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Association Rules

• Assume that we have access to some transactions
Transaction Items
1 A, B, D
2 A, C, D
3 A, D, E
4 B, E, F
5 B, C, D, E, F

• Assume that the items are sorted.

• Want to find association rules,

Item1, . . . , Itemm → Itemm+1, . . . , Itemn.

If the items in the antecedent are purchased, so are the items in the consequent,
e.g.

Bread,Butter → Cheese
• Application: Market basket analysis to support business decisions,

• Rules with ”cheese” in the consequent may help decide how to boost sales of ”cheese”.
• Rules with ”bread” in the antecedent may help determine what happens if ”bread” is

sold out.

• Note that rules do not convey causality.
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Association Rules

• We are interested in finding rules of the form

X1, . . . ,Xm → Y1, . . . ,Yn ≡ X → Y

• All rules are not equally interesting.
• Interested in rules with minimum support and confidence

Support Fraction of the transactions which contain X and Y (p(X,Y))
Support “How general the rule is.”

Confidence Fraction of the transactions that contain X which also contain Y
(p(Y |X))

Confidence “How accurate the rules is.”
• confidence = p(Y |X) = p(X,Y)/p(X) = support(X,Y)/support(X).
• Assume that we have access to some transactions

Transaction Items
1 A, B, D
2 A, C, D
3 A, D, E
4 B, E, F
5 B, C, D, E, F

• A → D has support 0.6 and confidence 1.
• D → A has support 0.6 and confidence 0.75.
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Frequent Itemsets

• We are interested in finding rules of the form

X1, . . . ,Xm → Y1, . . . ,Yn ≡ X → Y

with user-specified minimum support and confidence

• We define a frequent or large itemset as a set of items that has minimum
support.

• E.g., {A, D} is a frequent itemset in the previous example with mimum support 0.5.
• We will find the desired rules in two steps:

1. Find all frequent itemsets (using apriori or FP grow algorithm).
2. Generate all rules with minimum confidence from the frequent itemsets.

• The first step above will use the following apriori property:
• Every subset of a frequent itemset is frequent.
• Alternatively, every superset of an infrequent itemset is infrequent.
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Apriori Algorithm

Algorithm: apriori(D, minsup)
Input: A transactional database D and the minimum support minsup.
Output: All the large itemsets in D.

1 L1 = { large 1-itemsets }
2 for (k = 2; Lk−1 ̸= ∅; k ++) do
3 Ck = apriori-gen(Lk−1) // Generate candidate large k-itemsets
4 for all t ∈ D do
5 for all c ∈ Ck such that c ∈ t do
6 c.count ++

7 Lk = {c ∈ Ck|c.count ≥ minsup}
8 return

∪
k Lk

Algorithm: apriori-gen(Lk−1)
Input: Large (k − 1)-itemsets.
Output: A superset of Lk.

1 Ck = ∅ // Self-join
2 for all I, J ∈ Lk−1 do
3 if I1 = J1, . . . , Ik−2 = Jk−2 and Ik−1 < Jk−1 then
4 add {I1, . . . , Ik−1, Jk−1} to Ck
5 for all c ∈ Ck do // Prune
6 for all (k − 1)-subsets s of c do
7 if s /∈ Lk−1 then
8 remove c from Ck
9 return Ck
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Example: Apriori Algorithm

Run the Apriori algorithm with the following database and minsup 2.
Tid Items
1 A, C, D
2 B, C, E
3 A, B, C, E
4 B, E
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Apriori Algorithm

• Self-join step in MySQL:
insert into Ck
select I.item1, . . . , I.itemk−1, J.itemk−1
from Lk−1 I, Lk−1 J
where I.item1 = J.item1, . . . , I.itemk−2 = J.itemk−2, I.itemk−1 < J.itemk−1

• Self-joint step in R:
merge(Lk−1, Lk−1, by=c(Lk−1.item1, . . . , Lk−1.itemk−2))

Note that duplicates will be produced because the condition
I.itemk−1 < J.itemk−1 is not enforced.

• To make the prune step fast, store the results in a hash table.
• Clever data structures are typically used for counting the support. (line 4-6 in

apriori algorithm)
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Exercise

• Run the apriori algorithm on the database below with minimum support 2.
Tid Items
1 A, B, C
2 A, B, C, D, E
3 A, C, D
4 A, C, D, E
5 A, B, C, D

• Show the execution details (i.e. self-join, prune, support counting) not just the
large itemsets.

L1 = {{A}, {B}, {C}, {D}, {E}}
L2 = {{A,B}.{A,C}, {A,D}, {A,E}, {B,C}, {B,D}, {C,D}, {C,E}, {D,E}}
L3 = {{A,B,C}, {A,B,D}, {A,C,D}, {A,C,E}, {A,D,E}, {B,C,D}, {C,D,E}}
L4 = {{A,B,C,D}, {A,C,D,E}}
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Apriori Algorithm Proof

Algorithm: apriori(D, minsup)
Input: A transactional database D and the minimum support minsup.
Output: All the large itemsets in D.

1 L1 = { large 1-itemsets }
2 for (k = 2; Lk−1 ̸= ∅; k ++) do
3 Ck = apriori-gen(Lk−1) // Generate candidate large k-itemsets
4 for all t ∈ D do
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8 return
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k Lk

Algorithm: apriori-gen(Lk−1)
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Rule Generation Algorithm

• Having a large itemset L we wish to generate rules of the form

X → L \ X,

where X ⊆ L.

• These rules should have a minimum confidence.
• The following apriori property will be used:

• If X does not result in a rule with minimum confidence for L, then neither does any
subset X′ ⊆ X,

confidence(X → L \ X) = support(L)
supportX ≥ support(L)

support(X′) = confidence(X′ → L \ X′)

1 for all large itemsets lk with k ≥ 2 do
2 call genrules(lk, lk, minconf)

Algorithm: genrules(lk, am, minconf)
Input: A large itemset lk, a set am ⊆ lk, the minimum confidence minconf.
Output: All the rules of the form a → lk \ a with a ⊆ am and confidence equal or above minconf.

1 A = {(m − 1)-itemsets am−1|am−1 ⊆ am}
2 for all am−1 ∈ A do
3 conf = support(lk) / support(am−1) // Confidence of the rule am−1 → lk \ am−1
4 if conf ≥ minconf then
5 output the rule am−1 → lk \ am−1 with confidence=conf and support=support(lk)
6 if m − 1 > 1 then call genrules(lk, am−1, minconf)
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1 for all large itemsets lk with k ≥ 2 do
2 call genrules(lk, lk, minconf)

Algorithm: genrules(lk, am, minconf)
Input: A large itemset lk, a set am ⊆ lk, the minimum confidence minconf.
Output: All the rules of the form a → lk \ a with a ⊆ am and confidence equal or above minconf.

1 A = {(m − 1)-itemsets am−1|am−1 ⊆ am}
2 for all am−1 ∈ A do
3 conf = support(lk) / support(am−1) // Confidence of the rule am−1 → lk \ am−1
4 if conf ≥ minconf then
5 output the rule am−1 → lk \ am−1 with confidence=conf and support=support(lk)
6 if m − 1 > 1 then call genrules(lk, am−1, minconf)
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Exercise

• Run the genrule algorithm on the database below for the large itemset {A,B,C}
with minimum confidence 0.8.

Tid Items
1 A, B, C
2 A, B, C, D, E
3 A, C, D
4 A, C, D, E
5 A, B, C, D

• Show the execution details (i.e. antecedent generation, recursive calls) not just
the rules.

A,B → C
B,C → A

B → A,C
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Rule Generation Algorithm Proof

1 for all large itemsets lk with k ≥ 2 do
2 call genrules(lk, lk, minconf)

Algorithm: genrules(lk, am, minconf)
Input: A large itemset lk, a set am ⊆ lk, the minimum confidence minconf.
Output: All the rules of the form a → lk \ a with a ⊆ am and confidence equal or above minconf.

1 A = {(m − 1)-itemsets am−1|am−1 ⊆ am}
2 for all am−1 ∈ A do
3 conf = support(lk) / support(am−1) // Confidence of the rule am−1 → lk \ am−1
4 if conf ≥ minconf then
5 output the rule am−1 → lk \ am−1 with confidence=conf and support=support(lk)
6 if m − 1 > 1 then call genrules(lk, am−1, minconf)
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Summary

• Processing transactions to find rules of the form,

Item1, . . . , Itemm → Itenm+1, . . . , Itemn,

with a user-defined minimum support and confidence.
• We use a two-step solution:

1. Find all the large itemsets.
2. Generate all the rules with minimum confidence.

• We use the apriori properties.
• Drawbacks of the apriori algorithm:

• Candidate generate-and-test.
• Too many candidates to generate, e.g. if there are 104 large 1-itemsets, then more than

107 candidate 2-itemsets.
• Each candidate implies expensive operations, e.g. pattern matching, subset checking,

storing.

• Can candidate generation be avoided?
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