
LECTURE NOTES

732A75 ADVANCED DATA MINING

TDDD41 DATA MINING - CLUSTERING AND ASSOCIATION ANALYSIS

JOSE M. PEÑA
IDA, LINKÖPING UNIVERSITY, SWEDEN

1. Correctness of the Apriori algorithm

The proof of correctness is not unique. You can find one proof in the article by Agrawal and
Srikant available from the course website. Our own alternative proof can be found below.

We prove by induction on k that the apriori algorithm is correct. That is, we prove the result for
k = 1 and then for k under the assumption that the algorithm is correct up to k−1. Combining this
two facts, we can conclude that the algorithm is correct for any k. First, recall the apriori algorithm.

Algorithm: apriori(D, minsup)
Input: A transactional database D and the minimum support minsup.
Output: All the large itemsets in D.

1 L1 = { large 1-itemsets }
2 for (k = 2;Lk−1 ≠ ∅;k + +) do
3 Ck = apriori-gen(Lk−1) // Generate candidate large k-itemsets
4 for all t ∈D do
5 for all c ∈ Ck such that c ∈ t do
6 c.count + +
7 Lk = {c ∈ Ck∣c.count ≥minsup}
8 return ⋃k Lk

Trivial case: The algorithm is correct for k = 1 by line 1.
Induction hypothesis: Assume that the algorithm is correct up to k − 1. We now prove that

the algorithm is correct for k. It suffices to prove that Lk ⊆ Ck in line 3, because lines 4-7 simply
count the frequency of the candidates and, thus, nothing can go wrong there. Recall the apriori-gen
function.

Algorithm: apriori-gen(Lk−1)
Input: Large (k − 1)-itemsets.
Output: A superset of Lk.

1 Ck = ∅ // Self-join
2 for all I, J ∈ Lk−1 do
3 if I1 = J1, . . . , Ik−2 = Jk−2 and Ik−1 < Jk−1 then
4 add {I1, . . . , Ik−1, Jk−1} to Ck

5 for all c ∈ Ck do // Prune
6 for all (k − 1)-subsets s of c do
7 if s ∉ Lk−1 then
8 remove c from Ck

9 return Ck

To prove that Lk ⊆ Ck, assume to the contrary that I ∈ Lk but I ∉ Ck. Then, the itemset
{I1, . . . , Ik−2, Ik−1} is in Lk−1 due to the fact that I ∈ Lk and the apriori property and the induction
hypothesis. Likewise, {I1, . . . , Ik−2, Ik} ∈ Lk−1. Then, I ∈ Ck in line 5 of the apriori-gen function,
i.e. it is generated by the self-join step. Moreover, every subset of I is large due to the fact that
I ∈ Lk and the apriori property. Then, I ∈ Ck in line 9, i.e. it is not removed by the prune step.

Date: 14:59, 24/02/20, Lecture6Proofs.tex.

1



2 JOSE M. PEÑA IDA, LINKÖPING UNIVERSITY, SWEDEN

This contradicts the assumption made at the beginning of this paragraph and, thus, the algorithm
is correct for k.

2. Correctness of the rule generation algorithm

No proof is given in the article by Agrawal and Srikant. Our own proof follows. First, recall the
algorithm.

1 for all large itemsets lk with k ≥ 2 do
2 call genrules(lk, lk, minconf)

Algorithm: genrules(lk, am, minconf)
Input: A large itemset lk, a set am ⊆ lk, the minimum confidence minconf .
Output: All the rules of the form a→ lk ∖ a with a ⊆ am and confidence equal or above minconf .

1 A = {(m − 1)-itemsets am−1∣am−1 ⊆ am}
2 for all am−1 ∈ A do
3 conf = support(lk) / support(am−1) // Confidence of the rule am−1 → lk ∖ am−1
4 if conf ≥minconf then
5 output the rule am−1 → lk ∖ am−1 with confidence=conf and support=support(lk)
6 if m − 1 > 1 then call genrules(lk, am−1, minconf)

We prove by contradiction that the rule generation algorithm is correct. Assume to the contrary
that the algorithm missed a rule. Let am−1 → lk ∖ am−1 denote one of the missing rules with the
largest antecedent. Note that that we wrongly missed the rule implies that lk has minimum support
and, thus, it is outputted by the apriori algorithm since this is correct, as proven in the previous
section. Then, the rule generation algorithm cannot have missed the rule when m = k, because
m = k only when we called genrules(lk, lk, minconf), and then the rule is evaluated and outputted
in lines 1-5.

Therefore, we must have missed the rule in one of the subsequent calls to genrules, i.e. when
m < k. Note that then the consequent of the rule has at least two items. Move one item from the
consequent of am−1 → lk ∖ am−1 to the antecedent and so create a rule am → lk ∖ am. Evaluate the
confidence of the newly created rule:

confidence(am → lk ∖ am) = support(lk) / support(am) ≥ support(lk) / support(am−1)
= confidence(am−1 → lk ∖ am−1) ≥minconf

where the first inequality follows from the fact that support(am) ≤ support(am−1), and the sec-
ond inequality follows from the assumption that the algorithm wrongly missed am−1 → lk ∖ am−1,
which implies that the rules has confidence equal or above the threshold. Therefore, the rule gen-
eration algorithm must produce the rule am → lk ∖ am. Note that the algorithm cannot miss this
rule because, otherwise, it would contradict our assumption about am−1 → lk ∖ am−1 being one of
the missing rules with the largest antecedent. Then, the algorithm cannot have missed the rule
am−1 → lk ∖ am−1, because the rule must have been produced and evaluated in lines 1-5, i.e. am−1
must have been produced from am in line 1. This contradicts our assumption about the algorithm
missing am−1 → lk ∖ am−1 and, thus, the algorithm is correct.


