Data Mining:

Concepts and Techniques

— Chapter 7 —

Jiawei Han

Department of Computer Science

University of Illinois at Urbana-Champaign

www.cs.uiuc.edu/~hanj

©2006 Jiawei Han and Micheline Kamber, All rights reserved

Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods

What is Cluster Analysis?

- Cluster: a collection of data objects
 - □ Similar to one another within the same cluster
 - □ *Dissimilar* to the objects in other clusters
 - → distance (or similarity) measures
- Cluster analysis
 - ☐ Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - ☐ As a stand-alone tool to get insight into data distribution
 - □ As a preprocessing step for other algorithms

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning:</u> Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

M

Explanations on whiteboard

Explanations on whiteboard

Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods

Data Structures

- Data matrix
 - □ *n* objects, *p* attributes
 - □ (two modes)
 - One row represents one object

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

- Dissimilarity matrix
 - □ Distance table
 - □ (one mode)

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

NA.

Distances between objects

<u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects

Properties

■
$$d(i,j) \ge 0$$

$$d(i,i) = 0$$

$$d(i,j) = d(j,i)$$

$$d(i,j) \leq d(i,k) + d(k,j)$$

Is the following a distance measure?

$$d(i,j) = 0$$
 if $i = j$
= 1 otherwise

re.

Type of data in clustering analysis

- Interval-scaled variables
 - Continuous measurements (weight, temperature, ...)
- Binary variables
 - □ Variables with 2 states (on/off, yes/no)
- Nominal variables
 - □ A generalization of the binary variable in that it can take more than 2 states (color/red,yellow,blue,green)
- Ordinal
 - ranking is important (e.g. medals(gold,silver,bronze))
- Ratio variables
 - □ a positive measurement on a nonlinear scale (growth)
- Variables of mixed types

Interval-valued variables

- Sometimes we need to standardize the data
 - □ Calculate the mean absolute deviation:

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where
$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + ... + x_{nf})$$

□ Calculate the standardized measurement (*z-score*)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Data set:
$$\{1, 2, 6\} \rightarrow n = 3$$

$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$$

 $mf = 1/3 (1 + 2 + 6) = 3$

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

sf = 1/3 (| 1 - 3 | + | 2 - 3 | + | 6 - 3 |) = 2

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Distances between objects

Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Manhattan distance:

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects,

Distances between objects

Minkowski distance:

$$d(i,j) = \sqrt{\left(\left|x_{i_1} - x_{j_1}\right|^q + \left|x_{i_2} - x_{j_2}\right|^q + \dots + \left|x_{i_p} - x_{j_p}\right|^q\right)}$$

q is a positive integer

- If q = 1, d is Manhattan distance
- If q = 2, d is Euclidean distance

Binary Variables

- symmetric binary variables: both states are equally important; 0/1
- asymmetric binary variables: one state is more important than the other (e.g. outcome of disease test); 1 is the important state, 0 the other

Contingency tables for Binary Variables

Object j						
	1	0	sum			
1	a	b	a+b			
0	c	d	c+d			
um a	+c b	0+d	p			
	1 0 um a	$egin{array}{c c} & 1 & & \\ \hline 1 & a & & \\ 0 & c & & \\ \end{array}$	$ \begin{array}{c cccc} & 1 & 0 \\ \hline 1 & a & b \\ 0 & c & d \\ \end{array} $			

a: number of attributes having 1 for object i and 1 for object j b: number of attributes having 1 for object i and 0 for object j c: number of attributes having 0 for object i and 1 for object j d: number of attributes having 0 for object i and 0 for object j p = a+b+c+d

Distance measure for *symmetric* binary variables

Object
$$j$$

$$1 \quad 0 \quad sum$$
Object i

$$0 \quad c \quad d \quad c+d$$

$$sum \quad a+c \quad b+d \quad p$$

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

	Fever	Cough	test1	test2	test3	test4
Jack	p	n	p	n	n	n
Mary	p	n	p	n	p	n
Jane	p	p	n	n	n	n

$$p \rightarrow 1$$
; $n \rightarrow 0$

	Fever	Cough	test1	test2	test3	test4
Jack	p	n	р	n	n	n
Mary	p	n	p	n	p	n
Jane	р	р	n	n	n	n

		Mary	
		1	0
Jack	1		
	0		

		Jane	
		1	0
Jack	1		
	0		

		Jane	
		1	0
Mary	1		
	0		

Distance measure for asymmetric binary variables

Object
$$j$$

$$1 \quad 0 \quad sum$$
Object i

$$0 \quad c \quad d \quad c+d$$

$$sum \quad a+c \quad b+d \quad p$$

$$d(i,j) = \frac{b+c}{a+b+c}$$

Jaccard coefficient = 1- d(i,j) =
$$Sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$$

	Fever	Cough	test1	test2	test3	test4
Jack	p	n	р	n	n	n
Mary	p	n	p	n	p	n
Jane	p	р	n	n	n	n

		Mary	
		1	0
Jack	1		
	0		

		Jane	
		1	0
Jack	1		
	0		

		Jane	
		1	0
Mary	1		
	0		

Nominal or Categorical Variables

- Method 1: Simple matching
 - \square m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new asymmetric binary variable for each of the M nominal states (Homework)

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - \square replace x_{if} by their rank $r_{if} \in \{1,...,M_f\}$

$$r_{if} \in \{1, ..., M_f\}$$

map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for intervalscaled variables

Ratio-Scaled Variables

Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale, such as Ae^{Bt} or Ae^{-Bt}

Methods:

- □ treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
- □ apply logarithmic transformation

$$y_{if} = log(x_{if})$$

□ treat them as continuous ordinal data, treat their rank as interval-scaled

Variables of Mixed Types

- A database may contain all the six types of variables
 - symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• *f* is binary or nominal:

$$d_{ij}^{(f)} = 0$$
 if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise

- f is interval-based: use the (normalized) distance
- f is ordinal or ratio-scaled

$$\Box$$
 compute ranks r_{if} and $Z_{if} = \frac{r_{if} - 1}{M_f - 1}$

delta(i,j) = 0 iff (i) x-value is missing or (ii) x-values are 0 and f asymmetric binary attribute

A,E: interval-based variable, Euclidean distance

B: symmetric binary variable

C,D: asymmetric binary variables

	Α	В	С	D	Е
1	1	Y	Y	N	5
J	2	Υ	N	N	No-value

Vector Objects

- Vector objects: keywords in documents, gene features in micro-arrays, etc.
- Broad applications: information retrieval, biologic taxonomy, etc.
- Cosine measure

$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{|\vec{X}||\vec{Y}|},$$

 \vec{X}^t is a transposition of vector \vec{X} , $|\vec{X}|$ is the Euclidean normal of vector \vec{X} ,

Vector model for information retrieval (simplified)

M

Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $d(K_i, K_i) = \min d(t_{ip}, t_{iq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $d(K_i, K_i) = \max d(t_{ip}, t_{iq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., $d(K_i, K_i) = avg d(t_{ip}, t_{iq})$
- Centroid: distance between the centroids of two clusters,
 i.e., d(K_i, K_j) = d(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., $d(K_i, K_j) = d(M_i, M_j)$
 - Medoid: one chosen, centrally located object in the cluster

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_{m} = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$$

Radius: square root of average distance from any point of the

cluster to its centroid

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_i - c_m)^2}{N}}$$

Diameter: square root of average mean squared distance between

all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$