723A75 Advanced Data Mining TDDD41 Data Mining - Clustering and Association Analysis

Lecture 6: Apriori Algorithm

Johan Alenlöv
IDA, Linköping University, Sweden

Outline

- Content
- Association Rules
- Frequent Itemsets
- Apriori Algorithm
- Exercise
- Rule Generation Algorithm
- Exercise
- Summary
- Litterature
- Course Book. 2nd ed.: 5.2.1-2, 5.4. 3rd ed.: 6.2.1-2, 6.4
- Agrawal, R and Srikant, R. Fast Algorithms for Mining Association Rules. In Proc. of the 20th Int. Conf. on Very Large Databases, 1994.

Association Rules

- Assume that we have access to some transactions

Transaction	Items
1	$\mathrm{~A}, \mathrm{~B}, \mathrm{D}$
2	$\mathrm{~A}, \mathrm{C}, \mathrm{D}$
3	$\mathrm{~A}, \mathrm{D}, \mathrm{E}$
4	$\mathrm{~B}, \mathrm{E}, \mathrm{F}$
5	$\mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$

- Assume that the items are sorted.

Association Rules

- Assume that we have access to some transactions

Transaction	Items
1	A, B, D
2	A, C, D
3	A, D, E
4	B, E, F
5	B, C, D, E, F

- Assume that the items are sorted.
- Want to find association rules,

$$
\text { Item }_{1}, \ldots, \text { Item }_{m} \rightarrow \text { Item }_{m+1}, \ldots, \text { Item }_{n}
$$

Association Rules

- Assume that we have access to some transactions

Transaction	Items
1	$\mathrm{~A}, \mathrm{~B}, \mathrm{D}$
2	$\mathrm{~A}, \mathrm{C}, \mathrm{D}$
3	$\mathrm{~A}, \mathrm{D}, \mathrm{E}$
4	$\mathrm{~B}, \mathrm{E}, \mathrm{F}$
5	$\mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$

- Assume that the items are sorted.
- Want to find association rules,

$$
\text { Item }_{1}, \ldots, \text { Item }_{m} \rightarrow \text { Item }_{m+1}, \ldots, \text { Item }_{n}
$$

If the items in the antecedent are purchased, so are the items in the consequent, e.g.

$$
\text { Bread, Butter } \rightarrow \text { Cheese }
$$

- Application: Market basket analysis to support business decisions,

Association Rules

- Assume that we have access to some transactions

Transaction	Items
1	A, B, D
2	A, C, D
3	A, D, E
4	B, E, F
5	B, C, D, E, F

- Assume that the items are sorted.
- Want to find association rules,

$$
\text { Item }_{1}, \ldots, \text { Item }_{m} \rightarrow \text { Item }_{m+1}, \ldots, \text { Item }_{n}
$$

If the items in the antecedent are purchased, so are the items in the consequent, e.g.

$$
\text { Bread, Butter } \rightarrow \text { Cheese }
$$

- Application: Market basket analysis to support business decisions,
- Rules with "cheese" in the consequent may help decide how to boost sales of "cheese".

Association Rules

- Assume that we have access to some transactions

Transaction	Items
1	A, B, D
2	A, C, D
3	A, D, E
4	B, E, F
5	B, C, D, E, F

- Assume that the items are sorted.
- Want to find association rules,

$$
\text { Item }_{1}, \ldots, \text { Item }_{m} \rightarrow \text { Item }_{m+1}, \ldots, \text { Item }_{n}
$$

If the items in the antecedent are purchased, so are the items in the consequent, e.g.

$$
\text { Bread, Butter } \rightarrow \text { Cheese }
$$

- Application: Market basket analysis to support business decisions,
- Rules with "cheese" in the consequent may help decide how to boost sales of "cheese".
- Rules with "bread" in the antecedent may help determine what happens if "bread" is sold out.

Association Rules

- Assume that we have access to some transactions

Transaction	Items
1	A, B, D
2	A, C, D
3	A, D, E
4	B, E, F
5	B, C, D, E, F

- Assume that the items are sorted.
- Want to find association rules,

$$
\text { Item }_{1}, \ldots, \text { Item }_{m} \rightarrow \text { Item }_{m+1}, \ldots, \text { Item }_{n}
$$

If the items in the antecedent are purchased, so are the items in the consequent, e.g.

$$
\text { Bread, Butter } \rightarrow \text { Cheese }
$$

- Application: Market basket analysis to support business decisions,
- Rules with "cheese" in the consequent may help decide how to boost sales of "cheese".
- Rules with "bread" in the antecedent may help determine what happens if "bread" is sold out.
- Note that rules do not convey causality.

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

- All rules are not equally interesting.

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

- All rules are not equally interesting.
- Interested in rules with minimum support and confidence

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

- All rules are not equally interesting.
- Interested in rules with minimum support and confidence

Support Fraction of the transactions which contain X and $Y(p(X, Y))$ Support "How general the rule is."

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

- All rules are not equally interesting.
- Interested in rules with minimum support and confidence

Support Fraction of the transactions which contain X and $Y(p(X, Y))$
Support "How general the rule is."
Confidence Fraction of the transactions that contain X which also contain Y ($p(Y \mid X)$)
Confidence "How accurate the rules is."

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

- All rules are not equally interesting.
- Interested in rules with minimum support and confidence

Support Fraction of the transactions which contain X and $Y(p(X, Y))$
Support "How general the rule is."
Confidence Fraction of the transactions that contain X which also contain Y $(p(Y \mid X))$
Confidence "How accurate the rules is."

- confidence $=p(Y \mid X)=p(X, Y) / p(X)=\operatorname{support}(X, Y) / \operatorname{support}(X)$.

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

- All rules are not equally interesting.
- Interested in rules with minimum support and confidence

Support Fraction of the transactions which contain X and $Y(p(X, Y))$
Support "How general the rule is."
Confidence Fraction of the transactions that contain X which also contain Y $(p(Y \mid X))$
Confidence "How accurate the rules is."

- confidence $=p(Y \mid X)=p(X, Y) / p(X)=\operatorname{support}(X, Y) / \operatorname{support}(X)$.
- Assume that we have access to some transactions

Transaction	Items
1	A, B, D
2	A, C, D
3	A, D, E
4	B, E, F
5	B, C, D, E, F

- $A \rightarrow D$

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

- All rules are not equally interesting.
- Interested in rules with minimum support and confidence

Support Fraction of the transactions which contain X and $Y(p(X, Y))$
Support "How general the rule is."
Confidence Fraction of the transactions that contain X which also contain Y $(p(Y \mid X))$
Confidence "How accurate the rules is."

- confidence $=p(Y \mid X)=p(X, Y) / p(X)=\operatorname{support}(X, Y) / \operatorname{support}(X)$.
- Assume that we have access to some transactions

Transaction	Items
1	$\mathrm{~A}, \mathrm{~B}, \mathrm{D}$
2	$\mathrm{~A}, \mathrm{C}, \mathrm{D}$
3	$\mathrm{~A}, \mathrm{D}, \mathrm{E}$
4	$\mathrm{~B}, \mathrm{E}, \mathrm{F}$
5	$\mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$

- $A \rightarrow D$ has support 0.6 and confidence 1 .

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

- All rules are not equally interesting.
- Interested in rules with minimum support and confidence

Support Fraction of the transactions which contain X and $Y(p(X, Y))$
Support "How general the rule is."
Confidence Fraction of the transactions that contain X which also contain Y $(p(Y \mid X))$
Confidence "How accurate the rules is."

- confidence $=p(Y \mid X)=p(X, Y) / p(X)=\operatorname{support}(X, Y) / \operatorname{support}(X)$.
- Assume that we have access to some transactions

Transaction	Items
1	$\mathrm{~A}, \mathrm{~B}, \mathrm{D}$
2	$\mathrm{~A}, \mathrm{C}, \mathrm{D}$
3	$\mathrm{~A}, \mathrm{D}, \mathrm{E}$
4	$\mathrm{~B}, \mathrm{E}, \mathrm{F}$
5	$\mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$

- $A \rightarrow D$ has support 0.6 and confidence 1 .
- $D \rightarrow A$

Association Rules

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

- All rules are not equally interesting.
- Interested in rules with minimum support and confidence

Support Fraction of the transactions which contain X and $Y(p(X, Y))$
Support "How general the rule is."
Confidence Fraction of the transactions that contain X which also contain Y $(p(Y \mid X))$
Confidence "How accurate the rules is."

- confidence $=p(Y \mid X)=p(X, Y) / p(X)=\operatorname{support}(X, Y) / \operatorname{support}(X)$.
- Assume that we have access to some transactions

Transaction	Items
1	A, B, D
2	A, C, D
3	A, D, E
4	B, E, F
5	B, C, D, E, F

- $A \rightarrow D$ has support 0.6 and confidence 1 .
- $D \rightarrow A$ has support 0.6 and confidence 0.75 .

Frequent Itemsets

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

with user-specified minimum support and confidence

Frequent Itemsets

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

with user-specified minimum support and confidence

- We define a frequent or large itemset as a set of items that has minimum support.
- E.g., $\{A, D\}$ is a frequent itemset in the previous example with mimum support 0.5 .

Frequent Itemsets

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

with user-specified minimum support and confidence

- We define a frequent or large itemset as a set of items that has minimum support.
- E.g., $\{A, D\}$ is a frequent itemset in the previous example with mimum support 0.5 .
- We will find the desired rules in two steps:

Frequent Itemsets

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

with user-specified minimum support and confidence

- We define a frequent or large itemset as a set of items that has minimum support.
- E.g., $\{A, D\}$ is a frequent itemset in the previous example with mimum support 0.5 .
- We will find the desired rules in two steps:

1. Find all frequent itemsets (using apriori or FP grow algorithm).

Frequent Itemsets

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

with user-specified minimum support and confidence

- We define a frequent or large itemset as a set of items that has minimum support.
- E.g., $\{A, D\}$ is a frequent itemset in the previous example with mimum support 0.5 .
- We will find the desired rules in two steps:

1. Find all frequent itemsets (using apriori or FP grow algorithm).
2. Generate all rules with minimum confidence from the frequent itemsets.

Frequent Itemsets

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

with user-specified minimum support and confidence

- We define a frequent or large itemset as a set of items that has minimum support.
- E.g., $\{A, D\}$ is a frequent itemset in the previous example with mimum support 0.5 .
- We will find the desired rules in two steps:

1. Find all frequent itemsets (using apriori or FP grow algorithm).
2. Generate all rules with minimum confidence from the frequent itemsets.

- The first step above will use the following apriori property:
- Every subset of a frequent itemset is frequent.

Frequent Itemsets

- We are interested in finding rules of the form

$$
X_{1}, \ldots, X_{m} \rightarrow Y_{1}, \ldots, Y_{n} \equiv X \rightarrow Y
$$

with user-specified minimum support and confidence

- We define a frequent or large itemset as a set of items that has minimum support.
- E.g., $\{A, D\}$ is a frequent itemset in the previous example with mimum support 0.5 .
- We will find the desired rules in two steps:

1. Find all frequent itemsets (using apriori or FP grow algorithm).
2. Generate all rules with minimum confidence from the frequent itemsets.

- The first step above will use the following apriori property:
- Every subset of a frequent itemset is frequent.
- Alternatively, every superset of an infrequent itemset is infrequent.

Apriori Algorithm

Algorithm: apriori(D, minsup)

Input: A transactional database D and the minimum support minsup.
Output: All the large itemsets in D.
$1 \quad L_{1}=\{$ large 1-itemsets $\}$
for ($k=2 ; L_{k-1} \neq \emptyset ; k++$) do
$C_{k}=$ apriori-gen $\left(L_{k-1}\right) \quad / /$ Generate candidate large k-itemsets
for all $t \in D$ do
for all $c \in C_{k}$ such that $c \in t$ do
c.count ++
$L_{k}=\left\{c \in C_{k} \mid c\right.$. count \geq minsup $\}$
return $\bigcup_{k} L_{k}$
Algorithm: apriori-gen $\left(L_{k-1}\right)$
Input: Large $(k-1)$-itemsets.
Output: A superset of L_{k}.
$1 \quad C_{k}=\emptyset \quad / /$ Self-join
2 for all $I, J \in L_{k-1}$ do
3 if $I_{1}=J_{1}, \ldots, I_{k-2}=J_{k-2}$ and $I_{k-1}<J_{k-1}$ then add $\left\{I_{1}, \ldots, I_{k-1}, J_{k-1}\right\}$ to C_{k}
for all $c \in C_{k}$ do // Prune
for all $(k-1)$-subsets s of c do if $s \notin L_{k-1}$ then
remove c from C_{k}
return C_{k}

Example: Apriori Algorithm

Run the Apriori algorithm with the following database and minsup 2.

Tid	Items
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Apriori Algorithm

- Self-join step in MySQL:

```
insert into \(C_{k}\)
select I. item \({ }_{1}, \ldots\), I. \(_{\text {item }}^{k-1}\), J. .item \(_{k-1}\)
from \(L_{k-1} I, L_{k-1} J\)
where I.item \({ }_{1}=\) J.item \(_{1}, \ldots\), I.item \(_{k-2}=\) J.item \(_{k-2}\), I.item \(_{k-1}<\) J.item \(_{k-1}\)
```

- Self-joint step in R:

$$
\operatorname{merge}\left(L_{k-1}, L_{k-1}, \text { by }=c\left(L_{k-1} \cdot \text { item }_{1}, \ldots, L_{k-1} \cdot \text { item }_{k-2}\right)\right)
$$

Note that duplicates will be produced because the condition l.item $m_{k-1}<$ J.item $_{k-1}$ is not enforced.

- To make the prune step fast, store the results in a hash table.
- Clever data structures are typically used for counting the support. (line 4-6 in apriori algorithm)

Exercise

- Run the apriori algorithm on the database below with minimum support 2.

Tid	Items
1	A, B, C
2	A, B, C, D, E
3	A, C, D
4	A, C, D, E
5	A, B, C, D

- Show the execution details (i.e. self-join, prune, support counting) not just the large itemsets.

$$
\begin{aligned}
& L_{1}=\{\{A\},\{B\},\{C\},\{D\},\{E\}\} \\
& L_{2}=\{\{A, B\} \cdot\{A, C\},\{A, D\},\{A, E\},\{B, C\},\{B, D\},\{C, D\},\{C, E\},\{D, E\}\} \\
& L_{3}=\{\{A, B, C\},\{A, B, D\},\{A, C, D\},\{A, C, E\},\{A, D, E\},\{B, C, D\},\{C, D, E\}\} \\
& L_{4}=\{\{A, B, C, D\},\{A, C, D, E\}\}
\end{aligned}
$$

Apriori Algorithm Proof

```
Algorithm: apriori(D, minsup)
Input: A transactional database D and the minimum support minsup.
Output: All the large itemsets in D.
L
for ( }k=2;\mp@subsup{L}{k-1}{}\not=\emptyset;k++) d
    C
    for all t\inD do
        for all c\inC}\mp@subsup{C}{k}{}\mathrm{ such that }c\int\mathrm{ do
            c.count++
    L
return }\mp@subsup{\bigcup}{k}{}\mp@subsup{L}{k}{
```

```
Algorithm: apriori-gen \(\left(L_{k-1}\right)\)
Input: Large ( \(k-1\) )-itemsets.
Output: A superset of \(L_{k}\).
```

```
\(C_{k}=\emptyset\)
```

$C_{k}=\emptyset$
// Self-join
// Self-join
for all $I, J \in L_{k-1}$ do
for all $I, J \in L_{k-1}$ do
if $I_{1}=J_{1}, \ldots, I_{k-2}=J_{k-2}$ and $I_{k-1}<J_{k-1}$ then
if $I_{1}=J_{1}, \ldots, I_{k-2}=J_{k-2}$ and $I_{k-1}<J_{k-1}$ then
add $\left\{I_{1}, \ldots, I_{k-1}, J_{k-1}\right\}$ to C_{k}
add $\left\{I_{1}, \ldots, I_{k-1}, J_{k-1}\right\}$ to C_{k}
for all $c \in C_{k}$ do
for all $c \in C_{k}$ do
// Prune
// Prune
for all ($k-1$)-subsets s of c do
for all ($k-1$)-subsets s of c do
if $s \notin L_{k-1}$ then
if $s \notin L_{k-1}$ then
remove c from C_{k}
remove c from C_{k}
return C_{k}

```
return \(C_{k}\)
```


Rule Generation Algorithm

- Having a large itemset L we wish to generate rules of the form

$$
X \rightarrow L \backslash X
$$

where $X \subseteq L$.

Rule Generation Algorithm

- Having a large itemset L we wish to generate rules of the form

$$
X \rightarrow L \backslash X
$$

where $X \subseteq L$.

- These rules should have a minimum confidence.

Rule Generation Algorithm

- Having a large itemset L we wish to generate rules of the form

$$
X \rightarrow L \backslash X
$$

where $X \subseteq L$.

- These rules should have a minimum confidence.
- The following apriori property will be used:
- If X does not result in a rule with minimum confidence for L, then neither does any subset $X^{\prime} \subseteq X$,

Rule Generation Algorithm

- Having a large itemset L we wish to generate rules of the form

$$
X \rightarrow L \backslash X
$$

where $X \subseteq L$.

- These rules should have a minimum confidence.
- The following apriori property will be used:
- If X does not result in a rule with minimum confidence for L, then neither does any subset $X^{\prime} \subseteq X$,

$$
\operatorname{confidence}(X \rightarrow L \backslash X)=\frac{\text { support }(L)}{\text { support } X} \geq \frac{\text { support }(L)}{\text { support }\left(X^{\prime}\right)}=\operatorname{confidence}\left(\mathrm{X}^{\prime} \rightarrow \mathrm{L} \backslash \mathrm{X}^{\prime}\right)
$$

Rule Generation Algorithm

- Having a large itemset L we wish to generate rules of the form

$$
X \rightarrow L \backslash X
$$

where $X \subseteq L$.

- These rules should have a minimum confidence.
- The following apriori property will be used:
- If X does not result in a rule with minimum confidence for L, then neither does any subset $X^{\prime} \subseteq X$,

$$
\operatorname{confidence}(X \rightarrow L \backslash X)=\frac{\text { support }(L)}{\text { support } X} \geq \frac{\text { support }(L)}{\text { support }\left(X^{\prime}\right)}=\operatorname{confidence}\left(\mathrm{X}^{\prime} \rightarrow \mathrm{L} \backslash \mathrm{X}^{\prime}\right)
$$

1 for all large itemsets I_{k} with $k \geq 2$ do call genrules $\left(I_{k}, I_{k}\right.$, minconf)

Algorithm: genrules (I_{k}, a_{m}, minconf)
Input: A large itemset I_{k}, a set $a_{m} \subseteq I_{k}$, the minimum confidence minconf.
Output: All the rules of the form $a \rightarrow I_{k} \backslash a$ with $a \subseteq a_{m}$ and confidence equal or above minconf.

```
\(\mathbb{A}=\left\{(m-1)\right.\)-itemsets \(\left.a_{m-1} \mid a_{m-1} \subseteq a_{m}\right\}\)
for all \(a_{m-1} \in \mathbb{A}\) do
    \(\operatorname{conf}=\operatorname{support}\left(I_{k}\right) / \operatorname{support}\left(a_{m-1}\right) \quad / /\) Confidence of the rule \(a_{m-1} \rightarrow I_{k} \backslash a_{m-1}\)
    if conf \(\geq\) minconf then
        output the rule \(a_{m-1} \rightarrow I_{k} \backslash a_{m-1}\) with confidence=conf and support=support \(\left(I_{k}\right)\)
        if \(m-1>1\) then call genrules \(\left(l_{k}, a_{m-1}\right.\), minconf \()\)
```


Exercise

- Run the genrule algorithm on the database below for the large itemset $\{A, B, C\}$ with minimum confidence 0.8 .

Tid	Items
1	A, B, C
2	A, B, C, D, E
3	A, C, D
4	A, C, D, E
5	A, B, C, D

- Show the execution details (i.e. antecedent generation, recursive calls) not just the rules.

$$
\begin{aligned}
A, B & \rightarrow C \\
B, C & \rightarrow A \\
B & \rightarrow A, C
\end{aligned}
$$

Rule Generation Algorithm Proof

```
for all large itemsets \(I_{k}\) with \(k \geq 2\) do
    call genrules \(\left(I_{k}, I_{k}, \operatorname{minconf}\right)\)
Algorithm: genrules \(\left(l_{k}, a_{m}\right.\), minconf \()\)
Input: A large itemset \(I_{k}\), a set \(a_{m} \subseteq I_{k}\), the minimum confidence minconf.
Output: All the rules of the form \(a \rightarrow I_{k} \backslash a\) with \(a \subseteq a_{m}\) and confidence equal or above minconf.
\(\mathbb{A}=\left\{(m-1)\right.\)-itemsets \(\left.a_{m-1} \mid a_{m-1} \subseteq a_{m}\right\}\)
for all \(a_{m-1} \in \mathbb{A}\) do
    \(\operatorname{conf}=\operatorname{support}\left(I_{k}\right) / \operatorname{support}\left(a_{m-1}\right) \quad / /\) Confidence of the rule \(a_{m-1} \rightarrow I_{k} \backslash a_{m-1}\)
    if conf \(\geq\) minconf then
        output the rule \(a_{m-1} \rightarrow I_{k} \backslash a_{m-1}\) with confidence=conf and support=support \(\left(I_{k}\right)\)
        if \(m-1>1\) then call genrules \(\left(I_{k}, a_{m-1}\right.\), minconf \()\)
```


Summary

- Processing transactions to find rules of the form,

$$
\text { Item }_{1}, \ldots, \text { Item }_{m} \rightarrow \text { Iten }_{m+1}, \ldots, \text { Item }_{n}
$$

with a user-defined minimum support and confidence.

- We use a two-step solution:

1. Find all the large itemsets.
2. Generate all the rules with minimum confidence.

- We use the apriori properties.
- Drawbacks of the apriori algorithm:
- Candidate generate-and-test.
- Too many candidates to generate, e.g. if there are 10^{4} large 1 -itemsets, then more than 10^{7} candidate 2 -itemsets.
- Each candidate implies expensive operations, e.g. pattern matching, subset checking, storing.
- Can candidate generation be avoided?

