
723A75 Advanced Data Mining
TDDD41 Data Mining - Clustering and Association Analysis

Lecture 9: Summary and Exercise

Johan Alenlöv

IDA, Linköping University, Sweden



Outline

• Content

• Summary

• Proofs

• Exercise

1



Association Rules

• Goal: Given a transactional database find association rules on the form

X1, . . . ,Xn︸ ︷︷ ︸
(antecedent)

→ Y1, . . . ,Ym︸ ︷︷ ︸
(consequent)

with a user-specified minimum support and confidence.

• Support: The fraction of transactions that contains the full rule X ∪ Y .

(p(X ∪ Y ))

• Confidence: The fraction of transactions that contains X that also contains Y .

(p(Y |X ))

• Why? Help with decision making.

• Note that association is not causality.

• Two step solution:

1. Generate all itemsets with a given minimum support.

2. Generate all rules from these itemsets with minimum confidence.

2



Apriori Property

• For generating frequent itemsets the following apriori property is important.

• Every subset of a frequent itemset is frequent.

• Alternatively every superset of an infrequent itemset is infrequent.

• Two algorithms for generating frequent itemsets

Apriori algorithm Using the apriori property to generate candidate sets that are

tested.

Use the sets of length k to generate and test candidates of

length k + 1.

FP Grow Construct an FP-tree and find the itemsets by looking at the

conditional databases.

Constructs itemsets by building the chains with specific suffixes

first.

3



Rule Generation

• Given a frequent itemset L we wish to find a subset X ⊆ L such that the rule

X → L \ X has minimum confidence.

• Using the following property, if X ′ ⊆ X then

Conf(X → L \ X ) ≥ Conf(X ′ → L \ X ′),

we can reduce the number of sets to check.

• The algorithm goes over each subset (starting with maximal size) and then

checking all subsets to find rules with minimum support.

4



Constraints

• Other constraints can be added, such as minimum price, range of prices, sum of

prices, etc.

• Constraints can be,

Monotone If it is true for a set X then it is true for every superset X ′.

(X ⊆ X ′)

Antimonotone If it is true for a set X then it is true for every subset X ′.

(X ⊇ X ′)

Convertible Monotone If the items are sorted (in some way) then it is monotone.

Convertible Antimonotone If the items are sorted (in some way) then it is

antimonotone.

Strongly convertible If it is both convertible monotone and convertible

antimonotone.

Inconvertible Can’t be converted.

• Depending on the type of constraint different modifications to the algorithms are

made.

5



Apriori Algorithm Proof

Algorithm: apriori(D, minsup)

Input: A transactional database D and the minimum support minsup.

Output: All the large itemsets in D.

1 L1 = { large 1-itemsets }
2 for (k = 2; Lk−1 ̸= ∅; k ++) do

3 Ck = apriori-gen(Lk−1) // Generate candidate large k-itemsets

4 for all t ∈ D do

5 for all c ∈ Ck such that c ∈ t do

6 c.count ++

7 Lk = {c ∈ Ck |c.count ≥ minsup}
8 return

⋃
k Lk

Algorithm: apriori-gen(Lk−1)

Input: Large (k − 1)-itemsets.

Output: A superset of Lk .

1 Ck = ∅ // Self-join

2 for all I , J ∈ Lk−1 do

3 if I1 = J1, . . . , Ik−2 = Jk−2 and Ik−1 < Jk−1 then

4 add {I1, . . . , Ik−1, Jk−1} to Ck

5 for all c ∈ Ck do // Prune

6 for all (k − 1)-subsets s of c do

7 if s /∈ Lk−1 then

8 remove c from Ck

9 return Ck

• We prove by induction on k that the algorithm is enough.

• k = 1 is trivial.

• Induction hypothesis: Assume that the algorithm is correct up to k − 1.

We now want to prove that the algorithm is correct for k.

It is enough to show that Lk ⊆ Ck .
• We perform a proof by contradiction. Assume that I ∈ Lk but I ̸∈ Ck . Then,

• {I1, I2, . . . , Ik−2, Ik−1} ∈ Lk−1 follows from I ∈ Lk by the apriori property and the

induction hypothesis.

• {I1, I2, . . . , Ik−2, Ik} ∈ Lk−1 follows from I ∈ Lk by the apriori property and the

induction hypothesis.

• Then I ∈ Ck by the self-join step.

• Since I ∈ Lk , every subset of I is large by the apriori property.

• Thus I will not be removed in the prune-step and I ∈ Ck

• This is a contradiction and thus the algorithm is correct for k.
6



Rule Generation Algorithm Proof

1 for all large itemsets lk with k ≥ 2 do

2 call genrules(lk , lk , minconf )

Algorithm: genrules(lk , am, minconf )

Input: A large itemset lk , a set am ⊆ lk , the minimum confidence minconf .

Output: All the rules of the form a → lk \ a with a ⊆ am and confidence equal or above minconf .

1 A = {(m − 1)-itemsets am−1|am−1 ⊆ am}
2 for all am−1 ∈ A do

3 conf = support(lk ) / support(am−1) // Confidence of the rule am−1 → lk \ am−1

4 if conf ≥ minconf then

5 output the rule am−1 → lk \ am−1 with confidence=conf and support=support(lk )

6 if m − 1 > 1 then call genrules(lk , am−1, minconf )

• We prove by contradiction that the rule generation algorithm is correct.
• Assume that the algorithm missed a rule. Let am−1 → lk \ am−1 denote one of

the missing rules with the largest antecedent. Then,
• Note that lk has minimum support and, thus, it is outputted by the apriori algorithm

since this is correct.

• Then, the rule generation algorithm cannot have missed the rule if m = k.

• Moreover if m < k, then

confidence(am → lk \ am) = support(lk )/support(am) ≥ support(lk )/support(am−1)

= confidence(am−1 → lk \ am−1) ≥ minconf .

• Note that the algorithm didn’t miss the rule am → lk \ am.

• Then the algorithm couldn’t have missed the rule am−1 → lk \ am−1.

• This contradicts our assumption and, thus, the algorithm is correct.

7



Exercise

• Run the Apriori algorithm on the following transactional database with minimum

support equal to one transaction. Explain step by step the execution.

Tid Items

1 A, B, C

2 X, Y, Z

3 A, Y, C

4 X, B, Z

• Repeat with the constraint that the itemsets has to contain A. Make it clear

when the constraint is used, don’t just run the algorithm and consider the

constraint at the end.

• Let the items A, B, C, X, Y, and Z, have the price of respectively

−3,−2,−1, 1, 2, and 3 units. Repeat the exercise with the constraint: Find the

frequent itemsets with range less than 3. Make it clear when the constraint is

used, don’t just run the algorithm and consider the constraint at the end.

• Repeat the exercises above with the FP grow algorithm

• Apply the rule generation algorithm to the frequent itemset XBZ on the database

above in order to find association rules with confidence 0.5

8


