LINKOPING
II.“ UNIVERSITY

723A75 Advanced Data Mining
TDDDA41 Data Mining - Clustering and Association Analysis

Lecture 7: FP Grow Algorithm

Johan Alenlév
IDA, Linképing University, Sweden

argmin ¢p

= Content
= Recap
= Frequent Pattern (FP) Grow Algorithm
= Exercise
= Summary
= Litterature
= Course Book. 2nd ed.: 5.2.4. 3rd ed.: 6.2.4
= Han, J,, Pei, J., and Yin, Y. Mining Frequent Patterns without Candidate Generation.
In Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of Data, 2000.

= Given a database of transactions we want to find association rules,

Itemy, ..., ltemy — Itemyyg, ..., Item,
(X—=Y)

with a user-specified minimum support and confidence.

= support: Fraction of transactions that contains th full rule ltem, ..., ltem,.
(P(X,Y))
= confidence: Fraction of transactions that contain Itemy, ..., ltem, which also

contain ltemp,11 — Item,. (p(Y] X))
= We find the rules in two steps:

1. Find all frequent itemsets
2. Find all rules with minimum confidence from these sets.

Recap: Apriori Algorithm

= Using the following apriori propeerty:
= Every subset of a frequent itemset is frequent.
= Alternatively, every superset of an infrequent itemset is infrequent.

= The Apriori Algorithm works as follows:

1. Find all 1-itemsets.

2. Use the previous found frequent itemsets and the apriori property to generate candidates
for the next frequent itemsets.

3. Go through the candidates to find the itemsets.

Step 2 and 3 are repeated until no new frequent itemsets are found.

= We proved by induction that the algorithm is correct.

Recap: Generate rules

= Given a large itemset L we wish to generate rules
X— L\ X,

where X C L.
= These rules should have a minimum confidence.
= The algorithm uses the following apriori property:

= |If X does not result in a rule with minimum confidence for L, then neither does any
subset X’ C X,

confidence(X — L\ X) = SST“;I;?;()L() > i‘;’ppo"rit((;,)) = confidence(X" — L\ X')

1 for all large itemsets /, with k > 2 do
2 call genrules(lx, Iy, minconf)

Algorithm: genrules(/, am, minconf)
Input: A large itemset I, a set am C g, the minimum confidence minconf.
Output: All the rules of the form a — I\ a with a C ap, and confidence equal or above minconf.

A = {(m—1)-itemsets am—1]|am—1 C am}
for all a,,—1 € A do
conf = support(/) / support(am—1) // Confidence of the rule as—1 — Ik \ am—1
if conf > minconf then
output the rule am_—1 — Ik \ am—1 with confidence=conf and support=support(/x)

oUW

if m—1 > 1 then call genrules(lx, am—1, minconf)

Recap: Rule Generation Algorithm Proof

1 for all large itemsets /i with k > 2 do
2 call genrules(lk, Ik, minconf)

Algorithm: genrules(ly, am, minconf)
Input: A large itemset /g, a set am C Iy, the minimum confidence minconf.
Output: All the rules of the form a — /i \ a with a C am and confidence equal or above minconf.

A = {(m — 1)-itemsets ap_1]am—1 C am}
for all a1 € A do
conf = support(/x) / support(am,—1) // Confidence of the rule am—1 — Ik \ am—1
if conf > minconf then
output the rule an 1 — / \ am_1 with confidence=conf and support=support(/s)
if m—1> 1 then call genrules(ly, a,_1, minconf)

o v R wN R

= We prove by contradiction that the rule generation algorithm is correct.

= Assume that the algorithm missed a rule. Let a;,,—1 — Ik \ an—1 denote one of
the missing rules with the largest antecedent. Then,

Note that /x has minimum support and, thus, it is outputted by the apriori algorithm
since this is correct.

Then, the rule generation algorithm cannot have missed the rule if m = k.

Moreover if m < k, then

confidence(am — Ik \ am) = support(/k)/support(a,) > support(lk)/support(am—1)
= confidence(am—1 — Ik \ am—1) > minconf.

Note that the algorithm didn’t miss the rule ap, — Ik \ am.
Then the algorithm couldn’t have missed the rule am—1 — Ik \ am—1.
This contradicts our assumption and, thus, the algorithm is correct.

FP Grow Algorithm

= As previous, assume that we have access to some transactional data,

Tid Items

1 F,A C,D, G I, M,P
2 A B, C F L MO
3 B, F, H,J, O, W

4 B,C, K S, P

5 A F,C E L P, M N

= The FP grow algorithm returns all frequent itemsets without candidate
generation and may save time and space.

= First, it finds frequent 1-itemsets and sorts the frequent items within each
transaction in support decending order, e.g. with minsup = 3

Tid | Items

1 F,C,A, M, P
2 F,C,A B, M
3 F, B

4 C, B, P

= Then it outputs the frequent 1-itemsets, F, C, A, B, M, and P.

FP Grow Algorithm

= Given the new sorted set it constructs a so-called FP tree.

Tid | Items
1 F,C,A, M, P
2 F,C, A B, M
3 F, B
4 C B, P
5 F,C, A, M, P
{}
F:1
C:1
A:l

FP Grow Algorithm

= Given the new sorted set it constructs a so-called FP tree.

Tid | ltems
1 F,C,A, M, P
2 F,C,A, B, M
3 F, B
4 C, B, P
5 F,C,A, M, P
{}
F:2
C:2
A:2
M:1 B:1

FP Grow Algorithm

= Given the new sorted set it constructs a so-called FP tree.

Tid | ltems
1 F,C,A, M, P
2 F,C,A B, M
3 F, B
4 C, B, P
5 F,C,A, M, P
{}
/
F:3
VRN
C:2 B:1
A‘:2
/N
M:1 B:1

FP Grow Algorithm

= Given the new sorted set it constructs a so-called FP tree.

Tid | Items
1 F,C, A, M, P
2 F,C, A B, M
3 F, B
4 C B,P
5 F,C, A, M, P
{
VRN
F:3 C:1
SN
C:2 B:1 B:1
A‘:2 P‘l
RN
M:1 B:1

FP Grow Algorithm

= Given the new sorted set it constructs a so-called FP tree.

Tid | Items

1 F,C,A, M, P
2 F,C,A B, M
3 F, B

4 C,B, P

5 F,C,A, M, P

SN
N

A:3 P:1
M:2 B:1

= Finally, it mines the FP tree for frequent itemsets instead of the original database.

FP Grow Algorithm

Algorithm: FP-tree(D, minsup)
Input: A transactional database D, and the minimum support minsup.
Output: The FP tree for D and minsup.
1 Count support for each item in D
2 Remove the infrequent items from the transactions in D
3 Sort the items in each transaction in D in support descending order
4 Create a FP tree with a single node T with T.name = NULL
5 for each transaction / € D do
6 insert-tree(/, T)
Algorithm: insert-tree(/1,...Im, T)
Input: An itemset ,...,/m, and a node T in the FP tree.
Output: Modified FP tree.
1 if T has a child N such that N.name = I;.name then
2 N.count 4+ +
3 else
4 create a new child N of T with N.name = I;.name and N.count =1
5 if m> 1 then
6 insert-tree (o, ..., Im, N) 12

FP Grow Algorithm

= The X-conditional database consists of all the prefix paths leading to X in the FP
tree.

/\

Item | Conditional database
/ \ T
B:1 C F:3
‘ ‘ A FC:3
A3 P:1 B FCA:1, F:1, C:1
VRN M | FCA:2, FCAB:1
M:2 B:1 P FCAM:2, CB:1

| |
P:2 M:1

= The support of each prefix path in the conditional database is equal to the count
of X for that prefix path.

= The X-conditional database contains all the itemsets in D that end with X.

= |t is enough to mine the X-conditional database to find all the frequent itemsets
in D that end with X.

= Re-start the algorithm for the X-conditional database, i.e. call the FP grow
algorithm recursively.

FP Grow Algorithm

= If we look at the M-conditional database, ({FCA : 2, FCAB : 1})

Tip | Items

1 F,C A

2 F,C A

3 F,C, A B

= After finding the frequent 1-itemsets and sorting the transactions we have

Tid | ltems

1 F,C, A
2 F,C, A
3 F,C, A

= Output the frequent 1-itemsets, adding M as suffix (FM, CM, AM)
= Build the FP tree and the conditional databases.

{

F3 Item | Conditional database
F _

c3 C F:3
A FC:3

A:3

= Restart the algorithm for the FM, CM, and AM condtional databases.

FP Grow Algorithm

= For the AM-conditional database ({FC : 3}), or

Tid | Items
1 F.C
2 F.C
3 F.C
= After finding the 1-itemsets and sorting the transactions we have
Tid | Items
1 F.C
2 F.C
3 F.C

= Output th 1-itemsets, adding AM as a suffix. (FAM and CAM).
= Build the FP tree and the econditional databases.

{

‘ Item | Conditional database
F:3 F

| C F:3
C:3

= Restart the algorithm for the FAM and CAM conditional databases.

FP Grow Algorithm

= For the CAM-conditional database ({F : 3}), or

Tid | Items
1 F
2 F
3 F
= After finding the 1-itemsets and sorting the transactions we have
Tid | Items
1 F
F
3 F

= Output th 1-itemsets, adding CAM as a suffix. (FCAM).

= Build the FP tree and the econditional databases.
{}

Item | Conditional database
F _

F:3

= Conditional database is empty.
Backtrack.

FP Grow Algorithm

= To mine the FP tree Tree, call FP-grow(Tree, NULL, minsup).

Algorithm: FP-grow(Tree, o, minsup)
Input: A FP tree Tree, an itemset «, and the minimum support minsup.
Output: All the itemsets in Tree that end with « and have minsup.

for each item X in Tree do
output the itemset 5 = XU a with support=X.count
build the 3 conditional database and the corresponding FP tree Treeg
if Treeg is not empty then call FP-grow(Treeg, 3, minsup)

AW N =

= The algorithm above can be made more efficient by adding the lines below.

0.1 if Tree has a single branch then

0.2 for each combination 3 of the nodes in the branch do

0.3 output the itemset 3 U a with support = minxcg X.count
0.4 else

= The FP grow algorithm is correct.

FP Grow Algorithm

= With small values for minsup, there are many and long candidates, which implies
long runtime due to expensive operations such as pattern matching, subset
checking, storing, etc.

100 - I
90 A

—— [FP-growth runtime

— —#— — D1 Apriori runtime

80

|

|

1

1

1

70 A i
X
V

60
50 A
40 4
30 A
20 4

Run ime(sec.)

10 A
0

0 0.5 1 15 2 25 3
Support threshold{%)

Exercise

= Run the FP grow algorithm on the database below with minsup 2.

Tid | ltems
A B, E

>P>W>>OW
OO0 OO

© 0 N O O W N -

A B, C

= Show the execution details (i.e. FP tree construction, conditional databases,
recursive calls), not just the frequent itemsets found.

= Solution : {A, B, C, D, E, AB, AC, AE, BC, BD, BE, ABC, ABE}

= Mining transactions to find rules of the form
Itemy, ..., ltemy — Itemyyg, ..., Item,

with user-defined minimum support and confidence.

= Two-step solution:

1. Find all the large itemsets.
2. Generate all the rules with minimum confidence.

= We have seen two solutions for step 1. Apriori and FP grow algorithm.

= The runtime can differ a lot for small values of minsup.

20

