LINKOPING
II.“ UNIVERSITY

723A75 Advanced Data Mining
TDDDA41 Data Mining - Clustering and Association Analysis

Lecture 6: Apriori Algorithm

Johan Alenlév
IDA, Linképing University, Sweden

= Content

= Association Rules

= Frequent Itemsets

= Apriori Algorithm

= Exercise

= Rule Generation Algorithm
= Exercise

= Summary

= Litterature

= Course Book. 2nd ed.: 5.2.1-2, 5.4. 3rd ed.: 6.2.1-2, 6.4
= Agrawal, R and Srikant, R. Fast Algorithms for Mining Association Rules. In Proc. of
the 20th Int. Conf. on Very Large Databases, 1994.

Association Rules

= Assume that we have access to some transactions

Transaction | Items

1 A, B, D

2 A C D

3 A, D, E

4 B, E F

5 B,C, D E F

= Assume that the items are sorted.

Association Rules

= Assume that we have access to some transactions
Transaction | Items

A,

AW
|| > >
N|mololw
| m|O|O

5

m
-

= Assume that the items are sorted.

= Want to find association rules,

Itemy, ..., Itempy — Itempyq, ..., Item,.

Association Rules

= Assume that we have access to some transactions
Transaction | Items

A,

AW
|| > >
N|mololw
| m|O|O

5

m
-

= Assume that the items are sorted.

= Want to find association rules,
Itemy, ..., Itempy — Itempyq, ..., Item,.

If the items in the antecedent are purchased, so are the items in the consequent,

e.g.
Bread, Butter — Cheese

= Application: Market basket analysis to support business decisions,

Association Rules

= Assume that we have access to some transactions

Transaction | Items
1 A, B, D
2 A C D
3 A, D, E
4 B, E F
5 B,C, D E F
= Assume that the items are sorted.
= Want to find association rules,
Itemy, ..., Itempy — Itempyq, ..., Item,.

If the items in the antecedent are purchased, so are the items in the consequent,
e.g.
Bread, Butter — Cheese
= Application: Market basket analysis to support business decisions,

= Rules with "cheese” in the consequent may help decide how to boost sales of "cheese”.

Association Rules

= Assume that we have access to some transactions

Transaction | Items
1 A, B, D
2 A C D
3 A, D, E
4 B, E F
5 B,C, D E F
= Assume that the items are sorted.
= Want to find association rules,
Itemy, ..., Itempy — Itempyq, ..., Item,.

If the items in the antecedent are purchased, so are the items in the consequent,
e.g.
Bread, Butter — Cheese
= Application: Market basket analysis to support business decisions,

= Rules with "cheese” in the consequent may help decide how to boost sales of "cheese”.
= Rules with "bread” in the antecedent may help determine what happens if "bread” is
sold out.

Association Rules

= Assume that we have access to some transactions

Transaction | Items
1 A, B, D
2 A C D
3 A, D, E
4 B, E F
5 B,C, D E F
= Assume that the items are sorted.
= Want to find association rules,
Itemy, ..., Itempy — Itempyq, ..., Item,.

If the items in the antecedent are purchased, so are the items in the consequent,
e.g.
Bread, Butter — Cheese
= Application: Market basket analysis to support business decisions,

= Rules with "cheese” in the consequent may help decide how to boost sales of "cheese”.
= Rules with "bread” in the antecedent may help determine what happens if "bread” is
sold out.

= Note that rules do not convey causality.

Association Rules

= We are interested in finding rules of the form

Xtyo o Xm—= Y1, Y= XY

Association Rules

= We are interested in finding rules of the form
Xiyeo s Xm = Y1,..., Ya=X>Y

= All rules are not equally interesting.

Association Rules

= We are interested in finding rules of the form
Xiyeo s Xm = Y1,..., Ya=X>Y

= All rules are not equally interesting.

= Interested in rules with minimum support and confidence

Association Rules

= We are interested in finding rules of the form
Xiyeo s Xm = Y1,..., Ya=X>Y

= All rules are not equally interesting.

= Interested in rules with minimum support and confidence
Support Fraction of the transactions which contain X and Y (p(X, Y))
Support “How general the rule is.”

Association Rules

= We are interested in finding rules of the form
Xiyeo s Xm = Y1,..., Ya=X>Y

= All rules are not equally interesting.
= Interested in rules with minimum support and confidence
Support Fraction of the transactions which contain X and Y (p(X, Y))
Support “How general the rule is.”
Confidence Fraction of the transactions that contain X which also contain Y

(p(Y1X))

Confidence “How accurate the rules is.”

Association Rules

= We are interested in finding rules of the form
Xiyeo s Xm = Y1,..., Ya=X>Y

= All rules are not equally interesting.
= Interested in rules with minimum support and confidence
Support Fraction of the transactions which contain X and Y (p(X, Y))
Support “How general the rule is.”
Confidence Fraction of the transactions that contain X which also contain Y

(p(Y1X))

Confidence “How accurate the rules is.”
= confidence = p(Y|X) = p(X, Y)/p(X) = support(X, Y)/support(X).

Association Rules

= We are interested in finding rules of the form
Xiyeo s Xm = Y1,..., Ya=X>Y

= All rules are not equally interesting.
= Interested in rules with minimum support and confidence
Support Fraction of the transactions which contain X and Y (p(X, Y))
Support “How general the rule is.”
Confidence Fraction of the transactions that contain X which also contain Y
(p(Y] X))
Confidence “How accurate the rules is.”
= confidence = p(Y|X) = p(X, Y)/p(X) = support(X, Y)/support(X).
= Assume that we have access to some transactions
Transaction | Items

1 A,

,

w|w|>| >
ﬁl‘l‘lpﬁw
o|m|m|o|o

[CIESERIEN
m
l

= A—D

Association Rules

= We are interested in finding rules of the form
Xiyeo s Xm = Y1,..., Ya=X>Y

= All rules are not equally interesting.
= Interested in rules with minimum support and confidence
Support Fraction of the transactions which contain X and Y (p(X, Y))
Support “How general the rule is.”
Confidence Fraction of the transactions that contain X which also contain Y

(p(Y1X))

Confidence “How accurate the rules is.”

= confidence = p(Y|X) = p(X, Y)/p(X) = support(X, Y)/support(X).
= Assume that we have access to some transactions

Transaction | Items

1 A B, D

2 A C D

3 A D E

4 B, E F

5 B,C,D EF

= A — D has support 0.6 and confidence 1.

Association Rules

= We are interested in finding rules of the form
Xiyeo s Xm = Y1,..., Ya=X>Y

= All rules are not equally interesting.
= Interested in rules with minimum support and confidence
Support Fraction of the transactions which contain X and Y (p(X, Y))
Support “How general the rule is.”
Confidence Fraction of the transactions that contain X which also contain Y

(p(Y1X))

Confidence “How accurate the rules is.”

= confidence = p(Y|X) = p(X, Y)/p(X) = support(X, Y)/support(X).
= Assume that we have access to some transactions

Transaction | Items

1 A B, D

2 A C D

3 A D E

4 B, E F

5 B,C,D EF

= A — D has support 0.6 and confidence 1.
= DA

Association Rules

= We are interested in finding rules of the form
Xiyeo s Xm = Y1,..., Ya=X>Y

= All rules are not equally interesting.
= Interested in rules with minimum support and confidence
Support Fraction of the transactions which contain X and Y (p(X, Y))
Support “How general the rule is.”
Confidence Fraction of the transactions that contain X which also contain Y

(p(Y1X))

Confidence “How accurate the rules is.”

= confidence = p(Y|X) = p(X, Y)/p(X) = support(X, Y)/support(X).
= Assume that we have access to some transactions

Transaction | Items

1 A B, D

2 A C D

3 A D E

4 B, E F

5 B,C,D EF

= A — D has support 0.6 and confidence 1.
= D — A has support 0.6 and confidence 0.75.

Frequent Itemsets

= We are interested in finding rules of the form
Xy oo s Xm—= Y1,..., Ya=X=>Y

with user-specified minimum support and confidence

Frequent Itemsets

= We are interested in finding rules of the form
Xy oo s Xm—= Y1,..., Ya=X=>Y

with user-specified minimum support and confidence

= We define a frequent or large itemset as a set of items that has minimum
support.

= E.g., {A, D} is a frequent itemset in the previous example with mimum support 0.5.

Frequent Itemsets

= We are interested in finding rules of the form
Xy oo s Xm—= Y1,..., Ya=X=>Y

with user-specified minimum support and confidence

= We define a frequent or large itemset as a set of items that has minimum
support.

= E.g., {A, D} is a frequent itemset in the previous example with mimum support 0.5.

= We will find the desired rules in two steps:

Frequent Itemsets

= We are interested in finding rules of the form
Xy oo s Xm—= Y1,..., Ya=X=>Y

with user-specified minimum support and confidence

= We define a frequent or large itemset as a set of items that has minimum
support.

= E.g., {A, D} is a frequent itemset in the previous example with mimum support 0.5.
= We will find the desired rules in two steps:

1. Find all frequent itemsets (using apriori or FP grow algorithm).

Frequent Itemsets

= We are interested in finding rules of the form
Xy oo s Xm—= Y1,..., Ya=X=>Y

with user-specified minimum support and confidence
= We define a frequent or large itemset as a set of items that has minimum
support.
= E.g., {A, D} is a frequent itemset in the previous example with mimum support 0.5.
= We will find the desired rules in two steps:

1. Find all frequent itemsets (using apriori or FP grow algorithm).
2. Generate all rules with minimum confidence from the frequent itemsets.

Frequent Itemsets

= We are interested in finding rules of the form
Xy oo s Xm—= Y1,..., Ya=X=>Y

with user-specified minimum support and confidence

= We define a frequent or large itemset as a set of items that has minimum
support.

= E.g., {A, D} is a frequent itemset in the previous example with mimum support 0.5.
= We will find the desired rules in two steps:

1. Find all frequent itemsets (using apriori or FP grow algorithm).
2. Generate all rules with minimum confidence from the frequent itemsets.

= The first step above will use the following apriori property:

= Every subset of a frequent itemset is frequent.

Frequent Itemsets

= We are interested in finding rules of the form
Xy oo s Xm—= Y1,..., Ya=X=>Y

with user-specified minimum support and confidence

= We define a frequent or large itemset as a set of items that has minimum
support.

= E.g., {A, D} is a frequent itemset in the previous example with mimum support 0.5.
= We will find the desired rules in two steps:

1. Find all frequent itemsets (using apriori or FP grow algorithm).
2. Generate all rules with minimum confidence from the frequent itemsets.

= The first step above will use the following apriori property:

= Every subset of a frequent itemset is frequent.
= Alternatively, every superset of an infrequent itemset is infrequent.

Apriori Algorithm

Algorithm: apriori(D, minsup)

Input: A transactional database D and the minimum support minsup.
Output: All the large itemsets in D.

Ly = {c € Cy|c.count > minsup}
return J, Ly

1 Ly ={ large l-itemsets }

2 for (k=2; L1 #0;k++) do

3 Cy = apriori-gen(L_1) // Generate candidate large k-itemsets
4 for all t € D do

5 for all c € Cj such that c € t do

6 c.count + +

7

8

Algorithm: apriori-gen(Lx—_1)
Input: Large (k — 1)-itemsets.
Output: A superset of L.

C=0 // Self-join
forall I,J € Lg_1 do
ifh =0,..., ko = Jk—p and ly_1 < Jx_; then
add {h,..., lk—1,Jk—1} to Ck
for all ce Cy do // Prune

for all (k— 1)-subsets s of ¢ do
if s¢ Ly_1 then
remove ¢ from Cy
return Cy

© N R WN R

Example: Apriori Algorithm

Run the Apriori algorithm with the following database and minsup 2.

Tid Items

1 A, C, D
2 B, C, E
3 A, B, C E
4 B, E

Apriori Algorithm

= Self-join step in MySQL:

insert into Cy

select l.itemy, ..., Litemy_1, J.itemy_1
from Ly_y I, Ly—q J
where litem; = J.itemy, ..., litemy_o = J.itemy_o, Litemy_1 < J.itemj_1

= Self-joint step in R:
merge(Ly—1, Lk—1, by=c(Lx_1.itemy, ..., Lx_1.itemy_5))

Note that duplicates will be produced because the condition
Litemy_1 < J.itemy_1 is not enforced.

= To make the prune step fast, store the results in a hash table.

= Clever data structures are typically used for counting the support. (line 4-6 in
apriori algorithm)

Exercise

= Run the apriori algorithm on the database below with minimum support 2.

Tid | Items

1 A, B, C

2 A B, C, D E
3 A, C, D

4 A C D E

5 A, B, C, D

= Show the execution details (i.e. self-join, prune, support counting) not just the
large itemsets.

Ly = {{A}, {B}, {C}, {D}, {E}}

Lo = {{A, B} -{A, C}, {A, D}, {A, E}, {B, C}, {B, D}, {C, D}, {C, E}, {D, E}}

Ls = {{A, B, C},{A, B,D},{A, C, D}, {A, C,E}, {A, D, E}, {B, C, D}, {C, D, E}}
Ly = {{A,B,C,D},{A,C,D,E}}

Apriori Algorithm Proof

0 NO oA WN =

Algorithm: apriori(D, minsup)
Input: A transactional database D and the minimum support minsup.
Output: All the large itemsets in D,

Ly = { large 1-itemsets }
for (k=2;Ly_1 # 0; k+ +) do

Cy = apriori-gen(Ly_1)

for all t € D do

for all ¢ € Cy such that c € t do
c.count + +

Ly = {c € Cx|c.count > minsup}

return |J, Ly

// Generate candidate large k-itemsets

CONO VA WN R

Algorithm: apriori-gen(Ly_1)
Input: Large (k — 1)-itemsets.
Output: A superset of L.

C=0
forall I,J€ Ly_q do
ifh =J,...,keo = Jk—2 and 1 < Jy—1 then
add {I, ..., l1,Jk_1} to G
for all c € G do
for all (k— 1)-subsets s of ¢ do
ifs¢ Ly_1 then
remove ¢ from Cy
return Cp

// Self-join

// Prune

Rule Generation Algorithm

= Having a large itemset L we wish to generate rules of the form
X— L\ X,
where X C L.

Rule Generation Algorithm

= Having a large itemset L we wish to generate rules of the form
X— L\ X,
where X C L.

= These rules should have a minimum confidence.

Rule Generation Algorithm

= Having a large itemset L we wish to generate rules of the form
X— L\ X,
where X C L.

= These rules should have a minimum confidence.
= The following apriori property will be used:
= |f X does not result in a rule with minimum confidence for L, then neither does any
subset X' C X,

Rule Generation Algorithm

= Having a large itemset L we wish to generate rules of the form
X— L\ X,
where X C L.

= These rules should have a minimum confidence.
= The following apriori property will be used:
= |f X does not result in a rule with minimum confidence for L, then neither does any
subset X' C X,

confidence(X — L\ X) = Z:‘;‘;Zr:t(;) > i‘;’pp:r':((;,)) = confidence(X" — L\ X')

Rule Generation Algorithm

= Having a large itemset L we wish to generate rules of the form
X— L\ X,

where X C L.
= These rules should have a minimum confidence.
= The following apriori property will be used:
= |f X does not result in a rule with minimum confidence for L, then neither does any
subset X' C X,

confidence(X — L\ X) = SST;};?:J)L() > i‘;’pp:r':((;,)) = confidence(X" — L\ X')

1 for all large itemsets /, with k > 2 do
2 call genrules(lx, Iy, minconf)

Algorithm: genrules(/, am, minconf)
Input: A large itemset I, a set am C g, the minimum confidence minconf.
Output: All the rules of the form a — I\ a with a C ap, and confidence equal or above minconf.

A = {(m—1)-itemsets am—1]|am—1 C am}
for all a,,—1 € A do
conf = support(/) / support(am—1) // Confidence of the rule as—1 — Ik \ am—1
if conf > minconf then
output the rule a,m—1 — Ik \ am—1 with confidence=conf and support=support(/x)

oUW

if m—1 > 1 then call genrules(lx, am—1, minconf)

Exercise

= Run the genrule algorithm on the database below for the large itemset {A, B, C}
with minimum confidence 0.8.

Tid | Items

1 A B, C

2 A B, C, D E
3 A, C, D

4 A C D, E

5 A B, C, D

= Show the execution details (i.e. antecedent generation, recursive calls) not just
the rules.
A B— C
B,C— A
B— A C

Rule Generation Algorithm Proof

1 for all large itemsets /, with k > 2 do
2 call genrules(/x, Iy, minconf)

Algorithm: genrules(ly, am, minconf)
Input: A large itemset /, a set am C Iy, the minimum confidence minconf.
Output: All the rules of the form a — /i \ a with a C an and confidence equal or above minconf.

A = {(m— 1)-itemsets ap_1]am—1 C am}
for all a1 € A do
conf = support(/y) / support(am_1) // Confidence of the rule am_1 — lic\ am_1
if conf > minconf then
output the rule a, 1 — / \ am_1 with confidence=conf and support=support(/s)
if m— 1> 1 then call genrules(ly, am_1, minconf)

o v R wN e

= Processing transactions to find rules of the form,
Itemy, ..., Itemy — Itenp41, ..., Itemy,

with a user-defined minimum support and confidence.
= We use a two-step solution:
1. Find all the large itemsets.
2. Generate all the rules with minimum confidence.
= We use the apriori properties.
= Drawbacks of the apriori algorithm:

= Candidate generate-and-test.

= Too many candidates to generate, e.g. if there are 10 large 1-itemsets, then more than
107 candidate 2-itemsets.

= Each candidate implies expensive operations, e.g. pattern matching, subset checking,
storing.

= Can candidate generation be avoided?

