

723A75 Advanced Data Mining TDDD41 Data Mining - Clustering and Association Analysis

Lecture 8: Constrained Frequent Itemset Mining

Johan Alenlöv IDA, Linköping University, Sweden

Outline

Content

- Recap
- Monotone and anitmonotone constraints
- · Apriori algorithm with constraints
- FP grow algorithm with constraints
- Convertible (anti) monotone constraints
- Summary

Litterature

- Course Book. 2nd ed.: 5.5. 3rd ed.: 7.3
- Pei, J., and Han, J. Can We Push More Constraints into Frequent Pattern Mining?.
 In Proc. of the 2000 Int. Conf. on Knowledge Discovery and Data Mining, 2000.

Recap: FP Grow Algorithm

Algorithm: FP-tree(*D*, *minsup*)

Input: A transactional database *D*, and the minimum support *minsup*.

Output: The FP tree for *D* and *minsup*.

- 1 Count support for each item in D
- 2 Remove the infrequent items from the transactions in D
- 3 Sort the items in each transaction in D in support descending order
- 4 Create a FP tree with a single node T with T.name = NULL
- 5 for each transaction $I \in D$ do insert-tree(I, T)
 - **Algorithm**: insert-tree($I_1, \ldots I_m, T$)
 - **Input**: An itemset I_1, \ldots, I_m , and a node T in the FP tree.

Output: Modified FP tree.

- 1 if T has a child N such that $N.name = I_1.name$ then
- 2 N.count + +
- 3 else

- 4 create a new child N of T with N.name = I_1 .name and N.count = 1
- 5 if m > 1 then
- 6 insert-tree (I_2, \ldots, I_m, N)

Recap: FP Grow Algorithm

■ To mine the FP tree *Tree*, call FP-grow(*Tree*, NULL, *minsup*).

Algorithm: FP-grow(Tree, α , minsup)
Input: A FP tree Tree, an itemset α , and the minimum support minsup.

Output: All the itemsets in Tree that end with α and have minsup.

1 for each item X in Tree do
2 output the itemset $\beta = X \cup \alpha$ with support=X.count3 build the β conditional database and the corresponding FP tree $Tree_{\beta}$ 4 if $Tree_{\beta}$ is not empty then call FP-grow($Tree_{\beta}$, β , minsup)

The algorithm above can be made more efficient by adding the lines below.

```
0.1 if Tree has a single branch then 0.2 for each combination \beta of the nodes in the branch do 0.3 output the itemset \beta \cup \alpha with support = \min_{X \in \beta} X.count 0.4 else
```

• The FP grow algorithm is correct.

Exercise

• Run the FP grow algorithm on the database below with minsup 2.

Tid	Items
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

 Show the execution details (i.e. FP tree construction, conditional databases, recursive calls), not just the frequent itemsets found.

Monotone and Antimonotone Constraints

- A constraint is a function that returns true or false for every itemset.
- It tells us if the itemset satisfies the constraint or not.
 - The itemset has support equal or greater than a given value.
 - The sum of the prices of the items in the itemset is greater than a given value.
 - The most expensive item in the itemset cost less than a given value.
 - The itemset contains a specific value.
 - The itemset contains exactly a certain number of items.
- A constraint C is monotone when for every itemset A and B such that $A \subseteq B$, if C(A) = true then C(B) = true.
 - The itemset contains a certain item.
- A constraint C is antimonotone when for every itemset A and B such that $A \subseteq B$, if C(B) = true then C(A) = true.
 - The support of the itemset is equal or greater than a given value.
- Alternatively, C is antimonotone when for every itemset A and B such that
 A ⊆ B, if C(A) = false then C(B) = false.
- Note that the apriori property applies to every antimonotone constrain, i.e. no need to check the constraint for supersets of A if C(A) = false.

Examples of Monotone and Antimonotone Constraints

- Here S is the set of prices in the itemset and v is a given values.
- Examples of monotone constraints:
 - $sum(S) \ge v$
 - $\min(S) \leq v$
 - range(S) $\geq v$
- Examples of antimonotone constraints:
 - $sum(S) \le v$
 - $\max(S) \le v$
 - $range(S) \le v$

Examples of Monotone and Antimonotone Constraints

Constraint	Antimonotone	Monotone
$v \in S$	no	yes
$S\supseteq V$	no	yes
$S \subseteq V$	yes	no
$\min(S) \leq v$	no	yes
$\min(S) \geq v$	yes	no
$\max(S) \leq v$	yes	no
$\max(S) \geq v$	no	yes
$count(S) \leq v$	yes	no
$count(S) \geq v$	no	yes
$sum(S) \leq v \ (a \in S, a \geq 0)$	yes	no
$sum(S) \geq v \ (a \in S, a \geq 0)$	no	yes
$range(S) \leq v$	yes	no
$range(S) \geq v$	no	yes
$avg(S) \theta v, \theta \in \{\leq, \geq\}$	No but convertible	No but convertible
$support(S) \ge v$	yes	no
$support(S) \le v$	no	yes

```
Algorithm: apriori(D, minsup, C)
     Input: A transactional database D, minsup, and an antimonotone constraint C.
     Output: All the large itemsets in D that satisfy C.
    L_1 = \{ \text{ large 1-itemsets that satisfy } C \}
    for (k = 2; L_{k-1} \neq \emptyset; k + +) do
    C_k = \text{apriori-gen}(L_{k-1}) // Generate candidate large k-itemsets
4
    for all t \in D do
5
            for all c \in C_k such that c \in t do
6
               c.count + +
    L_k = \{c \in C_k | c.count \ge minsup \text{ and } C(c) = true \}
8
    return \bigcup_{k} L_{k}
```

Run the Apriori algorithm with the following database with minsup 2.

Items
1, 3, 4
2, 3, 5
1, 2, 3, 5
2, 5

	Itemset	sup
	{1}	2
	{2}	3
1 →	{3}	3
	{4}	1
	{5}	3

_			•
	Itemset	sup	
	{1}	2	
L_1	{2}	3	
- →	{3}	3	
	{5}	3	

	Itemset	
	$\{1, 2\}$	
	$\{1, 3\}$	ſ
C_2	$\{1, 5\}$	ſ
\longrightarrow	{2,3}	
	$\{2, 5\}$	
	{3,5}	ſ

Itemset	sup	
{1,2}	1	
{1,3}	2	
$\{1, 5\}$	1	
{2,3}	2	'
{2,5}	3	
{3,5}	2	

Itemset	sup	
{1,3}	2	
{2,3}	2	—
{2,5}	3	
{3,5}	2	

$$C_3 \longrightarrow \{2,3,5\}$$

_	Itemset	sup
\rightarrow	$\{2, 3, 5\}$	2

Run the Apriori algorithm with the following database with minsup 2 and constraint sum(S) < 5 where the item price coincides with the item id.

Tid	Items
1	1, 3, 4
2	2, 3, 5
3	1, 2, 3, 5
4	2, 5

	Itemset	sup
	{1}	2
С.	{2}	3
$\stackrel{C_1}{\longrightarrow}$	{3}	3
	{4}	1
	{5}	3

	Itemset	sup	
	{1}	2	
L_1	{2}	3	
- →	{3}	3	
	{ <i>5</i> /}	3	

	Itemset	It
	{1,2}	
	{1,3}	
C_2	<i>{/¥,\/</i> \$/};/	 /
\longrightarrow	{2,3}	
	<i>{\7\\\\\$</i> }}/	/
	{/\$/,/\$/}/	1

Itemset	sup	
{1,2}	1	
{1,3}	2	
<i>{/\\\\\</i> }}}	1/	
$\{2,3\}$	2	
<i>{{7},{\$</i> }}/	3	
<i>{\3,\5};</i> /	7	

Itemset	sup	
{1,3}	2	
<i>{{\7},{\3}</i> }/	7	
<i>{{\7},{\5}</i> }}	3	
<i>{\3\5}}</i> /	7	

C-	Itemset
$\stackrel{C_3}{\longrightarrow}$	<i>{\7,\3,\5\</i> }

	Itemset	sup
} }	<i>{\7</i> /3 <i>\5</i> }}	7

```
Algorithm: apriori(D, minsup, C)
     Input: A transactional database D, minsup, and a monotone constraint C.
     Output: All the large itemsets in D that satisfy C.
   L_1 = \{ \text{ large 1-itemsets } \}
2 for (k = 2; L_{k-1} \neq \emptyset; k++) do
     C_k = \text{apriori-gen}(L_{k-1}) // Generate candidate large k-itemsets
     for all t \in D do
5
           for all c \in C_k such that c \in t do
6
               c.count + +
   L_k = \{c \in C_k | c.count > minsup\}
    return \{c \in \bigcup_k L_k | C(c) = true \text{ or } C(d) = true \text{ for some } d \subseteq c\}
```

Run the Apriori algorithm with the following database with minsup 2 and constraint $sum(S) \ge 5$ where the item price coincides with the item id.

Tid	Items
1	1, 3, 4
2	2, 3, 5
3	1, 2, 3, 5
4	2, 5

1	Itemset	sup
	{1}	2
C.	{2}	3
$\stackrel{C_1}{\longrightarrow}$	{3}	3
	{4}	1
J	{5}	3

	Itemset	sup	
	{1}	2	
L_1	{2}	3	
- →	{3}	3	
	{5 }	3	

	Itemset	
	{1,2}	
	{1,3}	
C_2	$\{1, 5\}$	
\longrightarrow	{2,3}	
	$\{2, 5\}$	
	{3,5}	

	Itemset	sup	
	{1,2}	1	
	{1,3}	2	
	$\{1, 5\}$	1	
_	{2,3}	2	-
	{2,5}	3	
	$\{3, 5\}$	2	

Itemset	sup	
{1,3}	2	
{2,3}	2	\longrightarrow
{2,5}	3	
{3,5}	2	

<i>C</i>	Itemset
$\stackrel{C_3}{\longrightarrow}$	$\{2, 3, 5\}$

	Itemset	sup
+	$\{2, 3, 5\}$	2

FP Grow Algorithm with Monotone Constraint

```
Algorithm: FP-grow(Tree, \alpha, minsup, C)
Input: A FP tree Tree, an itemset \alpha, minsup, and a monotone constraint C.
Output: All the itemsets in Tree that end with \alpha, have minsup and satisfy C.

1 if C(\alpha) = true then
2 replace C with C_{true} // C_{true} is a constraint that always returns true
3 for each item X in Tree do
4 output the itemset \beta = X \cup \alpha with support=X.count if C(\beta) = true
5 build the \beta conditional database and the corresponding FP tree Tree_{\beta}
6 if Tree_{\beta} is not empty then call FP-grow(Tree_{\beta}, \beta, minsup, C)
```

FP Grow Algorithm with Monotone Constraint

Run the FP Grow algorithm with the following database with minsup 2 and constraint $sum(S) \ge 5$ where the item price coincides with the item id.

Tid	Items	
1	1, 3, 4	
2	2, 3, 5	
3	1, 2, 3, 5	
4	2, 5	

Item	Conditional database		
2	-		
3	2:2		
5	2:1, 2,3:2		
1	3:1, 2,3,5:1		

5-conditional database

_		
	Tid	Items
	1	2
	2	2, 3
	3	2, 3

Now C(5) = true so we replace C with C_{true} .

FP Grow Algorithm with Antimonotone Constraint

```
Algorithm: FP-tree(D, minsup, C)
    Input: A transactional database D, minsup, and an antimonotone constraint C.
    Output: The FP tree for D, minsup and C.
1
    Count support for each item in D
2
    Remove the infrequent items from the transactions in D
3
    Remove the items that do not satisfy C from the transactions in D
    Sort the items in each transaction in D in support descending order
4
    Create a FP tree with a single node T with T.name = NULL
6
    for each transaction I \in D do
7
       insert-tree(I, T)
```

```
Algorithm: FP-grow(Tree, \alpha, minsup, C)
Input: A FP tree Tree, an itemset \alpha, minsup, and an antimonotone constraint C.

Output: All the itemsets in Tree that end with \alpha, have minsup and satisfy C.

1 let \delta denote all the items in Tree
2 if C(\alpha \cup \delta) = true then
3 replace C with C_{true} // C_{true} is a constraint that always returns true
4 for each item X in Tree do
5 if C(X \cup \alpha) = true then
6 output the itemset \beta = X \cup \alpha with support=X.count
7 build the \beta conditional database and the corresponding FP tree Tree_{\beta}
8 if Tree_{\beta} is not empty then call FP-grow(Tree_{\beta}, \beta, minsup, C)
```

FP Grow Algorithm with Antimonotone Constraint

Run the FP Grow algorithm with the following database with minsup 2 and constraint sum(S) < 5 where the item price coincides with the item id.

Tid	Items	
1	1, 3, 4	
2	2, 3, 🖔	
3	1, 2, 3, 💆	
4	2, 5	

Item	Conditional database	
2	-	
3	2:2	
1	3:1, 2,3:1	

3-conditional database

Tid	Items
1	2
2	2

Now $C(3 \cup 2) = \text{true}$ so we replace C with C_{true} .

Convertible Monotone and Antimonotone Constraint

- We saw that $avg(S) \le v$ and $avg \ge v$ was neither monotone nor antimonotone.
- A constraint C is convertible monotone when there exists an item order R such that for every itemsets A and B respecting R such that A is a suffix of B, if C(A) = true then C(B) = true.
 - $avg(S) \ge v$ with respect to decreasing price order.
- A constraint C is convertible antimonotone when there exists an item order R such that for every itemsets A and B respecting R such that B is a suffix for A, if C(A) = true then C(B) = true.
 - $avg(S) \ge v$ with respect to increasing price order.
- Alternatively, C is convertible antimonotone when there exists an item order R such that for every itemsets A and B respecting R such that B is a suffix for A, if C(B) = false then C(A) = false.
- A constraint that is both convertible monotone and antimonotone is called strongly convertible.

Convertible Monotone and Antimonotone Constraints

Constraint	Convertible	Convertible	Strongly
Constraint	antimonotone	monotone	convertible
$avg(S) \leq, \geq v$	Yes	Yes	Yes
$median(S) \leq, \geq v$	Yes	Yes	Yes
$sum(S) \le v^1, v \ge 0$	Yes	No	No
$sum(S) \le v^1, v \le 0$	No	Yes	No
$sum(S) \ge v^1, v \ge 0$	No	Yes	No
$sum(S) \ge v^1, v \le 0$	Yes	No	No
:	:	:	:

¹For the sum constraints the prices are of any value (negative or positive)

Summary

- Constraints can be added to the mining process to find itemsets that satisfy a certain constraint.
- Constraints can be antimonotone, monotone, convertible or inconvertible
- Depending on the type of constraint different modification to the mining algorithms are made.