Data Mining:

Concepts and Techniques

— Chapter 7 —

Jiawei Han

Department of Computer Science

University of Illinois at Urbana-Champaign

www.cs.uiuc.edu/~hanj

©2006 Jiawei Han and Micheline Kamber, All rights reserved

Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods

M

Hierarchical Clustering

Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition



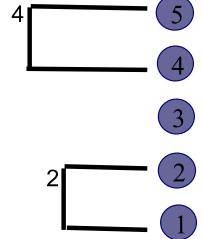
Complete-link Clustering Example

$$\begin{split} d_{(1,2),3} &= \max\{d_{1,3},d_{2,3}\} = \max\{6,3\} = 6\\ d_{(1,2),4} &= \max\{d_{1,4},d_{2,4}\} = \max\{10,9\} = 10\\ d_{(1,2),5} &= \max\{d_{1,5},d_{2,5}\} = \max\{9,8\} = 9 \end{split}$$

$$\frac{2}{1}$$

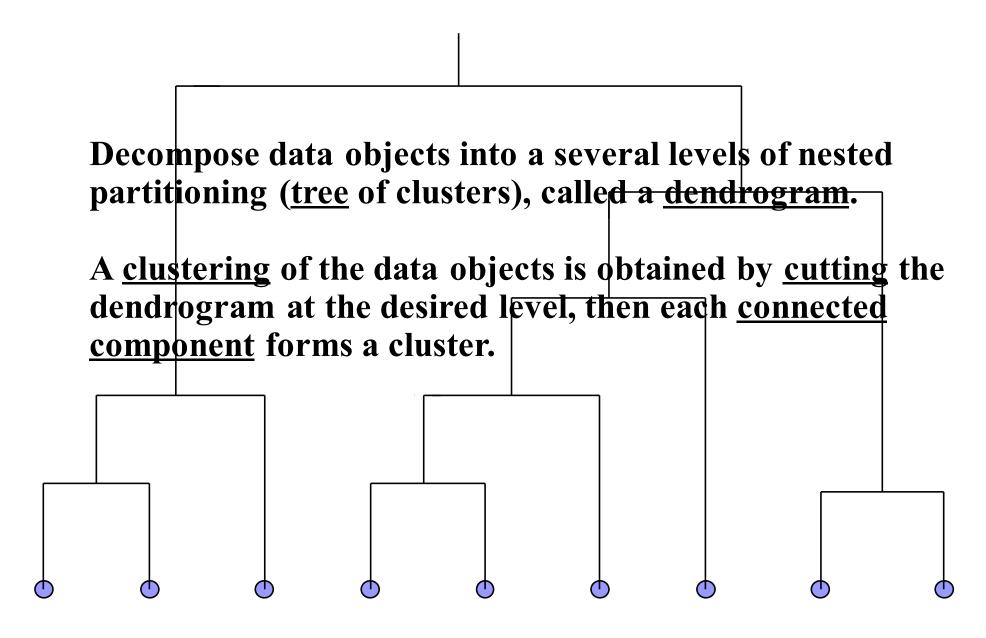
Complete-link Clustering Example

$$\begin{aligned} d_{(1,2),(4,5)} &= \max\{d_{(1,2),4},d_{(1,2),5}\} = \max\{10,9\} = 10 \\ d_{3,(4,5)} &= \max\{d_{3,4},d_{3,5}\} = \max\{7,5\} = 7 \end{aligned}$$



Complete-link Clustering Example

Dendrogram: Shows How the Clusters are Merged



AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - □ do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
 - □ can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - □ <u>BIRCH (1996)</u>: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - □ ROCK (1999): clustering categorical data by neighbor and link analysis
 - □ CHAMELEON (1999): hierarchical clustering using dynamic modeling

м

BIRCH

- Birch: Balanced Iterative Reducing and Clustering using Hierarchies (Zhang, Ramakrishnan & Livny, 1996)
- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 - □ Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 - □ Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- Weakness: handles only numeric data, and sensitive to the order of the data record, not₁always natural clusters.

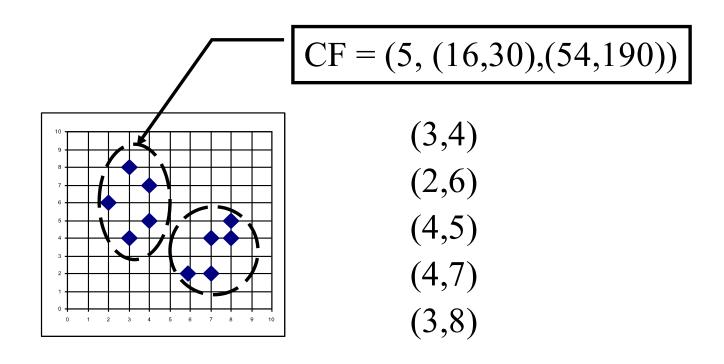
Clustering Feature Vector in BIRCH

Clustering Feature: CF = (N, LS, SS)

N: Number of data points

$$LS: \sum_{i=1}^{N} = \overline{X_i}$$

$$SS: \sum_{i=1}^{N} = \overline{X_i^2}$$



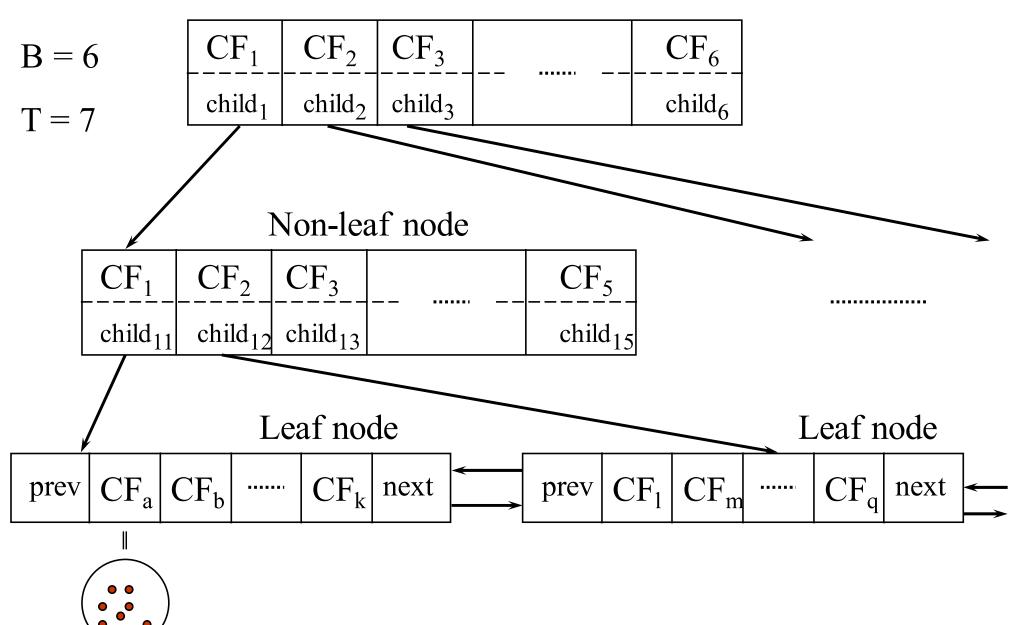
CE Troo in

CF-Tree in BIRCH

- Clustering feature:
 - summary of the statistics for a given subcluster: the 0-th, 1st and 2nd moments of the subcluster from the statistical point of view.
 - registers crucial measurements for computing cluster and utilizes storage efficiently
- A CF tree is a height-balanced tree that stores the clustering features for a hierarchical clustering
 - A nonleaf node in a tree has children and stores the sums of the CFs of their children
 - □ A nonleaf node represents a cluster made of the subclusters represented by its children
 - A leaf node represents a cluster made of the subclusters represented by its entries
- A CF tree has two parameters
 - Branching factor: specify the maximum number of children.
 - threshold: max diameter of sub-clusters stored at the leaf nodes

The CF Tree Structure

Root



Explanation on whiteboard

Example on whiteboard

ROCK: Clustering Categorical Data

- ROCK: RObust Clustering using links
 - □S. Guha, R. Rastogi & K. Shim, 1999
- Major ideas
 - □ Use links to measure similarity/proximity
 maximize the sum of the number of links
 between points within a cluster, minimize the
 sum of the number of links for points in different
 clusters
 - □ Computational complexity:

$$O(n^2 + nm_m m_a + n^2 \log n)$$

M

Similarity Measure in ROCK

Traditional measures for categorical data may not work well, e.g.,
 Jaccard coefficient

Example: Two groups (clusters) of transactions

- \Box C₂. <a, b, f, g>: {a, b, f}, {a, b, g}, {a, f, g}, {b, f, g}

Jaccard coefficient may lead to wrong clustering result

- \Box C₁: 0.2 ({a, b, c}, {b, d, e}) to 0.5 ({a, b, c}, {a, b, d})
- \square C₁ & C₂: could be as high as 0.5 ({a, b, c}, {a, b, f})

Jaccard coefficient-based similarity function:

$$Sim(T_1, T_2) = \frac{|T_1 \cap T_2|}{|T_1 \cup T_2|}$$

Ex. Let
$$T_1 = \{a, b, c\}, T_2 = \{c, d, e\}$$

$$Sim(T_1, T_2) = \frac{|\{c\}|}{|\{a, b, c, d, e\}|} = \frac{1}{5} = 0.2$$

Example on whiteboard

Similarity Measure in ROCK

Measure based on 'links'.

- Neighbor: p1 and p2 are neighbors iff sim(p1,p2) >= t (sim and t between 0 and 1)
- Link(pi,pj) is the number of common neighbors between pi and pj

м

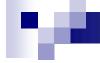
Similarity Measure in ROCK

- Links: # of common neighbors
 - $\square \quad C_1 <a, b, c, d, e>: \{\underline{a, b, c}, \{a, b, d\}, \{a, b, e\}, \{a, c, d\}, \\ \{a, c, e\}, \{a, d, e\}, \{b, c, d\}, \{b, c, e\}, \{b, d, e\}, \{\underline{c, d, e}\}$
 - \Box C₂ <a, b, f, g>: {a, b, f}, {a, b, g}, {a, f, g}, {b, f, g}
- Let $T_1 = \{a, b, c\}, T_2 = \{c, d, e\}, T_3 = \{a, b, f\}$ and sim the Jaccard coefficient similarity and t=0.5
 - \square link(T_1, T_2) = 4, since they have 4 common neighbors
 - {a, c, d}, {a, c, e}, {b, c, d}, {b, c, e}
 - □ link(T_1 , T_3) = 5, since they have 5 common neighbors
 - {a, b, d}, {a, b, e}, {a, b, g}, {a, b, c}, {a, b, f}

Example on whiteboard

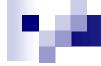
Similarity Measure in ROCK

- Link(Ci,Cj) = the number of cross links between clusters Ci and Cj
- G(Ci,Cj)
 - = goodness measure for merging Ci and Cj
- = Link(Ci,Cj) divided by the expected number of cross links



Computation of goodness measure on whiteboard

Computation of goodness measure on whiteboard



The ROCK Algorithm

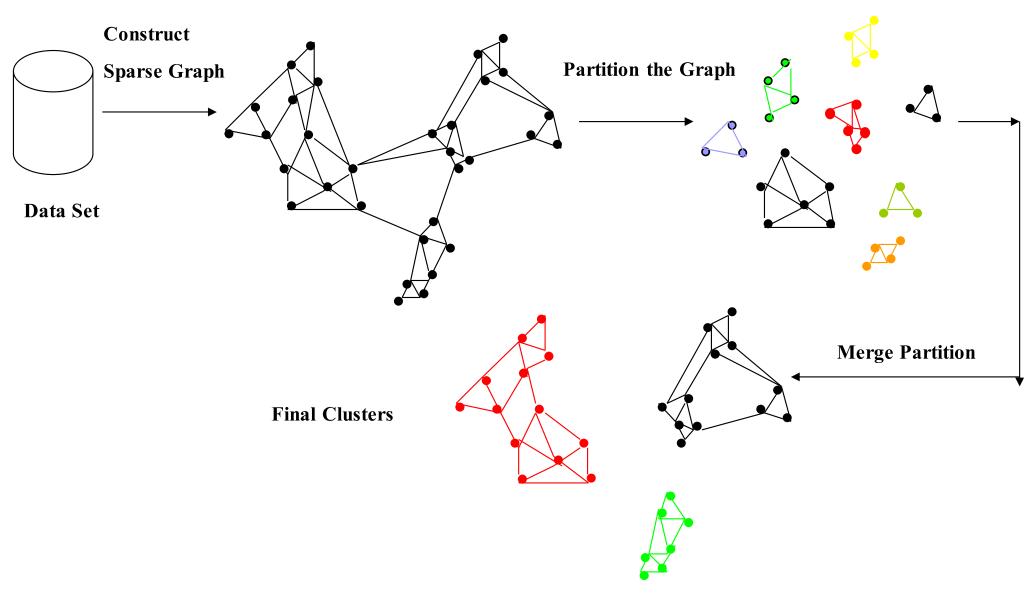
- Algorithm: sampling-based clustering
 - Draw random sample
 - Hierarchical clustering with links using goodness measure of merging and desired number of clusters
 - Label data in disk: a point is assigned to the cluster for which it has the most neighbors after normalization

CHAMELEON

- CHAMELEON: by G. Karypis, E.H. Han, and V. Kumar, 1999
- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the *interconnectivity* and *closeness* (*proximity*) between two clusters are high *relative to* the internal interconnectivity of the clusters and closeness of items within the clusters
- A two-phase algorithm
 - 1. Use a graph partitioning algorithm: cluster objects into a large number of relatively small sub-clusters
 - 2. Use an agglomerative hierarchical clustering algorithm: find the genuine clusters by repeatedly combining these sub-clusters

M

CHAMELEON



CHAMELEON

- A two-phase algorithm
 - 1. Use a graph partitioning algorithm: cluster objects into a large number of relatively small sub-clusters
 - Based on k-nearest neighbor graph
 - Edge between two nodes if points corresponding to either of the nodes are among the k-most similar points of the point corresponding to the other node
 - Edge weight is density of the region
 - Dynamic notion of neighborhood: in regions with high density, a neighborhood radius is small, while in sparse regions the neighborhood radius is large

2.

Example on whiteboard

CHAMELEON

- A two-phase algorithm
 - 1.
 - 2. Use an agglomerative hierarchical clustering algorithm: find the genuine clusters by repeatedly combining these sub-clusters
 - Interconnectivity between clusters Ci and Cj: normalized sum of the weights of the edges that connect nodes in Ci and Cj
 - Closeness of clusters Ci and Cj: average similarity between points in Ci that are connected to points in Cj
 - Merge if both measures are above user-defined thresholds

Explanation on whiteboard

CHAMELEON

