
Page 1 of 4

LINKÖPING UNIVERSITY TDDA 37 Compiler Construction
Department of Computer Science
Jonas Wallgren/* Exam 970110

 Examination in courses

 TDDA 37/TDDB 44 Compiler Construction

 TDDA 28/TDDB 29 Compilers and Interpreters

 2001-04-21 08.00 - 12.00

 No books, calculators or other aids are allowed.

 Maximum = 40 points. 20 points needed for passing.

 Teacher on duty: Jonas Wallgren, only on phone: 178594

Page 2 of 4

LINKÖPING UNIVERSITY TDDA 37 Compiler Construction
Department of Computer Science
Jonas Wallgren/* Exam 970110

Problem 1 (4p) Formal languages and automata
NB! Only TDDA 28/TDDB 29 (Compilers and Interpreters) students should solve this
problem!
Give a DFA and a regular expression for the language over {0,1} such that if a string contains
00 (two zeroes in succession) it must contain 11.

Problem 2 (4p) Symbol table
Assume having a hash coded symbol table, with names stored in a separate string area. Given
following program

 PROGRAM Foo1;
 VAR Ida, Ceasar: INTEGER;

PROCEDURE Foo2;
VAR Kristina, Ida: BOOLEAN;

PROCEDURE FOO3;
VAR Ida, Hejsan: REAL;

(* L1 *)
BEGIN END;

 BEGIN ... END;
(* L2 *)
 BEGIN ... END.

show how linked hash table, symbol table (including type information) and block table look
at positions L1 and L2 during compilation. You may assume that all names have unique hash
values.

Problem 3 (4p) Top-down parsing
When adapting a grammar to recursive-descent parsing two especially important
transformations are done.

a) Name and define the transformations. The definitions should be general - not only
illustrated by some examples.

b) Which problems are avoided by doing the tranformations? Explain what happens in the
parser if they are not done.

Problem 4 (5p) SLR(1) parsing
Given the following grammar:

1. <S> ::= a <S> a
2. | <S> c
3. | c

a) Construct the canonical collection of LR(0) items for the grammar.

b) Use the states and state transitions given by a) for constructing action and goto tables.

c) Show how the string acca is parsed.

Page 3 of 4

LINKÖPING UNIVERSITY TDDA 37 Compiler Construction
Department of Computer Science
Jonas Wallgren/* Exam 970110

Problem 5 (6p): Intermediate code generation
IF a + b = 0
 THEN REPEAT

 x := x + c;
 y := y - c;

 UNTIL x > y
 ELSE a := - b;

a) Translate the statement above to reverse Polish notation.

b) Translate the statement above to quadruples.

c) Translate the statement above to an abstract syntax tree.

Problem 6 (5p) Syntax directed translation
Ada contains a LOOP-construction defined by the rule:

 <loop-stm>::= LOOP
<stm>
EXIT IF <expr>
<stm>

END

The function of the LOOP statement could be illustrated by this picture:

This shows that the statements <s1> are executed at least once and <s2> (and <s1>) are
executed when the expression <E> is false.

Write the semantic rules - a syntax directed translation scheme - for translating the LOOP
statement to quadruples. Assume that the translation scheme is to be used in a bottom-up
parsing environment using a semantic stack. Use the grammar rule above as a starting point,
but it has to be changed. <stm> and <expr> are non-terminals for which you don’t need
to generate quadruples. Assume that the result of <expr> is available in the
<expr>.ADDR attribute.

You are not allowed to define and use symbolic labels, i.e. all jumps should have absolute
quadruple addresses as their destinations. Explain all the attributes, functions, and
instructions that you introduce.

LOOP <s1> EXIT IF <E> <s2> END

Page 4 of 4

LINKÖPING UNIVERSITY TDDA 37 Compiler Construction
Department of Computer Science
Jonas Wallgren/* Exam 970110

Problem 7 (4p): Code optimization
1: T1 := a + b
2: T2 := T1 - c
3: x := T2
4: T3 := x > 0
5: if T3 goto 10
6: T4 := x + 1
7: x := T4
8: T5 := a + b
9: goto 4
10: m := T5

a) Divide the program fragment above into “basic blocks” and then draw the control flow
graph for the program fragment.

b) Describe the loop optimization methods presented in the course, Use code examples.

Problem 8 (4p) Memory management
a) Explain the concepts of display and static link. When are they used?
b) What does heap allocation mean and when is it needed?
c) Explain the concepts of fragmentation and garbage collection.
d) What is meant by static and dynamic memory allocation?

Problem 9 (4p) Bootstrapping and compiler generation
Assume there is a new, smashing language X that we want a compiler for. In X itself it’s
possible to write a compiler that generates good code. Available is a compiler for the
language P on the machine M. P isn’t powerful enough for writing a compiler for X that
generates good code. Show how to construct a compiler running on machine M generating
good code for another machine N. Describe the different steps needed and the order of them.
Use T diagrams.

Problem 10 (4p): Code generation for RISC
NB! Only TDDA 37/TDDB 44 (Compiler Construction) students should solve this problem!
a) What is branch prediction and when is it used? Give some example! Why is it important
for pipelined processors?
b) Explain software pipelining. Give a small example.

