
Meeting 4:

Exponential class of distributions, 

Interpretation of priors

Other theories for modelling belief



Notation used for probability mass functions, probability density 

functions, and random variables

In the current course book by Peterson, probability mass functions (pmf), 

probability density functions (pdf) and random variables are not explicitly taken up.

But we need them in this course ☺.

To simplify reusing course material from previous years, we therefore adopt the 

notation form the previous course book (by Winkler).

Random variables: Put tilde (~) above the observable or non-observable quantity

e.g. 𝑥, ෨𝜃

Prior pmf, pdf: 𝑓′ ∙ [e.g. 𝑓′ 𝜃 ]

Posterior pmf, pdf: 𝑓′′ ∙ "Data" [e.g. 𝑓′′ 𝜃 𝒙 ]

pmf/pdf of observations: 𝑓 𝑥 𝜃

Likelihood: 𝑓 "Data" ∙ [e.g. 𝑓 𝒙 𝜃 ]

Marginal likelihood, predictive function: 𝑓 𝒙 , 𝑓 𝑥𝑛+1 𝒙 , …



The exponential class of distributions

A (family) of probability distribution(s) belong(s) to the k-parameter exponential 

class of distributions if the probability density (or mass) function can be written:

𝑓 𝒙ȁ𝜽 = 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 𝐵𝑗 𝒙 +𝐶 𝒙 +𝐷 𝜽

where

•  = (1 , … , k )

• A1( ), …, Ak( ) and D( ) are functions of the parameter  only (and not of x )

• B1(x), … , Bk(x) and C(x) are functions of x only (and not of  )

Boldface indicates that observations and/or parameters can be multidimensional.

Canonical form: 𝐴𝑗 𝜽 = 𝜃𝑗



Examples

Two parameter Gamma distribution (univariate), shape and rate 

parameterization:

𝑓 𝑥ȁθ = 𝑓 𝑥ȁ𝛼, 𝛽 =
𝛽𝛼

Γ 𝛼
𝑥𝛼−1𝑒−𝛽𝑥 ; 𝑥 ≥ 0

𝐴1 𝛼, 𝛽 = 𝛼

𝐴2 𝛼, 𝛽 = 𝛽

𝐵1 𝑥 = ln 𝑥

= ⋯ = 𝑒𝛼 ln 𝑥+𝛽(−𝑥)−ln 𝑥+𝛼 ln 𝛽−ln Γ 𝛼

𝐵2 𝑥 = −𝑥

𝐶 𝑥 = − ln 𝑥

𝐷 𝛼, 𝛽 = 𝛼 ln 𝛽 − ln Γ 𝛼

Poisson distribution:

𝑓 𝑥ȁθ = 𝑓 𝑥ȁ𝜇 =
𝜇𝑥

𝑥!
𝑒−𝜇 = 𝑒 ln 𝜇 ⋅𝑥−ln 𝑥!−𝜇 = 𝑒 ln 𝜇 ⋅𝑥−ln Γ 𝑥+1 −𝜇  ; 𝑥 = 0,1, …

𝐴 𝜇 = 𝜇

𝐵 𝑥 = 𝑥

𝐶 𝑥 = − ln Γ 𝑥 + 1

𝐷 𝜇 = −𝜇



Conjugate families of distributions when the likelihood belongs to the 

exponential class

𝑓 𝒙ȁ𝜽 = 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 𝐵𝑗 𝒙 +𝐶 𝒙 +𝐷 𝜽

pdf (or pmf ) of sample point distribution :

Likelihood from sample

of n observations:

ෑ

𝑖=1

𝑛

𝑓 𝒙𝑖ȁ𝜽 = ෑ

𝑖=1

𝑛

𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 𝐵𝑗 𝒙𝑖 +𝐶 𝒙𝑖 +𝐷 𝜽

= 𝑒
σ𝑖=1

𝑛 σ𝑗=1
𝑘 𝐴𝑗 𝜽 𝐵𝑗 𝒙𝑖 +𝐶 𝒙𝑖 +𝐷 𝜽

= 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 σ𝑖=1

𝑛 𝐵𝑗 𝒙𝑖 +σ𝑖=1
𝑛 𝐶 𝒙𝑖 +𝑛⋅𝐷 𝜽

Hence the multivariate array {X1, … , Xn } with independent marginal 

distributions all with density f (x |  ) also belongs to the exponential class.

𝐵𝑗
′ 𝒙1, … , 𝒙𝑛 𝐶′ 𝒙1, … , 𝒙𝑛



where 1 , … , k + 1 are the hyperparameters of this prior distribution and K( ) is a 

function of 1 , … , k + 1 only .

Now, mimic the structure of the exponential class (for the marginal distributions or 

the likelihood) and define the prior density for  as

𝑓′ 𝜽ห𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1

= 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 ⋅𝛼𝑗+𝛼𝑘+1⋅𝐷 𝜽 +𝐾 𝛼1,…,𝛼𝑘,𝛼𝑘+1

∝ 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 ⋅𝛼𝑗+𝛼𝑘+1⋅𝐷 𝜽



Then the posterior becomes

𝑓′′ 𝜽ห 𝒙 , 𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1 = 𝑓′′ 𝜽ห𝒙1, … , 𝒙𝑛; 𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1

∝ ෑ

𝑖=1

𝑛

𝑓 𝒙𝑖ȁ𝜽

likelihood

⋅ 𝑓′ 𝜽ห𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1

i.e. the posterior distribution is of the same form as the prior distribution but with 

hyperparameters

instead of

𝛼1 + σ𝑖=1
𝑛 𝐵1 𝒙𝑖 , … , 𝛼𝑘 + σ𝑖=1

𝑛 𝐵𝑘 𝒙𝑖 , 𝛼𝑘+1 + 𝑛

𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1

∝ 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 σ𝑖=1

𝑛 𝐵𝑗 𝒙𝑖 +𝛼𝑗 + 𝑛+𝛼𝑘+1 ⋅𝐷 𝜽

= 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 σ𝑖=1

𝑛 𝐵𝑗 𝒙𝑖 +σ𝑖=1
𝑛 𝐶 𝒙𝑖 +𝑛⋅𝐷 𝜽 ⋅ 𝑒σ𝑗=1

𝑘 𝐴𝑗 𝜽 ⋅𝛼𝑗+𝛼𝑘+1⋅𝐷 𝜽 +𝐾 𝛼1,…,𝛼𝑘,𝛼𝑘+1

= 𝑒σ𝑖=1
𝑛 𝐶 𝒙𝑖 𝑒𝐾 𝛼1,…,𝛼𝑘,𝛼𝑘+1 𝑒σ𝑗=1

𝑘 𝐴𝑗 𝜽 σ𝑖=1
𝑛 𝐵𝑗 𝒙𝑖 +𝛼𝑗 + 𝑛+𝛼𝑘+1 ⋅𝐷 𝜽



Example

Data is Poisson distributed  𝑓 𝑥ȁ𝜇 =
𝜇𝑥

𝑥!
𝑒−𝜇 = 𝑒 ln 𝜇 ⋅𝑥−ln 𝑥!−𝜇

Mimic structure to obtain the prior density for 𝜃:

𝑓′ 𝜇 = 𝑒𝑙𝑛 𝜇 ∙𝛼1+𝛼2∙ −𝜇 +𝐾 𝛼1,𝛼2 = 𝜇𝛼1 ∙ 𝑒−𝛼2∙𝜇 ∙ 𝐶 𝛼1, 𝛼2 ∝ 𝜇𝛼1 ∙ 𝑒−𝛼2∙𝜇

Hence, the prior must be a two-parameter Gamma distribution.



Some common families (within or outside the exponential family):

Conjugate prior Sample distribution Posterior

Beta Binomial Beta

Normal Normal, known  2 Normal

Gamma Poisson Gamma

Pareto Uniform Pareto

𝜋~𝐵𝑒𝑡𝑎 𝛼, 𝛽 𝜋ȁ𝑥~𝐵𝑒𝑡𝑎 𝛼 + 𝑥, 𝛽 + 𝑛 − 𝑥𝑋~𝐵𝑖𝑛 𝑛, 𝜋

𝜇~𝑁 𝜑, 𝜏2 𝑋𝑖~𝑁 𝜇, 𝜎2
𝜇ȁ ǉ𝑥~𝑁

𝜎2

𝜎2 + 𝑛𝜏2
𝜑 +

𝑛𝜏2

𝜎2 + 𝑛𝜏2
ǉ𝑥,

𝜎2𝜏2

𝜎2 + 𝑛𝜏2

𝜆~𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽 𝑋𝑖~𝑃𝑜 𝜆 𝜆ȁσ𝑥𝑖~𝐺𝑎𝑚𝑚𝑎 𝛼 + σ𝑥𝑖 , 𝛽 + 𝑛

𝑝 𝜃 ∝ 𝜃−𝛼; 𝜃 ≥ 𝛽 𝑋𝑖~𝑈 0, 𝜃 𝑞 𝜃; x ∝ 𝜃− 𝛼+𝑛 ; 𝜃 ≥ max 𝛽, 𝑥 𝑛



Interpretation of prior distributions

Prior distribution for a proportion  see lecture 2!

Prior distribution for the mean of a population with continuous variation

Very often we have reasons to work with normally distributed data to make 

inference about the population mean 𝜇.

If the population variance is (assumed to be) known =  2, we can use the normal 

distribution as a conjugate prior distribution.

From sampling theory we know that – setting aside finite population corrections 

– the variance of the sample mean is the population variance divided by the 

sample size

𝑉𝑎𝑟 𝑦ȁ𝜎2, 𝑛 =
𝜎2

𝑛



If 𝜎′2 represents the prior variance of the unknown 𝜇 define a new parameter n’

as
𝑛′ =

𝜎2

𝜎′2

Hence, 𝜎′2 =
𝜎2

𝑛′

This can be interpreted as the variance 𝜎′2 of a sample mean based on 𝑛′ observations 

taken from the population with population variance 𝜎2.

𝑛′ then plays the role of the size of a virtual sample taken from the population on 

which the prior knowledge stems. 

Note that it is not necessary for 𝑛′ to be integer-valued, even if it often suffices to 

approximate with an integer.  

𝜇~𝑁 𝑚′,
𝜎2

𝑛′

For the prior and posterior distribution we may thus write

𝜇ȁ𝒚~𝑁 𝑚′′,
𝜎2

𝑛′′
where 𝑛′′ =

𝜎2

𝜎′′2 = 𝑛′ + 𝑛



Quick looks at other theories for understanding beliefs 

Consider the following case (from forensic science):

An attempt of burglary is recorded on a CCTV camera and it stands clear that 

the perpetrator is using a crowbar when trying to break the door to the premises 

(target of the intended burglary). The face of the perpetrator cannot be seen.

The perpetrator suddenly runs away leaving the crowbar behind him. Some time 

later the Police arrives to the crime scene and seizes the crowbar. Inspecting it 

more in detail reveals that it has a blue colour (crowbars sold are either painted –

often in red or blue – or unpainted). 

In the investigation interest is taken in a certain Mr Johnson, who is a well-

reputed burglar. A visit is paid at his home, but he is not there. His wife – who 

opened the door - is asked whether Mr Johnson is in possession of a crowbar 

and what it looks like. She says he has a crowbar, and it is not painted.



What do we have here?

We have a crowbar, which we know was used for the burglary attempt thanks to the 

CCTV take-up.

Our question is: Is it Mr Johnson’s crowbar?

To structure things:

Let A denote the statement “The crowbar belongs to Mr Johnson”

Let B denote “The crowbar is painted in blue”

Then we have a witness’ statement:  C = “Mr Johnson’s crowbar is unpainted”

How do B and C influence our belief in A ?



In terms of probabilities (using the subjective interpretation):

Why was Mr Johnson interesting from the beginning?

𝑃 𝐴 𝐼 must have been sufficiently high (where I is the background 

information available – before hearing what the witness (Mrs Johnson) said)

Is B relevant for A, i.e. is 𝑃 𝐴 𝐵, 𝐼 ≠ 𝑃 𝐴 𝐼 ?

A =“The crowbar belongs to Mr Johnson”

B = “The crowbar is blue”

C = “Witness says: Mr Johnson’s crowbar is unpainted”

Are A and B conditionally dependent given C, 

i.e. is 𝑃 𝐴, 𝐵 𝐶, 𝐼 ≠ 𝑃 𝐴 𝐶, 𝐼 ∙ 𝑃 𝐵 𝐶, 𝐼 ?

There is a “problematic” difference between

C = “Witness says: Mr Johnson’s crowbar is unpainted”

and (what may be confused with)

C’ = “Mr Johnson’s crowbar is unpainted”



A =“The crowbar belongs to Mr Johnson”

B = “The crowbar is blue”

C = “Witness says: Mr Johnson’s crowbar is unpainted”

C’ = “Mr Johnson’s crowbar is unpainted”

For…

𝑃 𝐴, 𝐵 𝐶′, 𝐼 = 0 The crowbar cannot belong to Mr Johnson (A) 

and be blue (B) if Mr Johnson’s crowbar is unpainted (C’)

but…

𝑃 𝐴, 𝐵 𝐶, 𝐼 is more difficult. In what way would the relevance between A 

and B be affected by a witness statement?  



A =“The crowbar belongs to Mr Johnson”

B = “The crowbar is blue”

C = “Witness says: Mr Johnson’s crowbar is unpainted”

C’ = “Mr Johnson’s crowbar is unpainted”

Decompose 𝑃 𝐴, 𝐵 𝐶, 𝐼 using 𝐶′ and ¬𝐶′:

𝑃 𝐴, 𝐵 𝐶, 𝐼 = 𝑃 𝐴, 𝐵 𝐶′, 𝐶, 𝐼 ∙ 𝑃 𝐶′ 𝐶, 𝐼 + 𝑃 𝐴, 𝐵 ¬𝐶′, 𝐶, 𝐼 ∙ 𝑃 ¬𝐶′ 𝐶, 𝐼 =

= 0 ∙ 𝑃 𝐶′ 𝐶, 𝐼 + 𝑃 𝐴, 𝐵 ¬𝐶′, 𝐶, 𝐼 ∙ 𝑃 ¬𝐶′ 𝐶, 𝐼

If ¬𝐶′ holds, i.e. if Mr Johnson’s crowbar is painted, then 𝐶 is no longer 

relevant (on its own) for A and B and we may write

𝑃 𝐴, 𝐵 𝐶, 𝐼 = 𝑃 𝐴 𝐵, ¬𝐶′, 𝐼 ∙ 𝑃 𝐵 ¬𝐶′, 𝐼 ∙ 𝑃 ¬𝐶′ 𝐶, 𝐼

Relates to the probability 

that the witness is lying

Hence, since 𝑃 𝐴, 𝐵 𝐶, 𝐼 ≠ 𝑃 𝐴 𝐶, 𝐼 ∙ 𝑃 𝐵 𝐶, 𝐼 A and B cannot be 

considered conditionally independent given 𝐶

= 𝑃 𝐴 ¬𝐶′, 𝐼  ?



Belief functions 

Arthur Dempster: A generalization of Bayesian Inference. Journal of the Royal 

Statistical Society. Series B. 1968, Vol. 30 (2) : 205-247.

Glenn Shafer: Mathematical Theory of Evidence. Princeton University Press, 

1976,

constitute the grounds for Dempster-Shafer theory of belief functions

“(…) belief functions is a mathematical theory of how to combine degrees of 

rational belief derived from different evidential sources.” 

[Nance D. (2019). Belief functions and burdens of proof. Law, Probability and Risk 18: 53-76].

“The Dempster-Shafer theory, also known as the theory of belief functions, is a 

generalization of the Bayesian theory of subjective probability. Whereas the 

Bayesian theory requires probabilities for each question of interest, belief functions 

allow us to base degrees of belief for one question on probabilities for a related 

question” 

[Shafer G.: Dempster-Shafer Theory. www.glennshafer.com/assets/downloads/articles/article48.pdf] :



Consider an event 𝐴

The axioms of probability as a measure state that 𝑃 𝐴 + 𝑃 ¬𝐴 = 1

Now, consider what is referred to as epistemic uncertainty.

There is evidence (knowledge) that supports belief in 𝐴 (supp 𝐴 ) to a certain 

amount, where support – like probability – is measured on a scale from 0 to 1.

The evidence also supports belief in ¬𝐴 to a certain amount (supp ¬𝐴 ).

supp 𝐴 + supp ¬𝐴 is not by necessity equal to 1

However,

One may say that a portion of the total support provided by the evidence is withheld 

or uncommitted as between 𝐴 and ¬𝐴.



Example

Let 𝐴 stand for the statement that a marketing campaign has increased the sales of a 

certain product in Sweden.

From marketing research it is found that the sales of the product in Stockholm in 

August 2023 has increased compared to August 2022, while the sales in Malmö in 

August 2023 has slightly decreased compared to August 2022.

The evidence (marketing research results) may then lead to that the support of 𝐴 is 

0.6 while the support of ¬𝐴 is 0.2. Such supports could follow from considering 

that Stockholm has about 3 times higher population than Malmö, but these two 

communities cannot be said to represent fully the population of buyers in Sweden.

Hence, there is uncommitted support of 0.2 as between 𝐴 and ¬𝐴. This amount of 

support is therefore – at this stage – on the disjunction 𝐴 or ¬𝐴
(supp 𝐴 ∨ ¬𝐴 = 0.2).



Support is now transformed to belief so that the belief in one single event equals 

the support of that event, while the belief in a disjunction is the sum of the supports 

of the individual events of the disjunction plus the uncommitted support (of that 

disjunction.

Bel 𝐴 = supp 𝐴 = 0,6

Bel ¬𝐴 = supp ¬𝐴 = 0,2

Bel 𝐴 or ¬𝐴 = supp 𝐴 + supp ¬𝐴 + supp 𝐴 ∨ ¬𝐴
= 0,6 + 0,2 + 0,2 = 1

These three values are referred to as the belief function .

Note that Bel 𝐴 or ¬𝐴 = 1 = 𝑃 𝐴 ∨ ¬𝐴 , but Bel 𝐴 + Bel ¬𝐴 < 1



The construction can be illustrated as

Bel 𝐴 Bel ¬𝐴supp 𝐴 or ¬𝐴

When the beliefs are such that Bel 𝐴 + Bel ¬𝐴 = 1 always, the beliefs are 

referred to as Bayesian beliefs. Hence, one may say that belief functions are 

generalizations of subjective probabilities 

Plausibility

The plausibility (or upper probability) of an event 𝐴 is the maximum potential 

belief in 𝐴:

𝑃∗ 𝐴 = 1 − Bel ¬𝐴

and the plausibility of ¬𝐴 is analogously

𝑃∗ ¬𝐴 = 1 − Bel 𝐴



Graphically

Bel 𝐴 Bel ¬𝐴supp 𝐴 or ¬𝐴

𝑃∗ ¬𝐴

𝑃∗ 𝐴

Potential decision rules:

• Choose 𝐴 if 𝐵𝑅 =
Bel 𝐴

Bel ¬𝐴
> Λ

• Choose 𝐴 if 𝑃𝑅 =
𝑃∗ 𝐴

𝑃∗ ¬𝐴
> Λ

• Choose 𝐴 if 𝐵𝑅2 =
Bel 𝐴 + 𝜃

Bel ¬𝐴 + 𝜃
> Λ 𝜃 =

1

2
∙ supp 𝐴 or ¬𝐴



A =“The seized crowbar belongs to Mr Johnson”

B = “The seized crowbar is blue”

C = “Witness says: ‘Mr Johnson’s crowbar is unpainted’”

C’ = “Mr Johnson’s crowbar is unpainted”

Recall the example with the seized crowbar

⟹  Bel 𝐵 = 1, Bel 𝐶 = 1

What is the evidence?

We know that the seized crowbar is blue and we know that the witness said

that Mr Johnson’s crowbar is unpainted.

Assume we would apply decision rule 3 with Λ = 1.2  

(20% exceedance of the equal stands)

𝐵𝑅2 =
Bel 𝐴 + 𝜃

Bel ¬𝐴 + 𝜃
> Λ

𝜃 =
1

2
∙ supp 𝐴 or ¬𝐴



supp 𝐴 𝐵, 𝐶 ?

A =“The seized crowbar belongs to Mr Johnson”

B = “The seized crowbar is blue”

C = “Witness says: ‘Mr Johnson’s crowbar is unpainted’”

C’ = “Mr Johnson’s crowbar is unpainted”

We cannot forget that there are initial reasons to believe that A is true. 

Assume supp 𝐴 = 0.5.

Note that this does not imply that is supp ¬𝐴 should also be 0.5. Assume the 

uncommitted support is 0.2 so that supp ¬𝐴 = 0.3. Hence, supp 𝐴 or ¬𝐴 = 0.2

Since Bel 𝐴 = supp 𝐴 and Bel ¬𝐴 = supp ¬𝐴 , choosing decision rule 3  

we get

𝐵𝑅2 =
Bel 𝐴 + 𝜃

Bel ¬𝐴 + 𝜃
=

0.5 + 0.1

0.3 + 0.1
= 1.5 > Λ = 1.2

 Choose A !



A =“The seized crowbar belongs to Mr Johnson”

B = “The seized crowbar is blue”

C = “Witness says: ‘Mr Johnson’s crowbar is unpainted’”

C’ = “Mr Johnson’s crowbar is unpainted”

Then, given B and C we might commit more support to ¬𝐴 without affecting the 

support of 𝐴. Let’s say that we add 0.2 to the support of ¬𝐴, which means that
supp 𝐴 𝐵, 𝐶 is still 0.5, while supp ¬𝐴 𝐵, 𝐶 = 0.5  0.3

𝐵𝑅2 =
Bel 𝐴 𝐵, 𝐶 + 𝜃

Bel ¬𝐴 𝐵, 𝐶 + 𝜃
=

0.5 + 0

0.5 + 0
= 1 < Λ

This updates the values plugged in to decision rule 3:

 Choose A !

Note that we could go further analysing what would happen if we take C’ into 

consideration, but since this is not an observable event, it cannot be used for 

updating.



Application to decisions of courts

Let Hp = “The defendant is guilty”

Hd = “The defendant is not guilty”

Depending on the country’s judicial system, there may be different standards of 

proof.

In the Western World criminal law it is common to have

“beyond reasonable doubt”

as standard of proof

For many and historically, this means that the probability of Hp must be very 

high, but no common threshold is defined. Some would say 0.95, 0.98, 0.99,…

Criminal law

Would it work with

𝐵𝑅 =
Bel 𝐴

Bel ¬𝐴
> Λ ? 𝑃𝑅 =

𝑃∗ 𝐴

𝑃∗ ¬𝐴
> Λ ? 𝐵𝑅2 =

Bel 𝐴 + 𝜃

Bel ¬𝐴 + 𝜃
> Λ ?



Let Hp = “The plaintiff is right”

Hd = “The respondent is right”

In the Western World civil law it is common to have as standard of proof

“preponderance of evidence”  or “balance of probabilities”

For many and historically this means that the probability of Hp must be proven 

higher than the probability of Hd

Civil law

Would it work with

𝐵𝑅 =
Bel 𝐴

Bel ¬𝐴
> Λ ? 𝑃𝑅 =

𝑃∗ 𝐴

𝑃∗ ¬𝐴
> Λ ? 𝐵𝑅2 =

Bel 𝐴 + 𝜃

Bel ¬𝐴 + 𝜃
> Λ ?
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