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Cluster Analysis
1. What is Cluster Analysis?
2. Types of Data in Cluster Analysis

3. A Categorization of Major Clustering
Methods

4. Partitioning Methods

5. Hierarchical Methods
0.
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Density-Based Clustering Methods

m Clustering based on density (local cluster criterion), such
as density-connected points

m Major features:

Discover clusters of arbitrary shape

Handle noise

One scan

Need density parameters as termination condition

m Several interesting studies:
DBSCAN: Ester, et al. (19906)
OPTICS: Ankerst, et al (1999).
DENCLUE: Hinneburg & D. Keim (1998)
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Density-Based Clustering: Basic Concepts

m [wo parameters:
Eps: Maximum radius of the neighborhood

MinPts: Minimum number of points in an Eps-
neighborhood of that point

m Ngs(p):  {q belongs to D | d(p,q) <= Eps}

m Directly density-reachable: A point p is directly density-
reachable from a point g w.r.t. Eps, MinPts if

p belongs to Ng,s(q)

. . MinPts =5
core point condition:

[Neps ()] >= MinPts
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Density-Based Clustering: Basic Concepts

m Density-reachable:

A point p is density-reachable from
a point g w.r.t. Eps, MinPts if there
is a chain of points p,, ..., p,, ps =
q, p, = p such that p,,, Iis directly
density-reachable from p;

m Density-connected

A point p is density-connected to a
point g w.r.t. Eps, MinPts if there is
a point o such that both, p and g
are density-reachable from o w.r.t.
Eps and MinPts
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Explanation on whiteboard
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DBSCAN: Density Based Spatial

Clustering of Applications with Noise

m Relies on a density-based notion of cluster: A cluster is
defined as a maximal set of density-connected points

m Discovers clusters of arbitrary shape in spatial databases
with noise
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DBSCAN: The Algorithm

m Arbitrary select a point p

m Retrieve all points density-reachable from p w.r.t. Eps
and MinPts.

m If pis a core point, a cluster is formed containing p and all
the density-reachable points from p. Mark these points as
processed.

m Mark p as processed.

m Continue this process until all of the points have been
processed.
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DBSCAN: Sensitive to Parameters

Figure 8. DBScan
results for DS with
MinPts at 4 and Eps at
{a) 0.5 and (b) 0.4.

Figure 8. DBScan
rastlts for D52 with
MinPts at 4 and Eps at
(a)5.0, (b} 3.5, and
(e} 3.0.
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OPTICS: A Cluster-Ordering Method

m OPTICS: Ordering Points To Identify the Clustering
Structure

Ankerst, Breunig, Kriegel, and Sander (1999)

Produces a special order of the database w.r.t. its
density-based clustering structure

This cluster-ordering contains info equivalent to the
density-based clusterings corresponding to a broad
range of parameter settings

Good for both automatic and interactive cluster analysis,
including finding intrinsic clustering structure

Can be represented graphically or using visualization
techniques
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OPTICS basic concepts

m Core Distance of p wrt MinPts: smallest distance eps’

between p and an object in its eps-neighborhood such that
p would be a core object for eps’ and MinPts. Otherwise,
undefined.

m Reachability Distance of p wrt o:

Max (core-distance (0), d (o, p)) if o is core object.
Undefined otherwise

Max (core-distance (0), d (0, p)) MinPts = 5
inPts =

r(pl, 0) = 1.5cm. r(p2,0) =4cm 3

e =3 cm
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OPTICS

m (1) Select non-processed object o

m (2) Find neighbors (eps-neighborhood)

m Compute core distance for o

m Write object o to ordered file and mark o as processed
m [f ois not a core object, restart at (1)

m (Ois acore object...)

m Put neighbors of o in Seedlist and order

If neighbor n is not yet in SeedList then add (n, reachability from o)
else if reachability from o < current reachability, then update
reachability + order SeedList wrt reachability

m Take new object from Seedlist with smallest reachability and restart at
(2)
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Example on whiteboard
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DENCLUE: Using Statistical Density

Functions

m DENsity-based CLUstEring by Hinneburg & Keim (1998)
m Using statistical density functions
m Major features

Solid mathematical foundation

Good for data sets with large amounts of noise

Allows a compact mathematical description of arbitrarily shaped
clusters in high-dimensional data sets

Significant faster than DBSCAN

But needs a large number of parameters
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Denclue: Technical Essence

m Uses grid cells but only keeps information about grid cells that do

actually contain data points and manages these cells in a tree-based
access structure
Influence function: describes the impact of a data point within its

neighborhood e
fGaussian (xﬂy) =€ o OBS MiNnus

Overall density of the data space can be calculated as the sum of
the influence function of all data points

2
_d(xx;) OBS: minus

D N 2
fGaussian (x) — Zizl € =

Clusters can be determined mathematically by identifying density
attractors. Density attractors are local maxima of the overall density

function d(xx,)?
D N - 2 .
VfGaussian(x9 xi) :1621':1 (xi o x) € 20 OBS minus




Density Attractor
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Denclue: Technical Essence

m Significant density attractor for threshold k: density attractor with
density larger than or equal to k

m Center-defined cluster for a significant density attractor x for
threshold k: points that are density attracted by x

Points that are attracted to a density attractor with density less
than k are called outliers

m Set of significant density attractors X for threshold k: for each pair of
density attractors x1, x2 in X there is a path from x1 to x2 such that
each point on the path has density larger than or equal to k

m Arbitrary-shape cluster for a set of significant density attractors X for
threshold k: points that are density attracted to some density
attractor in X
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Center-Defined and Arbitrary-shape
clusters
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