723A75 Advanced Data Mining TDDD41 Data Mining - Clustering and Association Analysis

Lecture 7: FP Grow Algorithm

Johan Alenlöv
IDA, Linköping University, Sweden

Outline

$\arg \min _{x \in D}$

- Content
- Recap
- Frequent Pattern (FP) Grow Algorithm
- Exercise
- Summary
- Litterature
- Course Book. 2nd ed.: 5.2.4. 3rd ed.: 6.2.4
- Han, J., Pei, J., and Yin, Y. Mining Frequent Patterns without Candidate Generation. In Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of Data, 2000.

Recap

- Given a database of transactions we want to find association rules,

$$
\begin{aligned}
\text { Item }_{1}, \ldots, \text { Item }_{m} & \rightarrow \text { Item }_{m+1}, \ldots, \text { Item }_{n} \\
(X & \rightarrow Y)
\end{aligned}
$$

with a user-specified minimum support and confidence.

- support: Fraction of transactions that contains th full rule Item ${ }_{1}, \ldots$, Item ${ }_{n}$. $(p(X, Y))$
- confidence: Fraction of transactions that contain Item ${ }_{1}, \ldots$, Item ${ }_{m}$ which also contain Item ${ }_{m+1} \rightarrow$ Item $_{n} .(p(Y \mid X))$
- We find the rules in two steps:

1. Find all frequent itemsets
2. Find all rules with minimum confidence from these sets.

Recap: Apriori Algorithm

- Using the following apriori propeerty:
- Every subset of a frequent itemset is frequent.
- Alternatively, every superset of an infrequent itemset is infrequent.
- The Apriori Algorithm works as follows:

1. Find all 1-itemsets.
2. Use the previous found frequent itemsets and the apriori property to generate candidates for the next frequent itemsets.
3. Go through the candidates to find the itemsets.

Step 2 and 3 are repeated until no new frequent itemsets are found.

- We proved by induction that the algorithm is correct.

Recap: Generate rules

- Given a large itemset L we wish to generate rules

$$
X \rightarrow L \backslash X
$$

where $X \subset L$.

- These rules should have a minimum confidence.
- The algorithm uses the following apriori property:
- If X does not result in a rule with minimum confidence for L, then neither does any subset $X^{\prime} \subset X$,

$$
\operatorname{confidence}(X \rightarrow L \backslash X)=\frac{\text { support }(L)}{\text { support } X} \geq \frac{\text { support }(L)}{\text { support }\left(X^{\prime}\right)}=\operatorname{confidence}\left(\mathrm{X}^{\prime} \rightarrow \mathrm{L} \backslash \mathrm{X}^{\prime}\right)
$$

1 for all large itemsets I_{k} with $k \geq 2$ do call genrules $\left(I_{k}, I_{k}\right.$, minconf)

Algorithm: genrules $\left(I_{k}, a_{m}\right.$, minconf)
Input: A large itemset I_{k}, a set $a_{m} \subseteq I_{k}$, the minimum confidence minconf.
Output: All the rules of the form $a \rightarrow I_{k} \backslash a$ with $a \subseteq a_{m}$ and confidence equal or above minconf.

```
\(\mathbb{A}=\left\{(m-1)\right.\)-itemsets \(\left.a_{m-1} \mid a_{m-1} \subseteq a_{m}\right\}\)
for all \(a_{m-1} \in \mathbb{A}\) do
    conf \(=\operatorname{support}\left(I_{k}\right) / \operatorname{support}\left(a_{m-1}\right) \quad / /\) Confidence of the rule \(a_{m-1} \rightarrow I_{k} \backslash a_{m-1}\)
    if conf \(\geq\) minconf then
        output the rule \(a_{m-1} \rightarrow I_{k} \backslash a_{m-1}\) with confidence=conf and support=support( \(\left(I_{k}\right)\)
        if \(m-1>1\) then call genrules \(\left(l_{k}, a_{m-1}\right.\), minconf \()\)
```


Recap: Rule Generation Algorithm Proof

```
for all large itemsets \(I_{k}\) with \(k \geq 2\) do
    call genrules \(\left(I_{k}, I_{k}\right.\), minconf \()\)
```

```
Algorithm: genrules \(\left(I_{k}, a_{m}\right.\), minconf \()\)
```

Algorithm: genrules $\left(I_{k}, a_{m}\right.$, minconf $)$
Input: A large itemset I_{k}, a set $a_{m} \subseteq I_{k}$, the minimum confidence minconf.
Input: A large itemset I_{k}, a set $a_{m} \subseteq I_{k}$, the minimum confidence minconf.
Output: All the rules of the form $a \rightarrow I_{k} \backslash a$ with $a \subseteq a_{m}$ and confidence equal or above minconf.
Output: All the rules of the form $a \rightarrow I_{k} \backslash a$ with $a \subseteq a_{m}$ and confidence equal or above minconf.
$\mathbb{A}=\left\{(m-1)\right.$-itemsets $\left.a_{m-1} \mid a_{m-1} \subseteq a_{m}\right\}$
$\mathbb{A}=\left\{(m-1)\right.$-itemsets $\left.a_{m-1} \mid a_{m-1} \subseteq a_{m}\right\}$
for all $a_{m-1} \in \mathbb{A}$ do
for all $a_{m-1} \in \mathbb{A}$ do
conf $=\operatorname{support}\left(I_{k}\right) / \operatorname{support}\left(a_{m-1}\right) \quad / /$ Confidence of the rule $a_{m-1} \rightarrow I_{k} \backslash a_{m-1}$
conf $=\operatorname{support}\left(I_{k}\right) / \operatorname{support}\left(a_{m-1}\right) \quad / /$ Confidence of the rule $a_{m-1} \rightarrow I_{k} \backslash a_{m-1}$
if conf \geq minconf then
if conf \geq minconf then
output the rule $a_{m-1} \rightarrow I_{k} \backslash a_{m-1}$ with confidence=conf and support=support($\left(I_{k}\right)$
output the rule $a_{m-1} \rightarrow I_{k} \backslash a_{m-1}$ with confidence=conf and support=support($\left(I_{k}\right)$
if $m-1>1$ then call genrules $\left(l_{k}, a_{m-1}\right.$, minconf $)$

```
        if \(m-1>1\) then call genrules \(\left(l_{k}, a_{m-1}\right.\), minconf \()\)
```

- We prove by contradiction that the rule generation algorithm is correct.
- Assume that the algorithm missed a rule. Let $a_{m-1} \rightarrow I_{k} \backslash a_{m-1}$ denote one of the missing rules with the largest antecedent. Then,
- Note that I_{k} has minimum support and, thus, it is outputted by the apriori algorithm since this is correct.
- Then, the rule generation algorithm cannot have missed the rule if $m=k$.
- Moreover if $m<k$, then

$$
\begin{array}{r}
\operatorname{confidence}\left(a_{m} \rightarrow I_{k} \backslash a_{m}\right)=\operatorname{support}\left(I_{k}\right) / \operatorname{support}\left(a_{m}\right) \geq \operatorname{support}\left(I_{k}\right) / \text { support }\left(a_{m-1}\right) \\
\\
=\operatorname{confidence}\left(a_{m-1} \rightarrow I_{k} \backslash a_{m-1}\right) \geq \text { minconf. }
\end{array}
$$

- Note that the algorithm didn't miss the rule $a_{m} \rightarrow I_{k} \backslash a_{m}$.
- Then the algorithm couldn't have missed the rule $a_{m-1} \rightarrow I_{k} \backslash a_{m-1}$.
- This contradicts our assumption and, thus, the algorithm is correct.

FP Grow Algorithm

- As previous, assume that we have access to some transactional data,

Tid	Items
1	F, A, C, D, G, I, M, P
2	A, B, C, F, L, M, O
3	B, F, H, J, O, W
4	B, C, K, S, P
5	A, F, C, E, L, P, M, N

- The FP grow algorithm returns all frequent itemsets without candidate generation and may save time and space.
- First, it finds frequent 1 -itemsets and sorts the frequent items within each transaction in support decending order, e.g. with minsup $=3$

Tid	Items
1	F, C, A, M, P
2	F, C, A, B, M
3	F, B
4	C, B, P
5	F, C, A, M, P

- Then it outputs the frequent 1 -itemsets, F, C, A, B, M, and P.

FP Grow Algorithm

- Given the new sorted set it constructs a so-called FP tree.

Tid	Items
1	F, C, A, M, P
2	F, C, A, B, M
3	F, B
4	C, B, P
5	F, C, A, M, P

FP Grow Algorithm

- Given the new sorted set it constructs a so-called FP tree.

Tid	Items
1	F, C, A, M, P
2	F, C, A, B, M
3	F, B
4	C, B, P
5	F, C, A, M, P

FP Grow Algorithm

- Given the new sorted set it constructs a so-called FP tree.

Tid	Items
1	F, C, A, M, P
2	F, C, A, B, M
3	F, B
4	C, B, P
5	F, C, A, M, P

FP Grow Algorithm

- Given the new sorted set it constructs a so-called FP tree.

Tid	Items
1	F, C, A, M, P
2	F, C, A, B, M
3	F, B
4	C, B, P
5	F, C, A, M, P

FP Grow Algorithm

- Given the new sorted set it constructs a so-called FP tree.

Tid	Items
1	F, C, A, M, P
2	F, C, A, B, M
3	F, B
4	C, B, P
5	F, C, A, M, P

- Finally, it mines the FP tree for frequent itemsets instead of the original database.

FP Grow Algorithm

Algorithm: FP-tree(D, minsup)
Input: A transactional database D, and the minimum support minsup. Output: The FP tree for D and minsup.

1 Count support for each item in D
2 Remove the infrequent items from the transactions in D
3 Sort the items in each transaction in D in support descending order
4 Create a FP tree with a single node T with T.name $=$ NULL
5 for each transaction $I \in D$ do
6 insert-tree (I, T)

Algorithm: insert-tree $\left(I_{1}, \ldots I_{m}, T\right)$
Input: An itemset I_{1}, \ldots, I_{m}, and a node T in the FP tree.
Output: Modified FP tree.

1 if T has a child N such that N.name $=I_{1}$. name then
2
N.count + +
else
create a new child N of T with N.name $=I_{1}$.name and N.count $=1$
if $m>1$ then
insert-tree $\left(I_{2}, \ldots, I_{m}, N\right)$

FP Grow Algorithm

- The X -conditional database consists of all the prefix paths leading to X in the FP tree.

Item	Conditional database
F	-
C	$\mathrm{F}: 3$
A	$\mathrm{FC}: 3$
B	$\mathrm{FCA}: 1, \mathrm{~F}: 1, \mathrm{C}: 1$
M	FCA:2, FCAB:1
P	FCAM:2, CB:1

- The support of each prefix path in the conditional database is equal to the count of X for that prefix path.
- The X -conditional database contains all the itemsets in D that end with X .
- It is enough to mine the X -conditional database to find all the frequent itemsets in D that end with X.
- Re-start the algorithm for the X-conditional database, i.e. call the FP grow algorithm recursively.

FP Grow Algorithm

- If we look at the M-conditional database, (\{FCA : 2, FCAB : 1\})

Tip	Items
1	F, C, A
2	F, C, A
3	F, C, A, B

- After finding the frequent 1 -itemsets and sorting the transactions we have

Tid	Items
1	F, C, A
2	F, C, A
3	F, C, A

- Output the frequent 1-itemsets, adding M as suffix (FM, CM, AM)
- Build the FP tree and the conditional databases.

- Restart the algorithm for the FM, CM, and AM condtional databases.

FP Grow Algorithm

- For the AM-conditional database (\{FC:3\}), or

Tid	Items
1	F,C
2	F,C
3	F,C

- After finding the 1 -itemsets and sorting the transactions we have

Tid	Items
1	F,C
2	F,C
3	F,C

- Output th 1-itemsets, adding AM as a suffix. (FAM and CAM).
- Build the FP tree and the econditional databases.

- Restart the algorithm for the FAM and CAM conditional databases.

FP Grow Algorithm

- For the CAM-conditional database (\{F:3\}), or

Tid	Items
1	F
2	F
3	F

- After finding the 1 -itemsets and sorting the transactions we have

Tid	Items
1	F
2	F
3	F

- Output th 1-itemsets, adding CAM as a suffix. (FCAM).
- Build the FP tree and the econditional databases.

Item	Conditional database
F	-

- Conditional database is empty. Backtrack.

FP Grow Algorithm

- To mine the FP tree Tree, call FP-grow(Tree, NULL, minsup).

```
Algorithm: FP-grow(Tree, \(\alpha\), minsup)
Input: A FP tree Tree, an itemset \(\alpha\), and the minimum support minsup.
Output: All the itemsets in Tree that end with \(\alpha\) and have minsup.
1 for each item \(X\) in Tree do
2 output the itemset \(\beta=X \cup \alpha\) with support \(=X\).count
3 build the \(\beta\) conditional database and the corresponding FP tree Tree \(_{\beta}\)
4 if \(\operatorname{Tree}_{\beta}\) is not empty then call FP-grow( Tree \(_{\beta}, \beta\), minsup)
```

- The algorithm above can be made more efficient by adding the lines below.

```
0.1 if Tree has a single branch then
0.2 for each combination }\beta\mathrm{ of the nodes in the branch do
0.3 output the itemset }\beta\cup\alpha\mathrm{ with support = min}\mp@subsup{\operatorname{me\beta}}{}{}\mathrm{ X.count
0.4 else
```

- The FP grow algorithm is correct.

FP Grow Algorithm

- With small values for minsup, there are many and long candidates, which implies long runtime due to expensive operations such as pattern matching, subset checking, storing, etc.

Exercise

- Run the FP grow algorithm on the database below with minsup 2.

Tid	Items
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

- Show the execution details (i.e. FP tree construction, conditional databases, recursive calls), not just the frequent itemsets found.
- Solution : $\{A, B, C, D, E, A B, A C, A E, B C, B D, B E, A B C, A B E\}$

Summary

- Mining transactions to find rules of the form

$$
\text { Item }_{1}, \ldots, \text { Item }_{m} \rightarrow \text { Item }_{m+1}, \ldots, \text { Item }_{n}
$$

with user-defined minimum support and confidence.

- Two-step solution:

1. Find all the large itemsets.
2. Generate all the rules with minimum confidence.

- We have seen two solutions for step 1. Apriori and FP grow algorithm.
- The runtime can differ a lot for small values of minsup.

