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What is Cluster Analysis?

m Cluster: a collection of data objects
Similar to one another within the same cluster
Dissimilar to the objects in other clusters
—> distance (or similarity) measures
m Cluster analysis

Finding similarities between data according to the characteristics
found in the data and grouping similar data objects into clusters

m Unsupervised learning: no predefined classes

m Typical applications
As a stand-alone tool to get insight into data distribution
As a preprocessing step for other algorithms
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Examples of Clustering Applications

m Marketing: Help marketers discover distinct groups in their customer

bases, and then use this knowledge to develop targeted marketing

programs

m |Land use: Identification of areas of similar land use in an earth

observation database

m |nsurance: ldentifying groups of motor insurance policy holders with a

high average claim cost

m City-planning: Identifying groups of houses according to their house

type, value, and geographical location

m Earth-quake studies: Observed earth quake epicenters should be

clustered along continent faults



Requirements of Clustering in Data Mining

Scalability
Ability to deal with different types of attributes
Discovery of clusters with arbitrary shape

Minimal requirements for domain knowledge to
determine input parameters

Able to deal with noise and outliers
nsensitive to order of input records

-High dimensionality

ncorporation of user-specified constraints

nterpretability and usability
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Data Structures

m Data matrix
n objects, p attributes
(two modes)
One row represents
one object

m Dissimilarity matrix
Distance table
(one mode)

X11 XIf

Xil Xif
_xnl Xnf
0

d2,1) 0

di3,1) d(3,2)

d(n,1) d(n,2)

0
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Distances between objects

Distances are normally used to measure the
similarity or dissimilarity between two data
objects

Properties
md(ij) >0
md(i,i)=0
= d(ij) = d(,i)
md(if) <d(iLk) + d(k,))
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Example on whiteboard

Is the following a distance measure?

d@i,j)= 0 ifi=]
1

otherwise
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Type of data in clustering analysis

m Interval-scaled variables

Continuous measurements (weight, temperature, ...)
m Binary variables

Variables with 2 states (on/off, yes/no)
m  Nominal variables

A generalization of the binary variable in that it can take more than 2

states (color/red,yellow,blue,green)
m  Ordinal

ranking is important (e.g. medals(gold,silver,bronze))
m Ratio variables

a positive measurementon a nonlinear scale (growth)

m Variables of mixed types
12
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Interval-valued variables

m Sometimes we need to standardize the data

Calculate the mean absolute deviation:

=X mm | X, —m | X —m )

_ 1
where m, = ﬁ(x1f+xf+ +X, )

Calculate the standardized measurement (z-score)

x —m,
z = _!

if S

l 5
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Example on whiteboard

Data set: {1,2,6} > n=3

_ 1
m, (x PRIE PR )

mf=1/3(1+2+6)=3
s = —m [ +]x, —m |+, —m )

sf=1/3( |1-3]|+|2-3|+|6-3|)=2

z1=(1=3)/2= -1
s, 72=(2-3)/2=-0.5
=(6-3)/2=15
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Distances between objects

m Euclidean distance:

.o 2 2 2
= — +|x, — +..4]x, —
G )= (1 = bl —x Pl —x, )

m Manhattan distance:

d(i,j)= XX |+|xl.2 X, |+...+|xl.p X, |

where 7= (X1, Xig, ..., Xip) @nd j = (X1, Xj, -.., Xip)
are two p-dimensmnal data objects,
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Distances between objects

m Minkowski distance:

d(i, )= \/(|x —x |q+|x —x . |+ Ax. —x . |D
2 2 Ip P

J
q is a positive integer
mIf g = 1, dis Manhattan distance

mIf g =2, dis Euclidean distance
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Example on whiteboard
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Binary Variables

m symmetric binary variables: both states are equally
important; 0/1

m asymmetric binary variables: one state is more
important than the other (e.g. outcome of disease
test); 1 is the important state, 0 the other
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Contingency tables for Binary Variables

Object j
1 0 Sum
| a b a+b
Object i
c d c+d
sum| a+c b+d p

a: number of attributes having 1 for object i and 1 for object j
b: number of attributes having 1 for object i and 0 for object j
C: number of attributes having 0 for object i and 1 for object j
d: number of attributes having 0 for object i and 0 for object j
p = a+b+c+d
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Distance measure for symmetric
binary variables

Object j
1 0 Sum
1 a b a+b
Object i
0 C d c+d

Sum

a+c b+d p

d(i,j)=

b+c

a+b+c+d
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Example on whiteboard

Jack

Mary P n P n o) n

Jane o) o) n n n n

p2>1, n>0
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Example on whiteboard
—mmmm

Jack o)
Mary P n P n o n
Jane o) P n n n n
| [mary| W [  Jyane] J | Jyane|
1 0 1 0 1 0
Jack 1 Jack 1 Mary 1
0 0 0

d(Jack, Mary) = d(Jack, Jane) = d(Mary, Jane) =
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Distance measure for asymmetric

binary variables

Object j
| 0 Sum
1 a b a+b
Object i
C d c+d
sum| a+c b+d p

(/)= a{?l—_ll;—cl—c

N e . N a
Jaccard coefficient = 1- d(i,j) = SlmJaccard(l’]) a+b+c
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Example on whiteboard
—mmmm

Jack o)
Mary P n P n o n
Jane o) P n n n n
| [mary| W [  Jyane] J | Jyane|
1 0 1 0 1 0
Jack 1 Jack 1 Mary 1
0 0 0

d(Jack, Mary) = d(Jack, Jane) = d(Mary, Jane) =
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Nominal or Categorical Variables

m Method 1: Simple matching

m: # of matches, p: total # of variables

d(i, H=L"

m Method 2: use a large number of binary variables

creating a new asymmetric binary variable for each of
the M nominal states (Homework)
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Example on whiteboard
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Ordinal Variables

m An ordinal variable can be discrete or continuous

m Order is important, e.g., rank

m Can be treated like interval-scaled
replace x; by their rank v, €i....M }
map the range of each variable onto [0, 1] by replacing
I-th object in the f~th variable by

v M —1
compute the dissimilarity using methods for interval-

scaled variables
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Example on whiteboard
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Ratio-Scaled Variables

m Ratio-scaled variable: a positive measurement on a
nonlinear scale, approximately at exponential scale,
such as Aef! or Ae*®t

m Methods:

treat them like interval-scaled variables—not a good
choice! (why?—the scale can be distorted)

apply logarithmic transformation

Yir= log(Xy)
treat them as continuous ordinal data, treat their rank

as interval-scaled
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Example on whiteboard
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Variables of Mixed Types

m A database may contain all the six types of variables

symmetric binary, asymmetric binary, nominal, ordinal, interval
and ratio

m  One may use a weighted formula to combine their effects:

Se SO
dG,j)="L=1"0 v

)
m f is binary or nominal: Z? = 151’]’

di? =0 ifxs=x¢, or d;{¥ = 1 otherwise
m f is interval-based: use the (normalized) distance
m f is ordinal or ratio-scaled
compute ranks r; and - _ F, 1
and treat z; as interval-scaled i Mf —1
delta(i,j) = O iff (i) x-value is missing or (ii) x-values are 0 and f
asymmetric binary attribute
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Example on whiteboard

A,E: interval-based variable, Euclidean distance
B: symmetricbinary variable
C,D: asymmetric binary variables

__A_ B __Cc D _|E_____
I 1 Y Y N 5

J 2 Y N N No-value
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X' is a transposition of vector X, |X| is the Euclidean normal of vector X,

JE—
Vector Objects

m Vector objects: keywords in documents,
gene features in micro-arrays, etc.

m Broad applications: information retrieval,
biologic taxonomy, efc.

m Cosine measure R
s(X,Y)

XY
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Vector model for information retrieval

(simplified)

_ Docl (1,1,0)
cloning 1
Q (1,1,1)
adrenergic
sim(d,q) = d.q
d x |q]

receptor
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Typical Alternatives to Calculate the
Distance between Clusters

m  Singlelink: smallestdistance between an elementin one cluster and an
elementin the other, i.e., d(K;, K)) = min d(t, t;)

m  Complete link: largest distance between an elementin one cluster and an
elementin the other, i.e., d(K;, K;) = max d(t;,, t)

m Average: avg distance between an elementin one cluster and an elementin
the other, i.e., d(K;, Kj) =avg d(t;,, t)

m Centroid: distance between the centroids of two clusters,
l.e., d(K, K;) =d(C;, C)

m  Medoid: distance between the medoids of two clusters,
.e., d(K, K;) =d(M;, M)

Medoid: one chosen, centrally located object in the cluster
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Example on whiteboard
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Centroid, Radius and Diameter of a
Cluster (for numerical data sets)

N
Centroid: the “middle” of a cluster C Z 1(%
m N

Radius: square root of average distance from any point of the

cluster to its centroid
\/ AN 2

ip m
m N

Diameter: square root of average mean squared distance between

—C
R =

N <N
DA t. —t.
i=1 i= l(lp iq )

N(N-1)

D, =

all pairs of points in the cluster \/
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