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ABSTRACT  

This paper illustrates the structural equation modeling approach of building latent growth models (LGMs) using PROC CALIS. In 
the past decade, LGM has become one of the commonly used statistical models for analyzing longitudinal data analysis. 
Although recent years have seen the increase use of LGM to carry out research work in longitudinal analysis, there is limited 
work that has spelled out a systematic procedure of using PROC CALIS in modeling LGM. This paper serves to fill the gap for 
data analysts and researchers by showing the practical aspects and theoretical concerns of applying this modeling technique. 
This paper also includes a new conceptual idea of combining simplex approach and classical LGM to include autoregressive 
terms and moving average terms in order to improve the way we can conduct longitudinal analysis. The syntaxes of PROC 
CALIS are illustrated throughout the paper. Using data from a 4-wave longitudinal dataset of secondary school students, various 
LGMs are illustrated from the simplest of an unconditional LGM to conditional multivariate cross-Lag autoregressive LGM. 

 

INTRODUCTION  

Longitudinal analysis involves multiple responses taken in sequence on the same subject over time and we generally refer to 
these observations as repeated measures. Latent growth model (LGM) is one of the modeling techniques used to analyze 
repeated measures. Structural equation modeling (SEM) is a statistical approach to carry out overall hypotheses testing about 
relations among observed and latent variables. As LGM consists of observed variables to represent observations studied over 
time and their overall means and growth are specified in some particular a priori forms represented as latent variables, SEM 
naturally becomes one of the approaches in modeling LGM.  

LGM has flourished over the last decade as one of the most commonly used statistical tool in analyzing longitudinal data. This is 
evidenced by the growing number of applications of this statistical technique in leading journals and books written specifically for 
this subject (e.g. Duncan, Duncan and Strychker, 2006; Bollen and Curran, 2006; Preacher, Wichman, MacCallum, and Briggs, 
2008). Many researchers favor in LGM and argue for its superiority (Curran, 2000; Duncan, Duncan, Strycker, Li, & Alpert, 1999; 
Fan, 2003; McArdle & Bell, 2000). One of the greatest advantages of LGM probably lies in its ability to examine changes of 
interindividual differences over time, as well as incorporate time-varying and time-invariant covariates into the model. Curran and 
Willoughby (2003) have well summarized it as “an intersection between variable-centered and person-centered analysis”.  

The PROC CALIS procedure is a general procedure for analyzing covariance structure using SEM approach. It provides the 
SEM estimated parameters and tests the appropriateness of the model. Just as in any SEM, the various goodness-of-fit indices 
of LGM are available in PROC CALIS. As this paper concentrates on the SEM approach of analyzing LGM, for the purpose of 
linking the model to the syntax and to provide a clearer explanation, path diagrams are graphed to show the various LGMs. The 
rationales behind of using these models are explained where appropriate. 

 

DATA SOURCE AND SAMPLE 

 
The data used in this paper to illustrate the various LGMs are obtained from the life pathway project conducted by the Centre for 
Research in Pedagogy and Research, Nanyang Technological University, Singapore. There are four waves of data in the 
dataset. The first wave started in the year 2005 when the students are in secondary one (Grade 7) and the survey continued 
annually till students reach their secondary four (Grade 9). For analytical purposes, two subject areas of analyses are examined 
to illustrate univariate and multivariate LGMs separately. The first set of data consists of 1,626 students whom we ask about their 
interests in politics. We use univariate LGMs to find out factors influencing these students’ political interests. The second 
analysis focuses on examining the relationships of student’s social skills and multi-literacy skills over time and factors affecting 
them. As there are two sets of constructs analyzed simultaneously over time, multivariate LGMs has been identified as 
appropriate for the second set of data and will be used to illustrate the various multivariate latent growth models. This second set 
of data consists of 2,036 students. Covariates use in both studies includes gender, race, stream, and housing type.  
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LINEAR LATENT GROWTH MODEL (LINEAR LGM) 

 

Briefly, LGM investigates the longitudinal growth of a variable y of interest expresses by εΛηy  . The vector y contains the 

repeated measures of y over time. Λ is the matrix that contains the factor loadings specifying the hypothesized a prior growth 

pattern of y. η  is a vector of factors capturing the facets of growth being modeled and ε contains the random normal residuals. 

For a linear LGM, η  contains the a priori fixed values of factor loadings for the intercept and slope factors. As such, it could be 

considered as a special case of an oblique confirmatory 2-factor model (Molenaar 2003; Willet and Sayer, 1994) when the factor 
scores of the intercept and slope are allowed to be correlated i.e. when we specify the covariance between the intercept and 

slope factors, linear LGM is in fact a special case of an oblique CFA. ημ  is the vector of factor means and ζ is the residual term 

for the latent factors. As for the model-implied variance, 
ε

'
ΘΛΨΛΣ  , Σ  is the covariance matrix,Ψ represents the 

covariance matrix of the error equations ζ  and εΘ is the covariance matrix of the residual in ε .  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 shows the path diagram of a linear LGM for panel data with 4 occasions. In the linear LGM, consecutive measurements 
are modeled by a latent variable for the intercept, and a second latent variable for the slope of the curve. Y1 to Y4 are the 
observations of the response variable, political interests, at the 4 time points. In LGM, the expected score at time point zero is 
modeled by a latent intercept factor and the latent slope factor is the slope of the linear curve. As the intercept is constant over 
time, the factor loadings are constrained to one for all the time points. Similarly, as the latent slope represents the linear growth, 
it is constrained with loadings to be equal to an incremental of 1 from 0 in the first wave to 3 in the last wave (See Figure 1 for 
path diagram). We may choose any reference point for the initial and any metric for the growth but for the purpose of illustration, 
we fix wave 1 as the reference starting point.  

 

The intercept mean indicates the average starting point of the variable of interest. The slope mean indicates the average rate of 
change over time. The intercept variance indicates the degree that people vary at the start of the study. The slope variance 
indicates the degree to which people vary in terms of their rate of change over time. The variances of the intercept and slope 
factors represent the individual deviations from the intercept and slope means respectively. 

 

SAS® PROCEDURE CALIS 

 

There are a number of procedures in SAS® that support LGM. These include PROC MIXED and PROC NLMIXED. However, 

this paper concentrates on the PROC CALIS (Covariance Analysis of Linear Structural Equations) because it is perhaps one of 
easiest ways in specification when we consider the structural equation model approach. The syntax of PROC CALIS becomes 
self-explanatory with the help of the path diagrams. The path diagrams are referred to for the various LGMs.   
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LINEAR LGM 

 
We start with the syntax of linear LGM as shown below. Refer to Figure 1 for the path diagram of Linear LGM. The VAR 
statement states the variables used in the procedure. Since there are 4 time points of student’s political interests, PIS1 to PIS4 
represent the names of the manifest variables from wave 1 to wave 4. They are specified under the VAR statement. The 
LINEQS statements specify the causal relationships between the manifest political interests variables and the latent factors. The 
two latent factors: F_INT and F_SLP, represent the latent intercept and slope respectively. As the intercept factor has loading of 
1 for all the 4 time points and the linear slope factor with pre-specified loadings from 0 to 3, there are four statements altogether 
stating in the LINEQS statements, each representing one path of the manifest variable in each year to the two latent factors. F1 

to F4 state the residual terms of ε  and D1 to D2 states the random effect terms of ζ . The STD and COV statements specify the 

name of the variances and the covariances to be estimated at the LINEQS statement. The covariance between the two latent 
factors is named as ZETA21. 

 
* Linear LGM; 

Proc CALIS Data=A; 

Title "Linear Latent Growth Model"; 

LINEQS 

  PIS1 = 1.0 F_INT + 0.0 F_SLP + F1, 

  PIS2 = 1.0 F_INT + 1.0 F_SLP + F2, 

  PIS3 = 1.0 F_INT + 2.0 F_SLP + F3, 

  PIS4 = 1.0 F_INT + 3.0 F_SLP + F4, 

  F_INT = Mean_INT INTERCEPT + D1, 

  F_SLP = Mean_SLP INTERCEPT + D2; 

STD 

  D1-D2 = ZETA1-ZETA2,  

  F1-F4 = 4*err:; 

COV 

  D1 D2=ZETA21; 

VAR 

  PIS1 PIS2 PIS3 PIS4; 

Run; 
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QUADRATIC AND CUBIC LGM 

 
LGM is not limited to linear function. When there are 3 or more points in repeated measures, we could incorporate nonlinear 
trajectories into LGM. One of the most common approaches to nonlinear trajectories is to use polynomials. The factor loadings 
can be fixed to represent a quadratic function of the observed time metric as shown in Figure 2. The mean of this quadratic slope 
represents the degree of quadratic curvature in the trajectory. In PROC CALIS, a third factor call F_Quad is added and the 
coefficient for the mean is called Mean_Quad. The factor loadings for quadratic LGM are hence set to the power term starting 
from 0 in wave 1 and 9 in wave 4. As there are now three random terms for the three latent factors, three covariance terms are 
specified in the COV statement (ZETA21, ZETA31, and ZETA32).  

 
* Quadratic LGM; 

LINEQS 

  PIS1=1.0 F_INT + 0.0 F_SLP + 0.0 F_Quad + F1, 

  PIS2=1.0 F_INT + 1.0 F_SLP + 1.0 F_Quad + F2, 

  PIS3=1.0 F_INT + 2.0 F_SLP + 4.0 F_Quad + F3, 

  PIS4=1.0 F_INT + 3.0 F_SLP + 9.0 F_Quad + F4, 

  F_INT  = Mean_INT  INTERCEPT + D1, 

  F_SLP  = Mean_SLP  INTERCEPT + D2, 

  F_Quad = Mean_Quad INTERCEPT + D3; 

STD 

  D1-D3=ZETA1-ZETA3, F1-F4=4*err:; 

COV 

  D1 D2=ZETA21, 

  D1 D3=ZETA31, 

  D2 D3=ZETA32; 

 

We could also fit a cubic LGM by adding a cubic latent factor. The LINEQS would be modified to include a cubic factor called 
F_Cubic and the means called Mean_Cubic. As the data for illustration contains only 4 time points, the cubic model is not 
identified and cannot be modeled. As such, the results would not be presented but the path diagram is shown in Figure 3 to 
illustrate a 5 time points model. The syntax of a cubic LGM is as follows:  

 

* Cubic LGM; 

LINEQS 

  PIS1=1.0 F_INT + 0.0 F_SLP +  0.0 F_Quad +  0.0 F_Cubic + F1, 

  PIS2=1.0 F_INT + 1.0 F_SLP +  1.0 F_Quad +  1.0 F_Cubic + F2, 

  PIS3=1.0 F_INT + 2.0 F_SLP +  4.0 F_Quad +  8.0 F_Cubic + F3, 

  PIS4=1.0 F_INT + 3.0 F_SLP +  9.0 F_Quad + 27.0 F_Cubic + F4, 

  PIS5=1.0 F_INT + 4.0 F_SLP + 16.0 F_Quad + 64.0 F_Cubic + F5, 

  F_INT   = Mean_INT   INTERCEPT + D1, 

  F_SLP   = Mean_SLP   INTERCEPT + D2, 

  F_Quad  = Mean_Quad  INTERCEPT + D3, 

  F_Cubic = Mean_Cubic INTERCEPT + D4; 
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AUTOREGRESSIVE LINEAR LGM 

 
In Markov simplex modeling, the manifest variables are related to the previous period to show the extent of the temporal 
relationships between two time points. This modeling strategy could be built into LGM by combining both the modeling 
approaches and this unites the features of LGM that take into account of the simplex models, the Autoregressive LGM (AR 
LGM). Bollen and Curran (2004, 2006) call it the autoregressive latent trajectory model.  

For AR LGM, additional AR terms are specified in the LINEQS statement that links the parameters of the manifest variable of 
current to previous time. For instance, to relate the influence of political interests at time 1 (PIS1) to political interests at time 2 
(PIS2), we add in a parameter called ARlag1 and specify PIS1 after the parameter to relate it to the endogenous PIS2. Similar 
syntax to specify the parameters of later lags (ARlag2 and ARlag3) are shown below. The path diagram of AR LGM model is 
shown in Figure 4.   

 
* Linear LGM - AR(1); 

Proc CALIS Data=A; 

LINEQS 

  PIS1=1.0 F_INT + 0.0 F_SLP + F1, 

  PIS2=1.0 F_INT + 1.0 F_SLP + ARlag1 PIS1 + F2, 

  PIS3=1.0 F_INT + 2.0 F_SLP + ARlag2 PIS2 + F3, 

  PIS4=1.0 F_INT + 3.0 F_SLP + ARlag3 PIS3 + F4, 

 
Sometimes, we would like to have a parsimonious model by specifying equality of the lag AR parameters. This can be done 
easily by giving the same name to the parameter. Instead of having different name ARlag1, ARlag2, ARlag3 for the above AR 
LGM, the syntax below use only ARlag1 to specify the equality of parameter. Figure 5 show the path diagram of AR LGM with 
equality constraint of the AR parameter. 

 

 
* Linear LGM - AR(1); 

* Equality of parameter; 

LINEQS 

  PIS1=1.0 F_INT + 0.0 F_SLP + F1, 

  PIS2=1.0 F_INT + 1.0 F_SLP + ARlag1 PIS1 + F2, 

  PIS3=1.0 F_INT + 2.0 F_SLP + ARlag1 PIS2 + F3, 

  PIS4=1.0 F_INT + 3.0 F_SLP + ARlag1 PIS3 + F4, 

 

MOVING AVERAGE LGM 

 
It is common to observe autocorrelated residuals in longitudinal data. Generally, LGMs assume temporal manifest variable errors 
are uncorrelated. This assumption may not be tenable as it has been long recognized that nuisance correlations among the 
manifest errors often emerge in longitudinal data analyses. The problem of not specifying the correlated errors in the model 
would result in bias the estimates (Marsh 1993, Marsh and Grayson, 1994a, 1994b; Sivo, Pan, & Brophy, 2004). Sivo (2001) 
indicates that MA LGM model helps to address the stability of a construct over time. The specification of MA LGM helps to relate 

current value of a time series as a function of the previous autocorrelated residuals. The following shows the SAS® syntax of the 

MA LGM by adding the three MA parameters (MAlag1, MAlag2 and MAlag3) to the left hand side of the respective manifest 
variable in each year. Figure 6 shows the path diagram of the MA linear LGM. Conceptually, it is more difficult to explain the MA 
specification as compare with AR specification in time series analysis. As such, it is more common in practical research to use 
AR instead of MA in explanation. Similar to time series analysis regarding the property and relationship between AR and MA, it 
was noted by Hamaker (2005) that algebraically both AR and MA LGM are equivalent if the autoregressive parameter is invariant 
over time and it lies between -1 and 1. 
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* Linear LGM - MA(1); 

Proc CALIS Data=A UCOV Augment MaxIter=6000 MaxFunc=7000 all; 

Title "Linear Latent Growth Model - AR(1)"; 

LINEQS 

  PIS1=1.0 F_INT + 0.0 F_SLP + F1, 

  PIS2=1.0 F_INT + 1.0 F_SLP + MAlag1 F1 + F2, 

  PIS3=1.0 F_INT + 2.0 F_SLP + MAlag2 F2 + F3, 

  PIS4=1.0 F_INT + 3.0 F_SLP + MAlag3 F3 + F4, 

 

Similar to the reason of setting equality in AR parameters in AR LGM, we could also limit the MA parameters by setting the 
equality constraint (See Figure 7). The syntax in the LINEQS statement is similar to that of the AR specification. In the example 
below, we use the same name MAlag1 to set equality of the estimate parameter. The mathematical limitation of setting of 
equality constraint of the AR and MA terms may not be so much a concern when we build multivariate LGM as there is more 
degree of freedom to play with. However, it is also noted that when the estimated coefficients of the AR and MA terms do not 
differ much, there is no harm to restrict them to equality as it generally makes the interpretation much easier and a reasonable 
theoretical explanation could well accompany with it. 

 

* Linear LGM - MA(1); 

* Equality of parameter; 

LINEQS 

  PIS1=1.0 F_INT + 0.0 F_SLP + F1, 

  PIS2=1.0 F_INT + 1.0 F_SLP + MAlag1 F1 + F2, 

  PIS3=1.0 F_INT + 2.0 F_SLP + MAlag1 F2 + F3, 

  PIS4=1.0 F_INT + 3.0 F_SLP + MAlag1 F3 + F4, 

 

 

ARMA LGM 

As stationary time series is evidenced by the presence of both AR and MA processes, it is not surprising that in the literature of 
LGM following the proposal of AR LGM and MA LGM, the ARMA LGM was subsequently suggested by Sivo et al (2005). ARMA 
LGM aims to account the AR for the correction of the autocorrelated observed scores, and at the same time, the MA for the 
autocorrelated residuals. One of the main reasons of including both the AR and MA parameters into the LGM is to filter out the 
effects of autocorrelation so that the estimates are more accurate (Sivo and Fan, 2008). Contrary to the principle of parsimony, 
Sivo and Fan (2008) argue and show that the fit of ARMA LGM is better than the simpler model of AR LGM and MA LGM. Sivo 
and Willson (2000) also note and suggest that an AR LGM may not sufficiently account for the effects of autocorrelation and it 
could either due to MA or AR or both. Following this line of argument, Sivo, Fan, and Witta (2009) have stated that it is not just 
warrant to specify the ARMA terms but should be mandatory to correct the bias estimate of not specifying them. Sivo, Fan, and 
Witta (2005) suggest that when there are at least four repeated measures, it is sensible to specify at least an AR component 
when modeling LGM. This is because it is not possible to model ARMA LGM with four time points due to identification. The 
specification in PROC CALIS of ARMA LGM is simple by including both the AR and MA parameters in LINEQS statement. The 
example below contains only the two terms, ARlag1 and MAlag1 to specify for the AR and MA parameters respectively. By 
restricting the equality of the parameter of both AR and MA terms, we could get an overidentified model, otherwise there is lack 
of degree of freedom for modeling a 4-wave data for ARMA LGM. Figure 8 shows the path diagram of ARMA linear LGM which 
is not possible to model due to underidentification whereas Figure 9 are constrained to give an over identified model. 

 

* Linear LGM - ARMA(1,1); 

* Equality of parameter in AR and MA; 

LINEQS 

  PIS1=1.0 F_INT + 0.0 F_SLP + F1, 

  PIS2=1.0 F_INT + 1.0 F_SLP + ARlag1 PIS1 + MAlag1 F1 + F2, 

  PIS3=1.0 F_INT + 2.0 F_SLP + ARlag1 PIS2 + MAlag1 F2 + F3, 

  PIS4=1.0 F_INT + 3.0 F_SLP + ARlag1 PIS3 + MAlag1 F3 + F4, 
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RESULTS - COMPARISON OF UNIVARIATE LGM MODELS 

 
Seven models are illustrated using the survey data to examine the effects of student’s political interests over time. The first 
model is the simplest LGM among all the models. The second model, Quadratic LGM, aims to account for the non-linear growth 
pattern. As there are only 4 waves of data, we cannot model cubic LGM as it is underidentified. The next five models add in the 
autoregressive and moving average parameters into the linear LGM to account for the temporal relationships of the manifest 
political interest variable over adjacent time. The first model with these lag terms is the AR LGM, follows by MA LGM. We have 
also put equality constraints on the AR LGM with the autoregressive parameters, and the MA LGM with equality constraint on the 
moving average parameters, as well as the ARMA LGM with both AR and MA equality constraints. As mentioned above, the 
main reason of setting equality constraint for the ARMA LGM is due to the identification problem. If they are all set free to be 
estimated, the model is underidentified.  

 
Five fit indices are used for all the illustrated examples. They are Goodness of Fit Index (GFI), Comparative Fit Index (CFI), 
McDonald’s Centrality Index (Mc), Standardized Root Mean Squared Residual Estimate (SRMR) and Root Mean Square Error of 
Approximation (RMESA). As these indices have their relative merits, there is ease for comparison if we put them side by side to 
assess the overall fit of the models. The GFI and Mc are stand-alone indices that have a long history in the SEM literature. The 
CFI and incremental fit indices indicate the fit of a model improves on the nested null model. The SRMR summarizes the residual 
variation. The RMSEA is an estimate of misfit at the population rather than sample. We also report Chi-Square statistics although 
the literature has noted its limitations when there are violations of distributional assumption and large N. For comparison of 
nested model, the Chi-Square difference test is carried out. 

 

Table 1 reports the results of the univariate LGMs. In term of goodness of fit, the quadratic model would be the model of choice 
rather than linear LGM. However, it has only 1 degree of freedom left. This makes further modeling difficult. More importantly, for 
a 4 time point longitudinal study, it would be less justifiable to choose a quadratic model as we may not be sure of the existing of 
a non-linear growth pattern with 4 observations and parsimony may give weight over model fit. So, we use linear LGM as the 
base for all the rest of the illustrated examples. The fit of the 5 models with AR or MA terms is better than the Linear LGM without 
the AR or MA parameters. Among the 5 AR or MA models, it turns out the ARMA LGM has the best fit. It has a non-significant 
Chi-square statistics which shows that the model fits well and this is supported by the other fit statistics as well.  
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Table 1 Comparison of LGMs – Political Interests of Students (Grade 7 to Grade 10) 

Parameter / Fit Statistics Linear LGM 
Quadratic 

LGM 
AR Linear 

LGM 
MA Linear 

LGM  

AR Linear 
LGM With 
Constraint 

MA Linear 
LGM With 
Constraint 

ARMA 
Linear 

LGM With 
Constraint 

Regression Weights        
Latent Intercept 2.5598 2.6090 2.6039 2.5634 2.5718 2.5619 2.6079 
Latent Growth 0.3137 0.1778 0.1436 0.3138 0.3275 0.3133 0.3731 
Latent Quadratic  0.0435      
Political Interest Grade 7   0.0310^  -0.0154^  -0.0647 
Political Interest Grade 8   0.0945  -0.0154^  -0.0647 
Political Interest Grade 9   0.1556  -0.0154^  -0.0647 
Residual Political Interest G7    0.0779^  0.0845 0.1456 
Residual Political Interest G8    0.0963  0.0845 0.1456 
Residual Political Interest G9    -0.00693^  0.0845 0.1456 
Variances / Covariances        
Intercept 1.09061 1.26856 1.04125 0.95745 1.13414 0.93171 1.01784 
Slope 0.15118 0.63142 0.10782 0.14473 0.16060 0.11835 0.13902 
Quadratic  0.03808      
Intercept and Growth -0.09373 -0.31223 -0.11717 -0.05685 -0.10320 -0.03849 -0.04658 
Intercept and Quadratic  0.05042      
Growth and Quadratic  -0.13290      
Residual Variances        
Political Interest Grade 7 1.22910 1.00819 1.27008 1.32185 1.19064 1.3665 1.28265 
Political Interest Grade 8 1.21746 1.17306 1.27367 1.32903 1.20475 1.30806 1.31837 
Political Interest Grade 9 1.04422 0.96322 1.21152 1.07462 1.03115 1.12821 1.12873 
Political Interest Grade 10 0.76233 0.72623 0.89893 0.70085 0.74410 0.85972 0.83680 
R2        
Intercept 0.8574 0.8430 0.8669 0.8729 0.8537 0.8758 0.8699 
Growth 0.3044 0.0477 0.1606 0.4051 0.4006 0.4535 0.5005 
Quadratic  0.0473      
Fit Indices        
Chi-Square 21.7326 0.8704 5.9614 12.2669 20.8683 13.7364 3.8325 
Df 5 1 2 2 4 4 3 
p-value 0.0001 0.3508 0.0508 0.0022 0.0003 0.0082 0.2801 
GFI 0.9947 1.0000 0.9986 0.9971 0.9949 0.9967 0.9991 
CFI 0.9986 0.9999 0.9997 0.9992 0.9986 0.9992 0.9999 
Mc 0.9950 1.0000 0.9988 0.9969 0.9950 0.9971 0.9998 
SRMR 0.0155 0.0044 0.0023 0.0181 0.0115 0.0165 0.0040 
RMSEA 0.0447 0.0000 0.0344 0.0553 0.0501 0.0381 0.0129 
Note: ^ indicates p>.05 
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MULTIVARIATE LGM 

Longitudinal studies and research generally involve more than one variable of interest. These repeated measures variables are 
generally correlated over time and may have different development trajectories. One variable may increase over time while 
others plateau or decrease. The multivariate LGM becomes handy for analyzing these variables simultaneously as it caters for 
different trajectories for the variables of interest and yet allows us to examine their interrelationships with respect to their latent 
factors such as intercepts and growths. The strength of SEM approach using PROC CALIS instead of PROC MIXED for LGM is 
that it caters for multivariate LGM. More importantly, the syntax of specifying multivariate LGM can be easily carried out by 
duplicating the syntax of univariate LGM with slight modification.  

 

ASSOCIATIVE LGM 

 
The associative LGM is perhaps a good starting model, one of the basic multivariate models, to look at before we proceed to 
more complicated LGMs. The pre-condition is that before we get into associative LGM, we have already found out the 
appropriate trajectories of the variables of interest for the separate univariate LGMs. For instance, when we examine two time 
series variables, we already establish that the two univariate LGMs fit well as linear LGMs. The associative LGM would examine 
the correlations among these four latent means and slopes for the two linear LGMs. If one of the variables fits well as linear LGM 
and the other as quadratic LGM, the associative LGM would examine the relationships of the five latent factors namely the two 
latent mean and slope for the first model and the three latent mean, slope and quadratic for the second model.  

Specification of associative LGM in PROC CALIS is quite straight forward. What we have to do is to cut and paste syntax from 
the separate univariate LGMs and put them together in the appropriate sections of PROC CALIS. We use the second data set 
which contains two variables of interest namely social skills (SOCS) and multi-literacy skills (Multil) of students to illustrate this. 
The specification of these two variables within the LINEQS statement show similar syntax. The only addition is perhaps the 
number of variance and covariance terms for the multivariate LGM increase according in the STD and COV statement. Note that 
the standardized coefficients for the covariances are the correlations of the latent factors which are one of the main outcomes of 
interest when we model associative LGM. These correlation coefficients would enable us to examine the interrelationships of the 
latent factors for these two variables. Figure 10 depicts the associative LGM in graphical path diagram. The double arrows of the 
four constructs represent the covariance/correlations of the latent means and slopes of SOCS and Multil. These correlations help 
us to understand the relationships of the initial and growth means of SOCS and Multil. For instance, a positive coefficient of 
SOCS intercept factor and Multil intercept factor indicate if students have high social skills at the initial level would also have high 
multi-literacy skills at the initial level. 

LINEQS 

  SOCS_S1      = 1.0 F_SOCS_INT + 0.0 F_SOCS_SLP + F1, 

  SOCS_S2      = 1.0 F_SOCS_INT + 1.0 F_SOCS_SLP + F2, 

  SOCS_S3      = 1.0 F_SOCS_INT + 2.0 F_SOCS_SLP + F3, 

  SOCS_S4      = 1.0 F_SOCS_INT + 3.0 F_SOCS_SLP + F4, 

  F_SOCS_INT   = Mean_SOCS_INT INTERCEPT + D1, 

  F_SOCS_SLP   = Mean_SOCS_SLP INTERCEPT + D2, 

  Multil_S1    = 1.0 F_Multil_INT + 0.0 F_Multil_SLP + F5, 

  Multil_S2    = 1.0 F_Multil_INT + 1.0 F_Multil_SLP + F6, 

  Multil_S3    = 1.0 F_Multil_INT + 2.0 F_Multil_SLP + F7, 

  Multil_S4    = 1.0 F_Multil_INT + 3.0 F_Multil_SLP + F8, 

  F_Multil_INT = Mean_Multil_INT INTERCEPT + D3, 

  F_Multil_SLP = Mean_Multil_SLP INTERCEPT + D4; 

 

STD 

  D1-D4=ZETA1-ZETA4, F1-F8=8*err:; 

COV 

  D1 D2 = ZETA21, 

  D1 D3 = ZETA31, 

  D1 D4 = ZETA41, 

  D2 D3 = ZETA32, 

  D2 D4 = ZETA42, 

  D3 D4 = ZETA43; 
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FACTOR-OF-CURVES LGM 

 
The factor-of-curves LGM fits factors with higher order to describe the lower order factors (McArdle, 1988). The illustrated 
example fits two higher order factors: One common intercept factor for the first-order intercept factor of SOCS and Multil and one 
common slope factor that incorporates both the first-order slope factor of SOCS and Multil. Figure 11 shows the path diagram of 
factor-of-curves LGM. For the syntax of PROC CALIS, we have to add in six additional equations to represent the relationship of 
the first-order factors and second-order factors and states the mean estimates of the second-order factors as shown below. The 
factor-of-curve LGM would be useful to summarize the lower factors as one high-order factor for easier interpretation. For 
instance, the two intercept factors of SOCS and Multil could be represented as one high order intercept factor. In the same vein, 
the two slope factors of SOCS and Multil could also grouped as a second order slope factor. 

LINEQS 

  F_SOCS_INT      =   Loading_SOCS_INT  F_INT + D1, 

  F_SOCS_SLP      =   Loading_SOCS_SLP  F_SLP + D2, 

  F_Multil_INT    =   Loading_Multi_INT F_INT + D3, 

  F_Multil_SLP    =   Loading_Multi_SLP F_SLP + D4, 

  F_INT           =   Mean_INT   INTERCEPT + D5, 

  F_SLP           =   Mean_SLP   INTERCEPT + D6; 

CONDITIONAL FACTOR-OF-CURVES LGM 

 
The above LGMs discussed so far are referred to as unconditional models as they are without predictors to explain the 
differences in the mean values of latent initial and growth. Although unconditional LGMs permit us to chart the course of variable 
of interest over time by means of their initial value and growth, many research questions are concerned about the factors that 
contribute to the development and growth of the variable in question. When models incorporate covariates, we call them as 
conditional LGMs. Figure 12 shows the path diagram of conditional factor-of-curves LGM with one time-independent explanatory 
variable - gender. This is represented by the path of gender (male as the dummy variable) to the common intercept and slope 
factors. The syntax of including the covariates into the model is straight forward by specifying the name of the estimated 
coefficient and the variable name after the common intercept and slope factors (F_INT and F_SLP respectively) to measure the 
effect of the covariate to the common initial and slope respectively.  

 

 
  F_INT           = Mean_INT     INTERCEPT     +  Male_INT     Male  +  D5, 

  F_SLP           = Mean_SLP     INTERCEPT     +  Male_SLP     Male  +  D6; 

 

Additional covariates can be added after the gender covariate as shown below. The Malay is the race dummy variable for the 
ethnic group Malay. 

 
  F_INT           = Mean_INT     INTERCEPT     +  Male_INT     Male   

                                               +  Malay_INT    Malay  

                                               +  …                  +  D5, 

 

AR, MA, ARMA FACTOR-OF-CURVES LGM 

Similar to the argument and conceptions of the earlier modeling approach of incorporating AR, MA, and ARMA terms into the 
LGM, the multivariate LGM with multiple variables can also build in these parameters. Figure 13, 14, and 15 display the path 
diagram of AR, MA, and ARMA factor-of-curves LGM respectively. The conditional ARMA factor-of-curves LGM is shown in 
Figure 16 with one covariate, MALE, added to the model. The PROC CALIS syntax of these models follows the syntax described 
earlier so they are not duplicated. 
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CROSS-LAG AR FACTOR-OF-CURVES LGM 

 
In longitudinal analysis, we might be interested to examine the temporal relationships across different measures. For instance, in 
our example, we would like to know the effect of the first wave social skills on second wave of multi-literacy skills. This could be 
done by introducing the cross-lag terms into the model as shown by Figure 17. We could retain the AR parameters for measuring 
the effect on the same variable over time and at the same time specifying the cross-lag terms to examine the effect over different 
measures. Figure 18 extends the cross-lag model by incorporating the covariates. The syntax of LINEQS statement of including 
the cross-lag terms are shown below. For instance, ARMultiCrosslag1 is the name given to the coefficient to measure the effect 
of multi-literacy skills in wave one on social skills in wave 2.   

LINEQS 
  SOCS_S1         = 1.0 F_SOCS_INT   + 0.0 F_SOCS_SLP                                                      + F1, 

  SOCS_S2         = 1.0 F_SOCS_INT   + 1.0 F_SOCS_SLP   + ARSOCSlag1  SOCS_S1 + ARMultiCrosslag1 Multil_S1 + F2, 

  SOCS_S3         = 1.0 F_SOCS_INT   + 2.0 F_SOCS_SLP   + ARSOCSlag2  SOCS_S2 + ARMultiCrosslag2 Multil_S2 + F3, 

  SOCS_S4         = 1.0 F_SOCS_INT   + 3.0 F_SOCS_SLP   + ARSOCSlag3  SOCS_S3 + ARMultiCrosslag3 Multil_S3 + F4, 

  Multil_S1       = 1.0 F_Multil_INT + 0.0 F_Multil_SLP                                                    + F5, 

  Multil_S2       = 1.0 F_Multil_INT + 1.0 F_Multil_SLP + ARMultilag1 Multil_S1 + ARSOCSCrosslag1  SOCS_S1 + F6, 

  Multil_S3       = 1.0 F_Multil_INT + 2.0 F_Multil_SLP + ARMultilag2 Multil_S2 + ARSOCSCrosslag2  SOCS_S2 + F7, 

  Multil_S4       = 1.0 F_Multil_INT + 3.0 F_Multil_SLP + ARMultilag3 Multil_S3 + ARSOCSCrosslag3  SOCS_S3 + F8, 

 

For the 3 conditional multivariate models, 5 demographic variables are used in the study to examine their effects on student’s 
social skills and multi-literacy skills. The demographic variables include gender, race, parent’s marital status, stream, and types 
of housing. There are three main ethnic/racial groups in Singapore, namely Chinese, Malay, and Indian and they are included in 
the analysis as standalone categories. Students from other ethnic/racial groups are grouped into one named as “other ethnic 
group” since they are very small in terms of percentage and number. Students’ stream/track in secondary school consists of 
gifted/special, express, normal academic, and normal technical (list from the highest to the lowest streaming). Gender, race, and 
stream are dummy coded. Since most of the students come from families with parents who are married and stayed together, it is 
also dummy coded as a dichotomous variable.  
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Table 2 Comparison of Multivariate LGMs – Social/Leadership Skills and Multi-literacy Skills of Students (Grade 7 

to Grade 10) 

Parameter / Fit Statistics 
Associative 

LGM 

Factor-
of-Curve 

LGM 

Conditional 
Factor-of-

Curve LGM 

AR 
Factor-of-

Curve 
LGM 

MA 
Factor-

of-Curve 
LGM 

ARMA 
Factor-

of-Curve 
LGM 

Conditional 
ARMA 

Factor-of-
Curve LGM 

Cross-Lag 
AR 

Factor-of-
Curve 
LGM 

Conditional 
Cross-Lag 
AR Factor-
of-Curve 

LGM 

Regression Weights          
Intercept –Social Skills (SS) 4.0140 0.9969* 0.9970* 0.9974* 0.9967* 0.9938* 0.9945* 0.9982* 0.9979* 

Growth – SS 0.1029 1.0000* 1.0000* 1.0000* -1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 
Intercept - Multi-literacy Skills (MS) 4.0712 0.9978* 0.9979* 0.9973* 0.9982* 0.9961* 0.9969* 0.9978* 0.9983* 
Growth - MS 0.0287 0.7314* 0.7148* 0.8486* -0.7172* 0.9840* 0.9742* 0.7756* 0.9370* 
Common Intercept - 4.0387 3.8796 4.0429 4.6485 4.0430 3.8908 4.0159 3.9496 
Common Growth - 0.2817 0.6235 0.0183^ -1.0646 1.4691 1.6576 0.3235 0.5306 
SS Grade 7 - - - 0.0329 - -0.3178 -0.2209 0.0776 0.0673 
SS Grade 8 - - - 0.0313^ - -0.6482 -0.4610 0.0123^ -0.0112^ 
SS Grade 9 - - - 0.0731 - -0.9452 -0.6646 0.0599^ 0.0011^ 
Residual SS G7 - - - - 0.0058^ 0.2985 0.1766 - - 
Residual SS G8 - - - - 0.0098^ 0.6736 0.4881 - - 
Residual SS G9 - - - - -0.1604 1.0000 0.6726 - - 
MS Grade 7 - - - 0.0163^ - -0.2098 -0.1372 -0.0735 0.0483 
MS Grade 8 - - - 0.0060^ - -0.4396 -0.2970 -0.0953 0.0160^ 
MS Grade 9 - - - 0.0216^ - -0.6505 -0.4346 -0.1165 0.0129^ 
Residual MS G7 - - - - -0.0382^ 0.1461 0.0848 - - 
Residual MS G8 - - - - 0.1050 0.5304 0.3900 - - 
Residual MS G9 - - - - 0.0632^ 0.7083 0.4899 - - 
Cross-Lag SS Grade 7 - - - - - - - 0.0440 -0.0786 
Cross-Lag SS Grade 8 - - - - - - - 0.0133^ -0.0998 
Cross-Lag SS Grade 9 - - - - - - - 0.0058^ -0.1263 
Cross-Lag MS Grade 7 - - - - - - - -0.0943 -0.0951 
Cross-Lag MS Grade 9 - - - - - - - -0.0779 -0.0761 
Cross-Lag MS Grade 9 - - - - - - - -0.1348 -0.1084 
Initial on Male - - 0.0332^ - - - 0.0219^ - 0.0361^ 
Initial on Malay - - 0.2923 - - - 0.3015 - 0.2949 
Initial on Indian - - 0.6356 - - - 0.6349 - 0.6476 
Initial on Others - - 0.3684 - - - 0.3713 - 0.3683 
Initial on Married - - -0.0352^ - - - -0.0232^ - -0.0325^ 
Initial on Gifted/Special - - 0.2591 - - - 0.2560 - 0.2618 
Initial on Normal Academic - - -0.1263 - - - -0.1099^ - -0.1285 
Initial on Normal Technical - - -0.0709^ - - - -0.0554^ - -0.0723^ 
Initial on 4-Room - - 0.0137^ - - - 0.0303^ - 0.0149^ 
Initial on 5-Room - - 0.0907^ - - - 0.1159 - 0.0890^ 
Initial on Private Property - - 0.2120 - - - 0.2217 - 0.2171 
Growth on Male - - -0.0911^ - - - -0.0197^ - -0.0334^ 
Growth on Malay - - -0.1751 - - - 0.0088^ - -0.0461^ 
Growth on Indian - - -0.2058 - - - 0.1239 - -0.0300^ 
Growth on Others - - -0.0609^ - - - 0.0967^ - 0.0127^ 
Growth on Married - - -0.0319^ - - - -0.0414^ - -0.0224^ 
Growth on Gifted/Special - - 0.0928^ - - - 0.1396 - 0.0592^ 
Growth on Normal Academic - - -0.3606 - - - -0.2330 - -0.1508 
Growth on Normal Technical - - -0.1556 - - - -0.1176 - -0.0693 
Growth on 4-Room - - -0.0452^ - - - -0.0343^ - -0.0221^ 
Growth on 5-Room - - -0.0858^ - - - -0.0353^ - -0.0285^ 
Growth on Private Property - - -0.1928 - - - -0.0287^ - -0.0623^ 
Correlation          
SS Intercept, SS Slope -0.36651 - - - - - - - - 
SS Intercept, MS Intercept 0.80975 - - - - - - - - 
SS Slope, MS Intercept -0.42406 - - - - - - - - 
SS Slope, MS Slope -0.36314 - - - - - - - - 
SS Slope, MS Slope 0.87691 - - - - - - - - 
MS Intercept, MS Slope -0.33077 - - - - - - - - 
Common Slope and Intercept - -0.43959 -0.45782 -0.49464 0.40857 0.14982 -0.0322^ -0.30368 -0.32111 
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Parameter / Fit Statistics 
Associative 

LGM 

Factor-
of-Curve 

LGM 

Conditional 
Factor-of-

Curve LGM 

AR 
Factor-of-

Curve 
LGM 

MA 
Factor-

of-Curve 
LGM 

ARMA 
Factor-

of-Curve 
LGM 

Conditional 
ARMA 

Factor-of-
Curve LGM 

Cross-Lag 
AR 

Factor-of-
Curve 
LGM 

Conditional 
Cross-Lag 
AR Factor-
of-Curve 

LGM 

Variances           
SS Intercept 0.44769 0.10321 0.10169 0.08651 0.11050 0.20538 0.18170 0.05874 0.07084 
SS Slope 0.02856 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 
MS Intercept 0.44350 0.07350 0.07041 0.09101 0.05998 0.13367 0.10489 0.07406 0.05891 
MS Slope 0.02814 0.01329 0.01357 0.00785^ 0.01269 0.02890 0.02236 0.00469^ 0.00802 
Common Intercept - 0.35486 0.30971 0.35373 0.46209 0.36823 0.32769 0.36618 0.34251 
Common Slope - 0.35063 0.56730 0.12635 5.31344 0.08896 0.13839 0.06938 0.09492 
Residual Variances          
SS Grade 7 0.38725 0.37906 0.38371 0.39142 0.37427 0.26528 0.29739 0.40443 0.40103 
SS Grade 8 0.40634 0.40544 0.40512 0.41010 0.41811 0.40948 0.40274 0.39956 0.39441 
SS Grade 9 0.36169 0.46211 0.35995 0.37877 0.33115 0.37849 0.36392 0.36419 0.34656 
SS Grade 10 0.29427 0.27239 0.27235 0.30915 0.20160 0.32875 0.30813 0.30748 0.28403 
MS Grade 7 0.29081 0.29503 0.29738 0.29051 0.29874 0.20657 0.23631 0.30037 0.30439 
MS Grade 8 0.29490 0.29722 0.29732 0.29323 0.31427 0.29462 0.29478 0.28787 0.28878 
MS Grade 9 0.27518 0.27571 0.27515 0.27991 0.29672 0.29523 0.29360 0.26817 0.27085 
MS Grade 10 0.21781 0.21769 0.21919 0.21858 0.22976 0.23598 0.23470 0.22529 0.22626 
R

2
          

SS Intercept 0.9730 0.9938 0.9939 0.9948 0.9935 0.9877 0.9887 0.9965 0.9957 
SS Growth 0.2707 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
MS Intercept 0.9740 0.9956 0.9958 0.9946 0.9958 0.9922 0.9937 0.9956 0.9965 
MS Growth 0.0284 0.5350 0.5110 0.7201 0.4792 0.9684 0.9534 0.9282 0.8779 
Common Intercept - 0.9787 0.9815 0.9788 0.9790 0.9780 0.9808 0.9778 0.9803 
Common Growth - 0.1846 0.2259 0.0026 0.1785 0.9604 0.9518 0.6015 0.6713 
Fit Indices          
Chi-Square 250.72 290.33 390.64 205.71 267.63 180.50 284.34 131.58 237.65 
Df 22 25 90 18 18 12 78 12 78 
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
GFI 0.9726 0.9684 0.9805 0.9772 0.9713 0.9807 0.9859 0.9848 0.9877 
CFI 0.9961 0.9954 0.9958 0.9968 0.9957 0.9971 0.9971 0.9979 0.9978 
Mc 0.9452 0.9368 0.9287 0.9548 0.9404 0.9594 0.9505 0.9710 0.9615 
SRMR 0.0107 0.0132 0.0072 0.0013 0.0124 0.0009 0.0024 0.0014 0.0025 
RMSEA 0.0716 0.0723 0.0406 0.0717 0.0827 0.0832 0.0361 0.0701 0.0318 

Note: ^ indicates p>.05; SS. denotes Social Skills; MS. denotes Multi-literacy Skills; * Standardized Coefficient; Growth slope 

factor loadings to common slope factor set to 1 due to negative variance. 
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RESULTS - COMPARISON OF MULTIVARIATE LGM MODELS 

 
The first model in the list is the associative LGM. The correlation of the latent initial of SS (Social Skills) and MS 
(Multi-literacy Skills) are high with correlation coefficient of 0.81 (Table 2). Similarly, the correlation of latent slope of 
SS and MS is also high (r=0.88). The correlations of initial and slope are all negatively and moderately correlated.  
Since both the intercept factors and slope factors are highly correlated, it is logically to build a factor-of-curves LGM 
to collapse these four first-order factors into two common second-order factors for easier modeling. This also makes 
more sense for interpretation when we include covariates later on into the models as relating the covariates to two 
second-order factors rather than four first-order factors make the analysis much easier. The fit of the factor-of-curves 
LGM is reasonable. Because the latent slope of SOCS to the common slope has negative variance, the error is set to 
zero. 

The conditional factor-of-curves LGM shows that there is race, stream, type of housing effect on the initial level of 
both the social and multi-literacy skills represented by the common initial factor. These covariates also show 
significant effects on the common growth factor. 

The next three models include the AR, MA, and ARMA terms as indicated as the AR, MA, and ARMA factor-of-curves 
LGM respectively. The Chi-square difference tests of comparing the ARMA LGM over the AR and MA LGMs show 
significant improvement on the ARMA LGM. Similarly, the conditional ARMA factor-of-curve LGM compared to 
conditional factor-of-curve LGM without ARMA parameters also show significant improvement for the Chi-square 
difference test for the conditional ARMA LGM. In short, the ARMA models outperform the other models.  

The cross-lag AR factor-of-curve LGM has additional 6 parameters for the cross-lag compare to the AR factor-of-
curve LGM. The fit of the cross-lag model shows significant improvement for the Chi-square difference test.  

 

USEFUL HINTS FOR MODEL DIAGNOSTIC 

There are a few options in the PROC CALIS that are useful while modeling LGM. In any modeling process, we 
sometimes would like to check the modeling details when the model is not producing the expected outcome. One way 
is to specify the ALL option after the PROC CALIS statement to print all optional output. If we have a rough idea of 
the estimated value of the parameter, we can put parentheses on the right side of the parameter to initialize the 
starting value. For instance COV D1 D2 = ZEWTA21 (-0.45). While parameters are within certain range we might 
want to use the BOUNDS statement so that we restrict them to the range we want the model to estimate. For 
instance, we would like to specify in the ARMA LGM to restrict the autoregressive parameter within the -1 and 1 
boundary.  

 

CONCLUSION AND SUGGESTIONS 

This paper illustrates the use of PROC CALIS in carrying out the various latent growth models. Their syntaxes are 
given for all the models and differences in the syntax from a simpler to a more complex model are highlighted. Path 
diagrams for all the models are presented and referred to in the section of the models being discussed and their 
syntaxes elaborated on so that reader has a clear idea of the connection of linking the syntax to the pictorial 
presentation of the model. This will help readers to have better idea of what the various models are trying to achieve.    

Although the current paper presents the different LGMs and makes comparisons among them, it does not intend to 
answer the question of whether the mixing of simplex methods and LGM is a better choice. The fit indices of the mix 
approach do show better fit for the combined approach when we compare them using Chi-square difference test for 
the nested model.  The question of the incremental advantages in practical research to address research questions of 
using ARMA in LGM probably would need further research in this area.  
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