
723A75 Advanced Data Mining
TDDD41 Data Mining - Clustering and Association Analysis
Lecture 7: FP Grow Algorithm

Johan Alenlöv
IDA, Linköping University, Sweden



Outline

argmin x∈D

• Content
• Recap
• Frequent Pattern (FP) Grow Algorithm
• Exercise
• Summary

• Litterature
• Course Book. 2nd ed.: 5.2.4. 3rd ed.: 6.2.4
• Han, J., Pei, J., and Yin, Y. Mining Frequent Patterns without Candidate Generation.

In Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of Data, 2000.

1



Recap

• Given a database of transactions we want to find association rules,

Item1, . . . , Itemm → Itemm+1, . . . , Itemn

(X → Y)

with a user-specified minimum support and confidence.
• support: Fraction of transactions that contains th full rule Item1, . . . , Itemn.

(p(X,Y))
• confidence: Fraction of transactions that contain Item1, . . . , Itemm which also

contain Itemm+1 → Itemn. (p(Y |X))
• We find the rules in two steps:

1. Find all frequent itemsets
2. Find all rules with minimum confidence from these sets.

2



Recap: Apriori Algorithm

• Using the following apriori propeerty:
• Every subset of a frequent itemset is frequent.
• Alternatively, every superset of an infrequent itemset is infrequent.

• The Apriori Algorithm works as follows:
1. Find all 1-itemsets.
2. Use the previous found frequent itemsets and the apriori property to generate candidates

for the next frequent itemsets.
3. Go through the candidates to find the itemsets.

Step 2 and 3 are repeated until no new frequent itemsets are found.
• We proved by induction that the algorithm is correct.

3



Recap: Generate rules

• Given a large itemset L we wish to generate rules

X → L \ X,

where X ⊂ L.
• These rules should have a minimum confidence.
• The algorithm uses the following apriori property:

• If X does not result in a rule with minimum confidence for L, then neither does any
subset X′ ⊂ X,

confidence(X → L \ X) = support(L)
supportX ≥ support(L)

support(X′) = confidence(X′ → L \ X′)

1 for all large itemsets lk with k ≥ 2 do
2 call genrules(lk, lk, minconf)

Algorithm: genrules(lk, am, minconf)
Input: A large itemset lk, a set am ⊆ lk, the minimum confidence minconf.
Output: All the rules of the form a → lk \ a with a ⊆ am and confidence equal or above minconf.

1 A = {(m − 1)-itemsets am−1|am−1 ⊆ am}
2 for all am−1 ∈ A do
3 conf = support(lk) / support(am−1) // Confidence of the rule am−1 → lk \ am−1
4 if conf ≥ minconf then
5 output the rule am−1 → lk \ am−1 with confidence=conf and support=support(lk)
6 if m − 1 > 1 then call genrules(lk, am−1, minconf)

4



Recap: Rule Generation Algorithm Proof

1 for all large itemsets lk with k ≥ 2 do
2 call genrules(lk, lk, minconf)

Algorithm: genrules(lk, am, minconf)
Input: A large itemset lk, a set am ⊆ lk, the minimum confidence minconf.
Output: All the rules of the form a → lk \ a with a ⊆ am and confidence equal or above minconf.

1 A = {(m − 1)-itemsets am−1|am−1 ⊆ am}
2 for all am−1 ∈ A do
3 conf = support(lk) / support(am−1) // Confidence of the rule am−1 → lk \ am−1
4 if conf ≥ minconf then
5 output the rule am−1 → lk \ am−1 with confidence=conf and support=support(lk)
6 if m − 1 > 1 then call genrules(lk, am−1, minconf)

• We prove by contradiction that the rule generation algorithm is correct.
• Assume that the algorithm missed a rule. Let am−1 → lk \ am−1 denote one of

the missing rules with the largest antecedent. Then,
• Note that lk has minimum support and, thus, it is outputted by the apriori algorithm

since this is correct.
• Then, the rule generation algorithm cannot have missed the rule if m = k.
• Moreover if m < k, then

confidence(am → lk \ am) = support(lk)/support(am) ≥ support(lk)/support(am−1)

= confidence(am−1 → lk \ am−1) ≥ minconf.

• Note that the algorithm didn’t miss the rule am → lk \ am.
• Then the algorithm couldn’t have missed the rule am−1 → lk \ am−1.
• This contradicts our assumption and, thus, the algorithm is correct.

5



FP Grow Algorithm

• As previous, assume that we have access to some transactional data,
Tid Items
1 F, A, C, D, G, I, M, P
2 A, B, C, F, L, M, O
3 B, F, H, J, O, W
4 B, C, K, S, P
5 A, F, C, E, L, P, M, N

• The FP grow algorithm returns all frequent itemsets without candidate
generation and may save time and space.

• First, it finds frequent 1-itemsets and sorts the frequent items within each
transaction in support decending order, e.g. with minsup = 3

Tid Items
1 F, C, A, M, P
2 F, C, A, B, M
3 F, B
4 C, B, P
5 F, C, A, M, P

• Then it outputs the frequent 1-itemsets, F, C, A, B, M, and P.

6



FP Grow Algorithm

• Given the new sorted set it constructs a so-called FP tree.
Tid Items
1 F, C, A, M, P
2 F, C, A, B, M
3 F, B
4 C, B, P
5 F, C, A, M, P

{}

F:1

C:1

A:1

M:1

P:1

7



FP Grow Algorithm

• Given the new sorted set it constructs a so-called FP tree.
Tid Items
1 F, C, A, M, P
2 F, C, A, B, M
3 F, B
4 C, B, P
5 F, C, A, M, P

{}

F:2

C:2

A:2

M:1

P:1

B:1

M:1

8



FP Grow Algorithm

• Given the new sorted set it constructs a so-called FP tree.
Tid Items
1 F, C, A, M, P
2 F, C, A, B, M
3 F, B
4 C, B, P
5 F, C, A, M, P

{}

F:3

C:2

A:2

M:1

P:1

B:1

M:1

B:1

9



FP Grow Algorithm

• Given the new sorted set it constructs a so-called FP tree.
Tid Items
1 F, C, A, M, P
2 F, C, A, B, M
3 F, B
4 C, B, P
5 F, C, A, M, P

{}

F:3

C:2

A:2

M:1

P:1

B:1

M:1

B:1

C:1

B:1

P:1

10



FP Grow Algorithm

• Given the new sorted set it constructs a so-called FP tree.
Tid Items
1 F, C, A, M, P
2 F, C, A, B, M
3 F, B
4 C, B, P
5 F, C, A, M, P

{}

F:4

C:3

A:3

M:2

P:2

B:1

M:1

B:1

C:1

B:1

P:1

• Finally, it mines the FP tree for frequent itemsets instead of the original database.
11



FP Grow Algorithm

Algorithm: FP-tree(D, minsup)
Input: A transactional database D, and the minimum support minsup.
Output: The FP tree for D and minsup.

1 Count support for each item in D
2 Remove the infrequent items from the transactions in D
3 Sort the items in each transaction in D in support descending order
4 Create a FP tree with a single node T with T.name = NULL
5 for each transaction I ∈ D do
6 insert-tree(I,T)

Algorithm: insert-tree(I1, . . . Im,T)
Input: An itemset I1, . . . , Im, and a node T in the FP tree.
Output: Modified FP tree.

1 if T has a child N such that N.name = I1.name then
2 N.count ++

3 else
4 create a new child N of T with N.name = I1.name and N.count = 1
5 if m > 1 then
6 insert-tree (I2, . . . , Im,N) 12



FP Grow Algorithm

• The X-conditional database consists of all the prefix paths leading to X in the FP
tree.

{}

F:4

C:3

A:3

M:2

P:2

B:1

M:1

B:1

C:1

B:1

P:1

Item Conditional database
F -
C F:3
A FC:3
B FCA:1, F:1, C:1
M FCA:2, FCAB:1
P FCAM:2, CB:1

• The support of each prefix path in the conditional database is equal to the count
of X for that prefix path.

• The X-conditional database contains all the itemsets in D that end with X.
• It is enough to mine the X-conditional database to find all the frequent itemsets

in D that end with X.
• Re-start the algorithm for the X-conditional database, i.e. call the FP grow

algorithm recursively.

13



FP Grow Algorithm

• If we look at the M-conditional database, ({FCA : 2,FCAB : 1})
Tip Items
1 F, C, A
2 F, C, A
3 F, C, A, B

• After finding the frequent 1-itemsets and sorting the transactions we have
Tid Items
1 F, C, A
2 F, C, A
3 F, C, A

• Output the frequent 1-itemsets, adding M as suffix (FM, CM, AM)
• Build the FP tree and the conditional databases.

{}

F:3

C:3

A:3

Item Conditional database
F -
C F:3
A FC:3

• Restart the algorithm for the FM, CM, and AM condtional databases.

14



FP Grow Algorithm

• For the AM-conditional database ({FC : 3}), or
Tid Items
1 F,C
2 F,C
3 F,C

• After finding the 1-itemsets and sorting the transactions we have
Tid Items
1 F,C
2 F,C
3 F,C

• Output th 1-itemsets, adding AM as a suffix. (FAM and CAM).
• Build the FP tree and the econditional databases.

{}

F:3

C:3

Item Conditional database
F -
C F:3

• Restart the algorithm for the FAM and CAM conditional databases.

15



FP Grow Algorithm

• For the CAM-conditional database ({F : 3}), or
Tid Items
1 F
2 F
3 F

• After finding the 1-itemsets and sorting the transactions we have
Tid Items
1 F
2 F
3 F

• Output th 1-itemsets, adding CAM as a suffix. (FCAM).
• Build the FP tree and the econditional databases.

{}

F:3

Item Conditional database
F -

• Conditional database is empty.
Backtrack.

16



FP Grow Algorithm

• To mine the FP tree Tree, call FP-grow(Tree, NULL, minsup).

Algorithm: FP-grow(Tree, α, minsup)
Input: A FP tree Tree, an itemset α, and the minimum support minsup.
Output: All the itemsets in Tree that end with α and have minsup.

1 for each item X in Tree do
2 output the itemset β = X ∪ α with support=X.count
3 build the β conditional database and the corresponding FP tree Treeβ
4 if Treeβ is not empty then call FP-grow(Treeβ , β, minsup)

• The algorithm above can be made more efficient by adding the lines below.

0.1 if Tree has a single branch then
0.2 for each combination β of the nodes in the branch do
0.3 output the itemset β ∪ α with support = minX∈β X.count
0.4 else

• The FP grow algorithm is correct.

17



FP Grow Algorithm

• With small values for minsup, there are many and long candidates, which implies
long runtime due to expensive operations such as pattern matching, subset
checking, storing, etc.

18



Exercise

• Run the FP grow algorithm on the database below with minsup 2.
Tid Items
1 A, B, E
2 B, D
3 B, C
4 A, B, D
5 A, C
6 B, C
7 A, C
8 A, B, C, E
9 A, B, C

• Show the execution details (i.e. FP tree construction, conditional databases,
recursive calls), not just the frequent itemsets found.

• Solution : {A,B,C,D,E,AB,AC,AE,BC,BD,BE,ABC,ABE}

19



Summary

• Mining transactions to find rules of the form

Item1, . . . , Itemm → Itemm+1, . . . , Itemn

with user-defined minimum support and confidence.
• Two-step solution:

1. Find all the large itemsets.
2. Generate all the rules with minimum confidence.

• We have seen two solutions for step 1. Apriori and FP grow algorithm.
• The runtime can differ a lot for small values of minsup.

20


