ONLY for TDDB29,
while the last one (on code generation for RISC...) is ONLY for TDDB44.

� It is recommended that you use a new sheet for each assignment. Number all your sheets,
and mark each sheet on top with your name, personnummer, and the course code.

� You may answer in either English or Swedish.

� Write clearly. Unreadable text will be ignored.

� Be precise in your statements. Unprecise formulations may lead to a reduction of points.

� Motivate clearly all statements and reasoning.

� Explain calculations and solution procedures.

� The assignments are not ordered according to difficulty.

� The exam is designed for 40 points (per course). You may thus plan about 5 minutes per
point.

� Grading: U, 3, 4, 5. The preliminary threshold for grade 3 is 20 points.

� OBS C:are antagna före 2001: Om du vill ha ditt betyg i det gamla betygsystemet (U,
G, VG) skriv detta tydligt på omslaget av tentan. Annars kommer vi att använda det nya
systemet (U, 3, 4, 5).

1



1. Only TDDB29: (6 p.) Formal languages and automata theory

Consider the language L consisting of all strings w over the alphabet fa� bg such that if
w contains at least 3 a’s (not necessarily in sequence) then it must contain exactly two
b’s.

(a) Construct a regular expression for L. (1p)

(b) Construct from the regular expression an NFA recognizing L. (1p)

(c) Construct a DFA recognizing L, either by deriving from the NFA of question (1b),
or by constructing one directly. (3p)

(d) We have learned that “finite automata cannot count”. Give an example of a formal
language that cannot be recognized by a finite automaton. (0.5p)

Yet, for the language L above there exists a finite automaton recognizing it. Why is
this not a counterexample? (0.5p)

2. (4p) Phases and passes

(a) What are the advantages and disadvantages of a multi-pass compiler? (1p)

(b) Describe what phases normally are found in a compiler, what is their purpose, how
they are connected, and what is their input and output. (3p)

3. (5p) Top-Down Parsing

(a) Given a grammar with nonterminals S and X and the following productions:
S � aS j aX

X � XbX j d

where S is the start symbol.

What is/are the problem(s) with this grammar if it is to be used for writing a re-
cursive descent parser with a single token lookahead? Resolve the problem(s), and
write a recursive descent parser for the modified grammar. (Pseudocode is fine. Use
function scan() to read the next input token.) (4.5p)

(b) The theory for formal languages and automata says that a stack is required for being
able to parse context-free languages. We have used such a stack, for instance, in the
LL-item pushdown automaton in the lecture on top-down parsing. But where is the
corresponding stack in a recursive descent parser? (0.5p)

4. (6 p.) LR parsing

Given the following grammarG for strings over the alphabet fx� y� zg, with nonterminals
A and B, where A is the start symbol:

A ��� xAyAz j xBzAx j �

B ��� yBzBx j yBxBz j �

If G is SLR(1) or even LR(0), construct the canonical LR-items and the LR-item DFA
for the grammar and show with tables and stack how the string xyz is parsed. If G is not
SLR(1) or LR(0), then explain why.

2



5. (3 p.) Memory management

What is an activation record? What properties of a programming language lead to a need
for activation records? What does an activation record contain?

6. (6 p.) Syntax-directed translation

The REPEAT statement in a Pascal-like language could be described using this rule:

<rep-stmt> ::= REPEAT <stmt> UNTIL <expr>

The semantics of the REPEAT statement is that statement <stmt> is executed and then
repeated as long as expression <expr> evaluates to zero.

Write the semantic rules — a syntax directed translation scheme — for translating the
REPEAT statement to quadruples. Assume that the translation scheme is to be used in a
bottom-up parsing environment using a semantic stack. Use the grammar rule above as a
starting point, but maybe it has to be changed.

You are not allowed to define and use symbolic labels, i.e., all jumps should have abso-
lute quadruple addresses as their destinations. Explain all the attributes, functions, and
instructions that you introduce. State all your assumptions.

7. (7 p.) Intermediate code generation

(a) Translate the following code segment into quadruples, postfix code, and abstract
syntax tree: (4.5 p)

x = 123;
y = 3;
while (x>100) {
x = x - y;
y = 2*y;

}

(b) Given the following program fragment in pseudo-quadruple form:

1: T1 := a + b
2: T2 := T1 - c
3: x := T2
4: T3 := x > 0
5: if T3 goto 10
6: T4 := x < 0
7: if T4 goto 1
8: T5 := a + b
9: goto 4
10: m := T5

Divide this program fragment into basic blocks and then draw the control flow graph
for the program fragment. (2.5p)

8. (3 p.) Bootstrapping

Explain the concepts of rehosting and retargeting. Use T-diagrams.

3



9. Only TDDB44: (6 p.) Code generation for RISC ...

(a) Explain the main similarity and the main difference between superscalar and VLIW
architectures from a compiler’s point of view. Which one is harder to generate code
for, and why? (1.5p)

(b) Given the following medium-level intermediate representation of a program frag-
ment (derived from a for loop):

1: c = 3;
2: k = 20;
3: if k<=0 goto 9;
4: a = c / 2;
5: b = a + c;
6: c = a * b;
7: k = k - 1;
8: goto 3;
9: d = b * c

Identify the live ranges of program variables, and draw the live range interference
graph

(i) for the basic block in lines 4–7 (i.e., the loop body),

(ii) for the entire fragment.

For both (i) and (ii), assign registers to all live ranges by coloring the live range
interference graph. How many registers do you need at least, and why? (3.5p)

(c) Register allocation and instruction scheduling are often performed separately (in
different phases). Explain the advantages and problems of this separation. (1p)

Good luck!

4


