Data Mining:

Concepts and Techniques

— Chapter 7 —

Jiawei Han

Department of Computer Science

University of Illinois at Urbana-Champaign

www.cs.uiuc.edu/~hanj

©2006 Jiawei Han and Micheline Kamber, All rights reserved

Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - □ Discover clusters of arbitrary shape
 - ☐ Handle noise
 - □ One scan
 - □ Need density parameters as termination condition
- Several interesting studies:
 - □ <u>DBSCAN:</u> Ester, et al. (1996)
 - □ <u>OPTICS</u>: Ankerst, et al (1999).
 - □ <u>DENCLUE</u>: Hinneburg & D. Keim (1998)

M

Density-Based Clustering: Basic Concepts

- Two parameters:
 - □ Eps: Maximum radius of the neighborhood
 - MinPts: Minimum number of points in an Epsneighborhood of that point
- $N_{Eps}(p)$: {q belongs to $D \mid d(p,q) \le Eps$ }
- Directly density-reachable: A point *p* is directly density-reachable from a point *q* w.r.t. *Eps*, *MinPts* if
 - \square p belongs to $N_{Eps}(q)$
 - □ core point condition:

$$|N_{Eps}(q)| >= MinPts$$

MinPts = 5

$$Eps = 1 cm$$

Density-Based Clustering: Basic Concepts

Density-reachable:

□ A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points $p_1, ..., p_n, p_1 =$ $q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected

□ A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts

M

Explanation on whiteboard

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts.
- If p is a core point, a cluster is formed containing p and all the density-reachable points from p. Mark these points as processed.
- Mark p as processed.
- Continue this process until all of the points have been processed.

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

OPTICS: A Cluster-Ordering Method

- OPTICS: Ordering Points To Identify the Clustering Structure
 - □ Ankerst, Breunig, Kriegel, and Sander (1999)
 - □ Produces a special order of the database w.r.t. its density-based clustering structure
 - This cluster-ordering contains info equivalent to the density-based clusterings corresponding to a broad range of parameter settings
 - Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

OPTICS basic concepts

- Core Distance of p wrt MinPts: smallest distance eps' between p and an object in its eps-neighborhood such that p would be a core object for eps' and MinPts. Otherwise, undefined.
- Reachability Distance of p wrt o: Max (core-distance (o), d (o, p)) if o is core object. Undefined otherwise

Max (core-distance (o), d (o, p))

r(p1, o) = 1.5cm. $r(p2, o) = 4cm_{11}$

$$\varepsilon = 3 \text{ cm}$$

М

OPTICS

- (1) Select non-processed object o
- (2) Find neighbors (eps-neighborhood)
- Compute core distance for o
- Write object o to ordered file and mark o as processed
- If o is not a core object, restart at (1)
- (o is a core object ...)
- Put neighbors of o in Seedlist and order
 - If neighbor n is not yet in SeedList then add (n, reachability from o) else if reachability from o < current reachability, then update reachability + order SeedList wrt reachability
- Take new object from Seedlist with smallest reachability and restart at
 (2)

Example on whiteboard

Cluster-order of the objects

DENCLUE: Using Statistical Density Functions

- DENsity-based CLUstEring by Hinneburg & Keim (1998)
- Using statistical density functions
- Major features
 - Solid mathematical foundation
 - □ Good for data sets with large amounts of noise
 - Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets
 - □ Significant faster than DBSCAN
 - □ But needs a large number of parameters

Denclue: Technical Essence

- Uses grid cells but only keeps information about grid cells that do actually contain data points and manages these cells in a tree-based access structure
- Influence function: describes the impact of a data point within its neighborhood $\underline{d(x,y)^2}$

 $f_{Gaussian}(x,y) = e^{-\frac{a(x,y)^2}{2\sigma^2}}$ OBS: minus

 Overall density of the data space can be calculated as the sum of the influence function of all data points

$$f_{Gaussian}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$
 OBS: minus

Clusters can be determined mathematically by identifying density attractors. Density attractors are local maxima of the overall density function $d(x,x_i)^2$

$$\nabla f_{Gaussian}^{D}(x, x_i) = \sum_{i=1}^{N} (x_i - x) \cdot e^{-\frac{d(x, x_i)^2}{2\sigma^2}}$$
 OBS: minus

(a) Data Set

Denclue: Technical Essence

- Significant density attractor for threshold k: density attractor with density larger than or equal to k
- Center-defined cluster for a significant density attractor x for threshold k: points that are density attracted by x
 - □ Points that are attracted to a density attractor with density less than k are called outliers
- Set of significant density attractors X for threshold k: for each pair of density attractors x1, x2 in X there is a path from x1 to x2 such that each point on the path has density larger than or equal to k
- Arbitrary-shape cluster for a set of significant density attractors X for threshold k: points that are density attracted to some density attractor in X

Center-Defined and Arbitrary-shape clusters

Figure 3: Example of Center-Defined Clusters for different σ

Figure 4: Example of Arbitray-Shape Clusters for different ξ