Slides related to:

Data Mining: Concepts and Techniques

- Chapter 1 and 2 -

Introduction and Data preprocessing —

Jiawei Han and Micheline Kamber

Department of Computer Science

University of Illinois at Urbana-Champaign

www.cs.uiuc.edu/~hanj

©2006 Jiawei Han and Micheline Kamber. All rights reserved.

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - □ Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation,

• • •

- Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!
- → Data mining—Automated analysis of massive data sets

Ex. 1: Market Analysis and Management

- Where does the data come from?—Credit card transactions, loyalty cards, discount coupons, customer complaint calls, lifestyle studies, ...
- Target marketing
 - □ Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, ...
 - □ Determine customer purchasing patterns over time
- Customer profiling
 - □ What types of customers buy what products
- Cross-market analysis
 - □ Find associations/co-relations between product sales
 - Predict based on such associations
- Customer requirement analysis
 - Identify the best products for different groups of customers
 - □ Predict what factors will attract new customers

Ex. 2: Fraud Detection & Mining Unusual Patterns

- Approaches: Clustering & model construction for frauds, outlier analysis
- Applications:
 - ☐ Auto insurance: ring of collisions
 - ☐ Money laundering: suspicious monetary transactions
 - Medical insurance
 - Professional patients, ring of doctors, and ring of references
 - Unnecessary or correlated screening tests

Evolution of Database Technology

- 1960s:
 - □ Data collection, database creation, IMS and network DBMS
- 1970s:
 - □ Relational data model, relational DBMS implementation
- 1980s:
 - □ Advanced data models (extended-relational, OO, deductive, etc.)
 - ☐ Application-oriented DBMS (spatial, temporal, multimedia, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases

Evolution of Database Technology

2000s

- Stream data management and mining
- Data mining and its applications
- Web technology (XML, data integration) and global information systems

2010s

- ☐ Big data (Volume, Velocity, Veracity, Variety, Variability, ...)
- □ NoSQL databases, graph databases
- □ Knowledge graphs

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - □ Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data
 - □ Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, ...
- Watch out: Is everything "data mining"?
 - □ Not: Simple search and query processing
 - □ Not: (Deductive) expert systems

Knowledge Discovery (KDD) Process

re.

Why Data Preprocessing?

- Data in the real world is dirty
 - □ incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=" "
 - □ noisy: containing errors or outliers
 - e.g., Salary="-10"
 - inconsistent: containing discrepancies in codes or names
 - e.g., Age="42" Birthdate="03/07/1997"
 - e.g., Was rating "1,2,3", now rating "A, B, C"
 - e.g., discrepancy between duplicate records

М

Why Is Data Dirty?

- Incomplete data may come from
 - "Not applicable" data value when collected
 - Different considerations between the time when the data was collected and when it is analyzed.
 - ☐ Human/hardware/software problems
- Noisy data (incorrect values) may come from
 - □ Faulty data collection instruments
 - □ Human or computer error at data entry
 - Errors in data transmission
- Inconsistent data may come from
 - □ Different data sources
 - Functional dependency violation (e.g., modify some linked data)
- Duplicate records also need data cleaning

Why Is Data Preprocessing Important?

- No quality data, no quality mining results!
 - Quality decisions must be based on quality data
 - e.g., duplicate or missing data may cause incorrect or even misleading statistics.
 - Data warehouse needs consistent integration of quality data
- Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse

Architecture: Typical Data Mining System

- □ Summaries
- □ Aggregations
- □ Views

Why New Kinds of Data Analysis?

- Tremendous amount of data
 - Algorithms must be highly scalable to handle large amounts of data
- High-dimensionality of data
 - ☐ Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - ☐ Time-series data, temporal data, sequence data
 - ☐ Structure data, graphs, social networks and multi-linked data
 - □ Heterogeneous databases and legacy databases
 - □ Spatial, spatiotemporal, multimedia, text and Web data

Data Mining: Classification Schemes

- General functionality
 - Descriptive data mining
 - Predictive data mining
- Different views lead to different classifications
 - □ Data view: Kinds of data to be mined
 - □ Knowledge view: Kinds of knowledge to be discovered
 - ☐ Method view: Kinds of techniques utilized
 - □ Application view: Kinds of applications adapted

Data Mining: on what kinds of data?

- Database-oriented data sets and applications
 - □ Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Object-relational databases
 - □ Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Spatial data and spatiotemporal data
 - □ Text databases and Multimedia databases
 - Data streams and sensor data
 - □ The World-Wide Web
 - Heterogeneous databases and legacy databases

- Concept/class description:
 - Characterization: summarizing the data of the class under study in general terms
 - E.g. Characteristics of customers spending more than 10000 sek per year
 - Discrimination: comparing target class with other (contrasting)
 classes
 - E.g. Compare the characteristics of products that had a sales increase (target class) to products that had a sales decrease last year (contrasting class)

- Frequent patterns, association, correlations
 - □ Frequent itemset
 - ☐ Frequent sequential pattern
 - □ Frequent structured pattern
 - □ E.g. buy(X, "Diaper") → buy(X, "Beer") [support=0.5%, confidence=75%] confidence: if X buys a diaper, then there is 75% chance that X buys beer support: of all transactions under consideration 0.5% showed that diaper and beer were bought together
 - □ E.g. Age(X, "20..29") and income(X, "20k..29k") \rightarrow buys(X, "car") [support=2%, confidence=60%]

- Classification and prediction
 - □ Construct models (functions) that describe and distinguish classes or concepts for future prediction.
 - The derived model is based on analyzing training data
 - data whose class labels are known.
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - □ Predict some unknown or missing numerical values

Cluster analysis

- Class label is unknown: Group data to form new classes,
 - E.g., cluster customers to find target groups for marketing
- □ Maximizing intra-class similarity & minimizing interclass similarity

Outlier analysis

- Outlier: Data object that does not comply with the general behavior of the data
- □ Noise or exception? Useful in fraud detection, rare events analysis

Trend and evolution analysis

Trends and deviation

10

Are All the "Discovered" Patterns Interesting?

- Data mining may generate thousands of patterns: Not all of them are interesting
 - □ Suggested approach: Human-centered, query-based, focused mining

Interestingness measures

□ A pattern is interesting if it is <u>easily understood</u> by humans, <u>valid</u> on new or test data with some degree of certainty, <u>potentially useful</u>, <u>novel</u>, <u>or validates some hypothesis</u> that a user seeks to confirm

Objective vs. subjective interestingness measures

- Objective: based on statistics and structures of patterns
 - e.g., support, confidence, ...
- Subjective: based on user's belief in the data
 - e.g., unexpectedness, novelty, actionability, ...

Find All and Only Interesting Patterns?

- Find all the interesting patterns: Completeness
 - Can a data mining system find <u>all</u> the interesting patterns? Do we need to find <u>all</u> of the interesting patterns?
 - Heuristic vs. exhaustive search
 - Association vs. classification vs. clustering
- Search for only interesting patterns: An optimization problem
 - Can a data mining system find only the interesting patterns?
 - Approaches
 - First generate all the patterns and then filter out the uninteresting ones
 - Generate only the interesting patterns—mining query optimization

Data Mining – what techniques used?

M

A Brief History of Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
 - □ Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD conferences since 1998 and SIGKDD Explorations
- More conferences on data mining
 - PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.
- ACM Transactions on KDD starting in 2007

Conferences and Journals on Data Mining

KDD Conferences

- ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
- □ SIAM Data Mining Conf. (SDM)
- ☐ (IEEE) Int. Conf. on Data Mining (ICDM)
- Conf. on Principles and practices of Knowledge Discovery and Data Mining (PKDD), now ECML-PKDD
- Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)

Other related conferences

- ACM SIGMOD
- VLDB
- (IEEE) ICDE
- WWW, SIGIR
- ICML, CVPR, NIPS

Journals

- Data Mining and Knowledge Discovery (DAMI or DMKD)
- IEEE Trans. On Knowledge and Data Eng. (TKDE)
- KDD Explorations
- ACM Trans. on KDD