LINKOPING
II.“ UNIVERSITY

723A75 Advanced Data Mining
TDDDA41 Data Mining - Clustering and Association Analysis

Lecture 8: Constrained Frequent Itemset Mining

Johan Alenlév
IDA, Linképing University, Sweden

= Content
= Recap
= Monotone and anitmonotone constraints
= Apriori algorithm with constraints
= FP grow algorithm with constraints
= Convertible (anti) monotone constraints
= Summary

= Litterature

= Course Book. 2nd ed.: 5.5. 3rd ed.: 7.3
= Pei, J., and Han, J. Can We Push More Constraints into Frequent Pattern Mining?.
In Proc. of the 2000 Int. Conf. on Knowledge Discovery and Data Mining, 2000.

Recap: FP Grow Algorithm

Algorithm: FP-tree(D, minsup)
Input: A transactional database D, and the minimum support minsup.
Output: The FP tree for D and minsup.
1 Count support for each item in D
2 Remove the infrequent items from the transactions in D
3 Sort the items in each transaction in D in support descending order
4 Create a FP tree with a single node T with T.name = NULL
5 for each transaction / € D do
6 insert-tree(/, T)
Algorithm: insert-tree(/1,...Im, T)
Input: An itemset ,...,/m, and a node T in the FP tree.
Output: Modified FP tree.
1 if T has a child N such that N.name = I;.name then
2 N.count 4+ +
3 else
4 create a new child N of T with N.name = I;.name and N.count =1
5 if m> 1 then
6 insert-tree (o, ..., Im, N) 2

Recap: FP Grow Algorithm

= To mine the FP tree Tree, call FP-grow(Tree, NULL, minsup).

Algorithm: FP-grow(Tree, o, minsup)
Input: A FP tree Tree, an itemset «, and the minimum support minsup.
Output: All the itemsets in Tree that end with « and have minsup.

for each item X in Tree do
output the itemset 5 = XU a with support=X.count
build the 3 conditional database and the corresponding FP tree Treeg

AW N =

if Treeg is not empty then call FP-grow(Treeg, 3, minsup)

= The algorithm above can be made more efficient by adding the lines below.

0.1 if Tree has a single branch then

0.2 for each combination 3 of the nodes in the branch do

0.3 output the itemset 3 U a with support = minxcg X.count
0.4 else

= The FP grow algorithm is correct.

Exercise

= Run the FP grow algorithm on the database below with minsup 2.

Tid | ltems

1 A B, E

2 B, D

3 B, C

4 A, B, D

5 A C

6 B, C

7 A, C

8 A B, C E
9 A, B, C

= Show the execution details (i.e. FP tree construction, conditional databases,
recursive calls), not just the frequent itemsets found.

Monotone and Antimonotone Constraints

= A constraint is a function that returns true or false for every itemset.

= |t tells us if the itemset satisfies the constraint or not.
= The itemset has support equal or greater than a given value.
= The sum of the prices of the items in the itemset is greater than a given value.
= The most expensive item in the itemset cost less than a given value.
= The itemset contains a specific value.
= The itemset contains exactly a certain number of items.
= A constraint C is monotone when for every itemset A and B such that A C B, if
C(A) = true then C(B) = true.

= The itemset contains a certain item.

= A constraint C is antimonotone when for every itemset A and B such that A C B,
if C(B) = true then C(A) = true.
= The support of the itemset is equal or greater than a given value.
= Alternatively, Cis antimonotone when for every itemset A and B such that
A C B, if C(A) = false then C(B) = false.
= Note that the apriori property applies to every antimonotone constrain, i.e. no
need to check the constraint for supersets of A if C(A) = false.

Examples of Monotone and Antimonotone Constraints

= Here S is the set of prices in the itemset and v is a given values.
= Examples of monotone constraints:

= sum(S) > v

= min(S) <v

= range(S) > v
= Examples of antimonotone constraints:

= sum(S) < v

= max(S) <v

= range(S) < v

Examples of Monotone and Antimonotone Constraints

Constraint Antimonotone Monotone

ves No Yes

SOV No Yes

SCv Yes No

min(S) < v No Yes

min(S) > v Yes No

max(S) < v Yes No

max(S) > v No Yes

count(S) < v Yes No

count(S) > v No Yes

sum(S) <v(a€ S,a>0) Yes No

sum(S) >v(ae S,a>0) No Yes

range(S) < v Yes No

range(S) > v No Yes
avg(S)0v, 0 € {<,>} No but convertible | No but convertible

support(S) > & Yes No

support(S) < ¢ No Yes

Apriori Algorithm with Antimonotone Constraint

0 ~NO O wWwN -

Algorithm: apriori(D, minsup, C)
Input: A transactional database D, minsup, and an antimonotone constraint C.
Output: All the large itemsets in D that satisfy C.

L; = { large 1-itemsets that satisfy C }
for (k=2;Ly_1 #0;k++) do

Cy = apriori-gen(Ly_1) // Generate candidate large k-itemsets

for all t € D do

for all ¢ € Ci such that c € t do
c.count + +

Ly = {c € Cy|c.count > minsup and C(c)=true}

return (J, Lx

Apriori Algorithm with Antimonotone Constraint

Run the Apriori algorithm with the following database with minsup 2 and constraint
sum(S) < 5 where the item price coincides with the item id.

Tid | ltems Itemset | sup Itemset | sup
1 [1,34 g{ i {1} 2
2 2,3,5 G Ly {2} 3 —
3 11,235 S& i BEEEY 3
4 |25 5 3 {5} 3
Itemset Itemset | sup
{1,2} {1,2} 1 Itemset | sup
{1,3} {1,3} 2 {1,3} 2
G| {1,5} {1,5} 1 Ly | {2,3} 2 | —
@3y | [{23 | 2 | {25 | 3
{2,5} {2,5} 3 {3,5} 2
{3,5} {3,5} 2
G Itemset Ly Itemset | sup
—1 4{2,3,5} |—=| {2,3,5} 2

Apriori Algorithm with Antimonotone Constraint

Run the Apriori algorithm with the following database with minsup 2 and constraint
sum(S) < 5 where the item price coincides with the item id.

Tid Items Ite:{nlwiet s;p Itemset | sup
1 1,3, 4 7 3 {1} 2
2 2,3,5 _C_1> {3} 3 _Li) {2} 3 —
3 1,2,3,5 (ar 1 {3} 3
4 2,5 5 3 {8 3
ltemset Itemset | sup
{1,2} {1,2} 1 Itemset | sup
{1,3} {1,3} 2 {1,3} 2
G| MBY | | AMRY | ¥ (L | BN | 7 | —
{2,3} {23} | 2 AUBY | 3
AUBY AUBY | 3 ABBY | 2
ABBY ABBY | 2
G Itemset Ly Itemset | sup
— | A2BIBY | — | AUBIEE | 2

Apriori Algorithm with Monotone Constraint

0 ~NO O WN =

Algorithm: apriori(D, minsup, C)
Input: A transactional database D, minsup, and a monotone constraint C.
Output: All the large itemsets in D that satisfy C.

Ly = { large 1l-itemsets }
for (k=2;Lx_1 #0;k++) do

Cx = apriori-gen(Ly—1) // Generate candidate large k-itemsets

for all t € D do

for all ¢ € Ci such that c € t do
c.count + +

Ly = {c € Cy|c.count > minsup}

return {c € |J, Lx|C(c) = true or C(d) = true for some d C c}

Apriori Algorithm with Monotone Constraint

Run the Apriori algorithm with the following database with minsup 2 and constraint
sum(S) > 5 where the item price coincides with the item id.

Tid | ltems Itemset | sup Itemset | sup
1 [1,34 g{ i {1} 2
2 2,3,5 G Ly {2} 3 —
3 11,235 S& i BEEEY 3
4 |25 5 3 {5} 3
Itemset Itemset | sup
{1,2} {1,2} 1 Itemset | sup
{1,3} {1,3} 2 {1,3} 2
G| {1,5} {1,5} 1 Ly | {2,3} 2 | —
{23 | [{23 | 2 || {25 | 3
{2,5} {2,5} 3 {3,5} 2
{3,5} {3,5} 2
G Itemset Ly Itemset | sup
—= | {2,3,5} | =1 {2,3,5} 2

FP Grow Algorithm with Monotone Constraint

SO W N

Algorithm: FP-grow(Tree, o, minsup, C)
Input: A FP tree Tree, an itemset o, minsup, and a monotone constraint C.
Output: All the itemsets in Tree that end with «, have minsup and satisfy C.

if C(o) = true then

replace C with Cirye // Ctrue is a constraint that always returns true
for each item X in Tree do

output the itemset 8 = XU a with support=X.count if C([3) = true

build the 3 conditional database and the corresponding FP tree Treeg

if Treeg is not empty then call FP-grow(Treeg, 3, minsup, C)

FP Grow Algorithm with Monotone Constraint

Run the FP Grow algorithm with the following database with minsup 2 and constraint
sum(S) > 5 where the item price coincides with the item id.

{}

Tid | ltems 2:3 31 Item | Conditional database
1 1,3 4 / \ ‘ 2 _

2 2,3, 5 3:2 5:1 1:1 3 2:2

3 1,2,3,5 ‘ 5 2:1, 2,3:2

4 2,5 5:2 1 3:1, 2,3,5:1

1:1
5-conditional database
Tid | ltems
1 2 Now C(5) = true so we replace C with Cirye.

2,3
2,3

FP Grow Algorithm with Antimonotone Constraint

Algorithm: FP-tree(D, minsup, C)
Input: A transactional database D, minsup, and an antimonotone constraint C.
Output: The FP tree for D, minsup and C.
1 Count support for each item in D
2 Remove the infrequent items from the transactions in D
3 Remove the items that do not satisfy C from the transactions in D
4 Sort the items in each transaction in D in support descending order
5 Create a FP tree with a single node T with T.name = NULL
6 for each transaction / € D do
7 insert-tree(/, T)
Algorithm: FP-grow(Tree, a, minsup, C)
Input: A FP tree Tree, an itemset o, minsup, and an antimonotone constraint C.
Output: All the itemsets in Tree that end with «, have minsup and satisfy C.
1 let § denote all the items in Tree
2 if ((aUd) = true then
3 replace C with Cirye // Ctrue is a constraint that always returns true
4 for each item X in Tree do
5 if C(XU «) = true then
6 output the itemset 8 = XU « with support=X.count
7 build the 8 conditional database and the corresponding FP tree Treeg
8 if Treeg is not empty then call FP-grow(Treeg, 3, minsup, C)

FP Grow Algorithm with Antimonotone Constraint

Run the FP Grow algorithm with the following database with minsup 2 and constraint
sum(S) < 5 where the item price coincides with the item id.

{}
Tid | Items / \ —
1 134 23 31 Item | Conditional database
2 _
235 | |
3 (1,235 32 11 3|22
il | ' 1 |31,231

4 2,5 ‘

1:1

3-conditional database
Tid | ltems
1 2
2 2

Now C(3 U 2) = false so we stop.

Convertible Monotone and Antimonotone Constraint

= We saw that avg(S) < v and avg > v was neither monotone nor antimonotone.

= A constraint C is convertible monotone when there exists an item order R such
that for every itemsets A and B respecting R such that A is a suffix of B, if
C(A) = true then C(B) = true.

= avg(S) > v with respect to decreasing price order.

= A constraint C is convertible antimonotone when there exists an item order R
such that for every itemsets A and B respecting R such that B is a suffix for A, if
C(A) = true then C(B) = true.

= avg(S) > v with respect to increasing price order.
= Alternatively, C is convertible antimonotone when there exists an item order R

such that for every itemsets A and B respecting R such that B is a suffix for A, if
C(B) = false then C(A) = false.

= A constraint that is both convertible monotone and antimonotone is called
strongly convertible.

Convertible Monotone and Antimonotone Constraints

. Convertible Convertible Strongly
Constraint i >
antimonotone monotone convertible

avg(S) <,> v Yes Yes Yes
median(S) <,> v Yes Yes Yes
sum(S) < v, v>0 Yes No No
sum(S) < v, v<0 No Yes No
sum(S) > v, v>0 No Yes No
sum(S) > v, v<0 Yes No No

!For the sum constraints the prices are of any value (negative or positive)

= Constraints can be added to the mining process to find itemsets that satisfy a
certain constraint.

= Constraints can be antimonotone, monotone, convertible or inconvertible

= Depending on the type of constraint different modification to the mining
algorithms are made.

