
Meeting 5:

Decision-making – the building 

blocks



Example

Assume you are about to buy a car and you have a budget of SEK 260 000.

You choose between a Skoda (SEK 260 000) and a Renault (SEK 150 000).  

Both cars are of model 2020, and have about the same mileage. You are 

indifferent between them when it comes to exterior and interior looks, comfort, 

manoeuvring, equipment etc. 

The relevant difference between them is that the Skoda is an electric car and the 

Renault is petrol-driven.

With today’s prices of petrol and electricity the Skoda will cost you SEK 4 and the 

Renault will cost you SEK 9 per 10  km mixed driving.

You estimate to drive a total of 50 000 km with the car.

• Which car would you choose based on today’s “fuel” prices?

• How would future prices changes affect your choice? 



What characterises a decision problem?

You have a set of alternative acts (actions, decisions) to choose from.

An act can be beneficial for you depending on the state (of the world, of nature)

This depends on the outcome (consequence) of the combination of act and state.

You (normally) know

• which the different acts are

• which the different states are 

• your relative preferences of the different consequences

You don’t know

• the true state

You may

• be able to assign the probabilities of the different states

• have access to data to assist in your choice



Visualisation of a decision problem

Decision tree
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Decision matrix

Actions

States

s1 s2

a1 c(a1 , s1) c(a1 , s2)

a2 c(a2 , s1) c(a2 , s2)

a3 c(a3 , s1) c(a3 , s2)



Example

You are about to travel from city A to city B by car. 

You can choose between taking route 1 (a1) or route 2 (a2).

If the traffic is heavy (s1), route 1 will take you approximately 80 minutes, while 

route 2 will take you approximately 60 minutes. 

If the traffic is normal (s2), route 1 will take you approximately 50 minutes while 

route 2 will take you approximately 60 minutes. 

Your aim is to get to city B as quickly as possible.

Route 1 

Heavy traffic 

Route 2 

Normal traffic 

Heavy traffic 

Normal traffic 

80 min

50 min

60 min

60 min

Actions

States

Heavy 

traffic

Normal 

traffic

Route 1 80 min 50 min

Route 2 60 min 60 min



True state of world:    Unknown. The Bayesian description of this uncertainty is     

/nature in terms of a random variable ෩𝜽 with prior density p( )

Data: x Observation of ෥𝒙, whose pdf (or pmf) depends on 
(data is thus assumed to be available)

Decision procedure:    (also referred to as a decision rule)

Action (act):  (x), a The decision rule becomes an action when applied to given

data x

Loss function: L( (x) , ) measures the loss from taking action   (x)  when  holds

Payoff function R( (x),  )     measures the payoff from taking action  (x)  when  holds

Risk function:

Chance function  

Expected loss/payoff with respect to variation in x

Functions of the state of world/nature and the decision rule (and not the action)

The classical description (not in the course book(s))

𝐷 𝛿, 𝜽 = න
𝒙

𝐿 𝛿 𝒙 , 𝜽 𝑓 𝒙 𝜽 𝑑𝒙 = 𝐸෥𝒙 𝐿 𝛿 ෥𝒙 , 𝜽

𝐶 𝛿, 𝜽 = න
𝒙

𝑅 𝛿 𝒙 , 𝜽 𝑓 𝒙ȁ𝜽 𝑑𝒙 = 𝐸෥𝒙 𝑅 𝛿 ෥𝒙 , 𝜽

likelihood



Decision-making under ignorance  [non-probabilistic criteria]

A decision rule  * is a maximin rule if 𝐶 𝛿∗, (𝜽) = max
𝛿

min
𝜽

 𝐶 𝛿, 𝜽

i.e.  is for each decision rule chosen to be the “worst” state  lowest chance , and 

among these lowest chances  the decision rule that gives the highest one of them is 

chosen. 

 * =  10

C(,) C(,)

no assigned probabilities of the states



A procedure  * is a maximax rule if 𝐶 𝛿∗, (𝜽) = max
𝛿

max
𝜽

 𝐶 𝛿, 𝜽

i.e.  is for each decision rule chosen to be the “best” state  highest chance, and 

among these highest chances the decision rule that gives the highest one of them is 

chosen.

The maximax rule is a typical optimistic rule

 * =  4

C(,) C(,)



i.e.  is for each decision rule chosen to be the “worst” state  highest risk, and 

among these highest risks the decision rule that gives the lowest one is chosen.

A procedure  * is a minimax rule if 𝐷 𝛿∗, (𝜽) = min
𝛿

max
𝜽

 𝐷 𝛿, 𝜽

The minimax rule is a typical pessimistic rule

 * =  10

D(,) D(,)



𝑅 𝛿∗, (𝜽) = min
𝛿

max
𝜽

 𝑅 𝛿, 𝜽

𝐶 𝛿∗, (𝜽) = max
𝛿

max
𝜽

 𝐶 𝛿, 𝜽

𝐶 𝛿∗, (𝜽) = max
𝛿

min
𝜽

 𝐶 𝛿, 𝜽Maximin

Maximax

Minimax

Another decision rule under ignorance: 

Lexical maximin (or minimax)

If the criteria maximin is used and it happens that two rules 𝛿1 and 𝛿2 both are 

solutions to max
𝛿

min
𝜽

 𝐶 𝛿, 𝜽

• try max
𝛿1,𝛿2

next−to−min
𝜽

 𝐶 𝛿, 𝜽

•

…and if that cannot separate them 

• try max
𝛿1,𝛿2

next−to−next−to−min
𝜽

 𝐶 𝛿, 𝜽

• etc.



Example

Suppose you are about to make a decision on whether you should buy or rent a new 

laptop to have for two years = 24 months.

➔  1 = “Buy the laptop”  2 = “Rent the laptop”

Now, assume  is the mean time until the laptop breaks down for the first time.

Let  assume three possible values:  6, 12 and 24 months. 

The cost of the laptop is $500 if you buy it and $30 per month if you rent it.

If the laptop breaks down after 12 months (length of warranty) you’ll have to replace 

it for the same cost  as you bought it if you bought it. If you rented it you will get a 

new laptop for no cost provided you proceed with your contract.

Let X be the time in months until the laptop breaks down and assume this variable is 

exponentially distributed with mean .

➔A cost function (negative payoff function) for an ownership of maximum 24 

months may be defined as

L( 1(X ) , ) = 500 + 500  1{X – 12} and

L( 2(X ) , ) = 30  24 = 720

As we will see later, this is not a proper loss function, but we use it like this here for purpose 

of illustration.

where 𝟏 𝑦 = ቊ
0 𝑦 < 0
1 𝑦 ≥ 0



Then

 D(1, ) D(2, )

6 500(1+e-12/6 ) = 568 720

12 500(1+e-12/12 ) = 684 720

24 500(1+e-12/24 ) = 803 720

Now compare the risks for the three possible values of .

Clearly the risk for the first rule increases with  while the risk for the second is 

constant. In searching for the minimax rule we therefore focus on the largest 

possible value of  and there  2 has the smallest risk.

Minimax decision rule =  2 (rent the laptop)

For the maximin and maximax rules, let C( i , ) =K – D( i , ) 

 Maximin decision rule =  2 and Maximax decision rule =  1

Details about the 

relation will come

𝐷 𝛿1, 𝜃 = 𝐸 500 + 500 ∙ 𝟏 𝑋−12 = 500 + 500 න

12

∞

1 ∙
1

𝜃
𝑒

−
𝑥
𝜃𝑑𝑥 =

= 500 ∙ 1 + 𝑒− Τ12 𝜃

𝐷 𝛿2, 𝜃 =720



Example  Route 1 and 2 revisited

Note! In this description the rules are defined with expected payoffs and losses with 

respect to data (Chance and Risk functions). All rules may however be applied 

directly to payoff or loss tables for different states of the world/nature.

Acts

States

Heavy 

traffic

Normal 

traffic

Route 1 80 min 50 min

Route 2 60 min 60 min

The consequences are not expressed in terms 

of payoff or losses.

But the aim is to reach city B as quickly as 

possible.

 Preference order is  50 min ≻ 60 min ≻ 80 min

Maximin and Minimax: 

Route 1: consequence with lowest preference is 80 min

Route 2: consequence with lowest preference is 60 min. 

60 min ≻ 80 min  The maximin (and minimax) rule is to choose Route 2.

Maximax: 

Route 1: consequence with highest preference is 50 min.

Route 2: consequence with highest preference is 60 min. 

50 min ≻ 60 min  The maximax rule is to choose Route 1.

“≻” means “preferred to” 



Decision-making under risk (Bayes decision rule(s)  [probabilistic criteria]

i.e. the risk function averaged over the prior distribution.

Bayes risk of procedure  :

A Bayes rule is a procedure that minimizes the Bayes risk

Note! This is about the 

decision rule, not a 

specific action

Note! The integral is 

a sum when p( ) is 

a pmf.

𝛿𝐵 = arg min
𝛿

න

𝜽∈𝚯

𝐷 𝛿, 𝜽 𝑝 𝜽 𝑑𝜽

𝐵 𝛿 = න

𝜽∈𝚯

𝐷 𝛿, 𝜽 𝑝 𝜽 𝑑𝜽

To make formulas a bit simpler we use the notation

𝑝 𝜽 = 𝑓′ 𝜽  prior probability density (or mass) function for ෩𝜽

𝑓 𝒙ȁ𝜽  likelihood

𝑞 𝜽ȁ𝒙 = 𝑓′′ 𝜽ȁ𝒙  posterior probability density (or mass) function for ෩𝜽



However,

න

𝜽∈𝚯

𝐷 𝛿, 𝜽 𝑝 𝜽 𝑑𝜽 = න

𝜽∈𝚯

න

𝒙

𝐿 𝛿 𝒙 , 𝜽 𝑓 𝒙ȁ𝜽 𝑑𝒙 𝑝 𝜽 𝑑𝜽

= න

𝒙

න

𝜽∈𝚯

𝐿 𝛿 𝒙 , 𝜽 𝑓 𝒙ȁ𝜽 𝑝 𝜽 𝑑𝜽𝑑𝒙 = න

𝒙

න

𝜽∈𝚯

𝐿 𝛿 𝒙 , 𝜽 𝑞 𝜽ȁ𝒙 ℎ 𝒙 𝑑𝜽

where h(x) is the marginal likelihood 𝑞 𝜽ȁ𝒙 =
𝑓 𝒙ȁ𝜽 𝑝 𝜽

ℎ 𝒙

⇒ න

𝜽∈𝚯

𝐷 𝛿, 𝜽 𝑝 𝜽 𝑑𝜽 = න

𝒙

ℎ 𝒙 න

𝜽∈𝚯

𝐿 𝛿 𝒙 , 𝜽 𝑞 𝜽ȁ𝒙 𝑑𝜽 𝑑 = න

𝒙

ℎ 𝒙 𝐸෩𝜽ȁ𝒙 𝐿 𝛿 𝒙 , ෩𝜽 𝑑𝒙

⇒ arg min
𝛿

න

𝜽∈𝚯

𝐷 𝛿, 𝜽 𝑝 𝜽 𝑑𝜽 = arg min
𝛿

𝐸෩𝜽ȁ𝒙 𝐿 𝛿 𝒙 , ෩𝜽 for any given 

value of x

Hence, a procedure that minimises the posterior expected loss is a Bayes decision 

rule (a probabilistic criterion).



Example: Rent or buy laptop cont.

𝑝 𝜃 =

0.2 𝜃 = 6
0.3 𝜃 = 12
0.5 𝜃 = 24
0 otherwise

pmf

L( 1(X ) , ) = 500 + 500  1{X – 12}

L( 2(X ) , ) = 30  24 = 720

f (x| ) = –1e–x/

𝐵 𝛿1 =
𝜃 is discrete−

valued
= ෍

𝜃∈𝚯

𝐷 𝛿1, 𝜃 𝑝 𝜃 = ෍

𝜃∈𝚯

500 1 − 𝑒− Τ12 𝜃 𝑝 𝜃

= 500 1 − 𝑒− Τ12 6 ⋅ 0.2 + 500 1 − 𝑒− Τ12 12 ⋅ 0.3 + 500 1 − 𝑒− Τ12 24 ⋅ 0.5 = 280

𝐵 𝛿2 = ෍

𝜃∈𝚯

𝐷 𝛿2, 𝜃 𝑝 𝜃 = 𝑅𝐷 𝛿2, 𝜃 ≡ 720 = 720 ⋅ 0.2 + 720 ⋅ 0.3 + 720 ⋅ 0.5 = 720

Thus, the minimal Bayes risk is with procedure  1 and therefore  1 is the Bayes 

decision rule (among  1 and  2).

Using the Bayes risks directly

Assume the three possible values of  (6, 12 and 24) 

have the prior probabilities 0.2, 0.3 and 0.5

respectively.



The payoff represents the net change in your total “wealth” as a function of your 

action and the actual state of the world/nature.  

The term “wealth” is not necessarily to be interpreted in monetary units, but very 

often it should be possible – but perhaps difficult – to translate non-monetary 

consequences to cash equivalents  

The payoff can then be seen as the consequence of your action with the actual state 

of the world/nature.

Defining payoff as the net change means that all costs involved are taken into 

consideration. Hence the payoff may be negative.

Working with payoffs instead of losses

How do we define payoff and how do we define loss?



Example

Suppose you are about to sell apples on an open market a Saturday in 

October. 

You are choosing between selling one of two kinds of apples. 

For the first kind – a lower quality apple - you can buy 100 kg apples for SEK 1800, 

and you deem a reasonable highest selling price to be  SEK 30 per kg. 

For the second kind – a higher quality apple – you can buy 80 kg for SEK 2000, and 

you deem a reasonable highest selling price to be 40 per kg.



If the total demand is 100 kg? If your action is to sell apples of the lower quality, 

your payoff will be SEK 10030 – 1800 = 1200, and if your action is to sell apples 

of the higher quality, your payoff will be SEK 8040 – 2000 = 1200.

Assume the total demand for your apples that day is 50 kg (no matter what kind of 

apple).

Your payoff with the action to sell apples of the lower quality will be

SEK 5030 – 1800 = –300.

Your payoff with the action to sell apples of the higher quality will be

SEK 5040 – 2000 = 0.

Lower quality: 100 kg cost SEK 1800, selling price SEK 30 per kg

Higher quality: 80 kg cost SEK 2000, selling price SEK 40 per kg  



Hence, a procedure that maximises the posterior expected payoff is (also) a Bayes 

procedure. 

Important, though: Payoff is not synonymous with utility

𝛿𝐵 = arg min
𝛿

𝐸෩𝜽ȁ𝒙 𝐿 𝛿 𝒙 , ෩𝜽 = arg min
𝛿

𝐸෩𝜽ȁ𝒙 max
𝑑

𝑅 𝑑 𝒙 , ෩𝜽

not depending
on 𝛿

− 𝑅𝒙 𝛿 𝒙 , ෩𝜽

= arg min
𝛿

−𝐸෩𝜽ȁ𝒙 𝑅 𝛿 𝒙 , ෩𝜽 = arg max
𝛿

𝐸෩𝜽ȁ𝒙 𝑅 𝛿 𝒙 , ෩𝜽

Note that implicit in the derivation above is: 

𝐸෩𝜽ȁ𝒙 𝐿 𝛿 𝒙 , ෩𝜽 = 𝐸෩𝜽ȁ𝒙 max
𝑑

𝑅 𝑑 𝒙 , ෩𝜽 − 𝐸෩𝜽ȁ𝒙 𝑅 𝛿 𝒙 , ෩𝜽 = 𝑇 − 𝐸෩𝜽ȁ𝒙 𝑅 𝛿 𝒙 , ෩𝜽

where T is a quantity that does not depend on the action  (x)

The loss function is to be interpreted in terms of opportunity loss, i.e. for each state 

of the world it is the difference between the maximal payoff that can be obtained 

with that certain state and the payoff of the particular action – referred to as regret in 

the course book by Peterson.

This means,



The “complete” theoretical description hence takes its standpoint from decision 

procedures.

This covers both decision-making under ignorance (non-Bayesian) and decision-

making under risk (Bayesian).

However, most accounts (including the course book(s)) of this course would focus 

on particular actions.

Thus we can say

Under ignorance (no probabilities and no data)…

• The maximin action is the action that has highest minimum payoff

• The minimax action is the action that has the lowest maximum loss

• The maximax action is the action that has the highest maximum payoff

Under risk (probabilities of states assigned, data may be available) …

• A Bayes action is an action that maximises the expected payoff (prior or 

posterior) – equivalent to an action that minimises the expected loss (prior or 

posterior)  



The relation between (opportunity) loss (L) and payoff (R) for an action 𝑎∗ is thus 

𝐿 𝑎∗, 𝜽 = max
𝑎

𝑅 𝑎, 𝜽 − 𝑅 𝑎∗, 𝜽

Applied to a payoff table with m rows and n column, where each row represents an 

action and each column a state of the world:

𝐿𝑖𝑗 = max
𝑘

𝑅𝑘𝑗 − 𝑅𝑖𝑗 𝑖 = 1, … , 𝑚 , 𝑗 = 1, … , 𝑛

where Lij and Rij stand for the loss and the payoff respectively when action i is 

chosen with state j of the world. 

This implies that the loss can never be negative , while the payoff can be positive, 

negative or zero.

1 2 …

a1 L11 , R11 L12 , R12

a2 L21 , R21 L22 , R22

…



(In)Admissibility of actions

An action 𝑎1 is inadmissible if there exists another action 𝑎2 such that

𝑅 𝑎2, 𝜽 ≥ 𝑅 𝑎1, 𝜽 or 𝐿 𝑎2, 𝜽 ≤ 𝐿 𝑎1, 𝜽

for all states of the world/nature  and

𝑅 𝑎2, 𝜽 > 𝑅 𝑎1, 𝜽 or 𝐿 𝑎2, 𝜽 < 𝐿 𝑎1, 𝜽

(strict inequality) for at least one state 

The action 𝑎2 is then said to dominate action 𝑎1. 

If an action is inadmissible, it should not be considered.

If an action is not dominated by any other action, it is admissible .



Example, apples cont.

Since the decision to sell higher quality apples (a2) would give payoffs that do not 

fall short of the payoffs given by selling lower quality apples (a1), and the payoff 

with action a2 when the demand is 50 kg is higher than the payoff with action a1,

the decision to sell lower quality apples is inadmissible.

We can form a payoff table as

Demand is 50 kg Demand is 100 kg

a1 = Sell lower 

quality apples
R11 = –300 R12 = 1200

a2 = Sell higher 

quality apples
R21 = 0 R22 = 1200

provided the only states of the world (possible 

demands) considered are 50 kg and 100 kg



Example

Given the loss table below …

States: I II III

A
ct

io
n

s 1 0 3 6

2 1 1 0

3 4 0 1

…complete the Payoff table below

I II III

1 12 7 9

2

3

The relationship between Loss and Payoff for action i, state j, here Lij and Rij is 

𝐿𝑖𝑗 = max
𝑘

𝑅𝑘𝑗 − 𝑅𝑖𝑗 ⇔ 𝑅𝑖𝑗 = max
𝑘

𝑅𝑘𝑗 − 𝐿𝑖𝑗



Loss table

States: I II III

A
ct

io
n

s 1 0 3 6

2 1 1 0

3 4 0 1

Payoff table

I II III

1 12 7 9

2

3

𝐿𝑖𝑗 = max
𝑘

𝑅𝑘𝑗 − 𝑅𝑖𝑗 ⇔

𝑅𝑖𝑗 = max
𝑘

𝑅𝑘𝑗 − 𝐿𝑖𝑗

⇒ max
𝑘

𝑅𝑘1 − 𝑅11 = 𝐿11 = 0 ⇒  max
𝑘

𝑅𝑘1 = 𝑅11 = 12

 max
𝑘

𝑅𝑘2 − 𝑅12 = 𝐿12 = 3 ⇒  max
𝑘

𝑅𝑘2 = 3 + 𝑅12 = 10 

 max
𝑘

𝑅𝑘3 − 𝑅13 = 𝐿13 = 6 ⇒  max
𝑘

𝑅𝑘3 = 6 + 𝑅13 = 15

I II III

1 12 7 9

2 12 – 1 = 11 10 – 1 = 9 15 – 0 = 15

3 12 – 4 = 8 10 – 0 = 10 15 – 1 = 14

I II III

1 12 7 9

2 11 9 15

3 8 10 14

The payoff table is



Using the loss table I II III

1 0 3 6

2 1 1 0

3 4 0 1

we see that no action gives a higher or equal loss compared to any of the other 

actions for all three states of the world. Hence, there is no inadmissible action.

Using the payoff table

we see that no action gives a lower or equal payoff compared to any of the other 

actions for all three states of the world .  

I II III

1 12 7 9

2 11 9 15

3 8 10 14
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