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Forensic applications, part II



Example:

Upon a shooting incident a person is apprehended, suspected of being the shooter.

His hands and clothes are sampled for searching so-called gunshot residues (GSR)  

[or firearm discharge residues (FDR), equal things].

Findings of GSR is expected to give evidence for the suspect being the shooter. 

What are GSR?



GSR are very small metallic/metalloid particles that come from the explosive primer

of a cartridge. When the firing pin hits the explosive primer, it explodes and lightens 

the powder in the cartridge making the bullet to eject.

When exploding, the primer is fragmented into these very small particles. 
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The GSR are spread around the firearm that was discharged.
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A typical pattern with shooting indoors with a pistol is:

Patterns with shooting outdoors are of course affected by the weather 

conditions.

from a Czech study



GSR are volatile.

Drop off garments and body parts quite quickly after deposition – half-life on 

hands is about 60 minutes, on gloves about 80 minutes

Very sensitive to washing-off, sensitive to adverse weather (rain, wind). 

Risk of contamination from other persons (e.g. upon apprehension 

by the police) or materials (e.g. contact with firearms). 

Hence, search for GSR must be done as early as possible after a shooting incident. 

They can be observed using Scanning 

Electron Microscopy (SEM) technique. 

GSR are not visible to the human eye.

99% vanished after 6 hours. 

Size is about 1 m
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GSR have low degree of polymorphism (the way they are analysed today).

Characteristic elemental compositions:

• Type 1 (lead, barium and antimony)

• Type 2 (lead, barium, antimony and tin)

• Type 3 (lead, barium, antimony and aluminium)

Non-characteristic compositions:

• Type 4 (lead, barium, calcium, silicon and tin)

• Type 5 (antimony, tin, potassium and clorine)

Such small variation makes it difficult to attribute GSR to a specific source. 



The forensic hypotheses

The main hypothesis:

Since it is not meaningful to try to attribute GSR to a specific source, the main 

hypothesis can only address a shooting activity. Moreover, since the risk of 

contamination is high, it is not meaningful to limit the hypothesis to a shooting 

activity.

The alternative hypothesis:

𝑯𝒂: The suspect has neither recently discharged a firearm nor been in contact with 

firearm-related material.

Note that these hypotheses are about activities.

𝑯𝒎: The suspect has recently discharged a firearm or been in contact with firearm-

related material.



The evidence

Assume that 4 GSR were recovered from the taping of the sleeves of the suspect’s 

jacket (𝑬) (recovered using SEM).

Additional information:

The shooting took place around 10 p.m. on April 15.

The weather during the evening and night on April 15 was fair (no precipitation)

The suspect was apprehended about 4 hours after the shooting incident.

𝑯𝒎: The suspect has recently discharged a firearm or 

been in contact with firearm-related material.

𝑯𝒂: The suspect has neither recently discharged a firearm 

nor been in contact with firearm-related material. 



Evaluation:

There are no data bases that can assist in eliciting probabilities of the evidence. 

𝑯𝒎: The suspect has recently discharged a firearm or 

been in contact with firearm-related material.

𝑯𝒂: The suspect has neither recently discharged a firearm 

nor been in contact with firearm-related material. 

𝑃 𝑬 𝑯𝒉 : It is expected to recover this amount of GSR if 𝑯𝒉 is true given the 

additional information, hence 𝑃 𝑬 𝑯𝒉 ≈ 1

𝑃 𝑬 𝑯𝒂 : Experience with the expert and studies made gives that if 𝑯𝒂 is true, 

recovering 4 GSR is quite rare. The probability 𝑃 𝑬 𝑯𝒂 is in the range 

0.01 to 0.1

 The Bayes factor 𝑉 =
𝑃 𝑬 𝑯𝒉

𝑃 𝑬 𝑯𝒂
≥

1

0.1
= 10

𝑬: 4 recovered GSR 

from the sleeves of the 

suspect’s jacket.

The forensic findings are at least 10 times more probable if 𝐻𝑚 is true compared to 

if 𝐻𝑎 is true.

What if the suspect says he visited a shooting range that evening?



Continuous data and validation of calculated values of evidence.

In forensic chemistry, most of the data used for evidence evaluation is 

continuously-valued

Example: Comparison of glass

Typically fragment(s) of glass are recovered from somebody suspected to have 

broken a glass object (window (burglary), container (assault) etc.).

Forensic hypotheses (at source level):

𝑯𝒎: The fragment(s) originate(s) from the broken glass object

𝑯𝒂: The fragment(s) originate(s) from another glass object



𝑯𝒎: The fragment(s) originate(s) from the broken glass object

𝑯𝒂: The fragment(s) originate(s) from another glass object

Using univariate data – measurements of refractive index, RI

Evidence, 𝑬 (per fragment)

𝑦 =Measured RI on recovered fragment

𝑥 =Measure RI on broken glass object

How data looks like

Material RI
Glass 1 1.51854
Glass 2 1.52289
Glass 3 1.52282
Glass 4 1.52280
Glass 5 1.51625

Bayes factor: 𝑉 =
𝑓 𝑦ห𝑥, 𝑯𝒉

𝑓 𝑦ห𝑯𝒂



y 

𝑓 𝑦ห𝑥, 𝑯𝒉

𝑓 𝑦ห𝑯𝒂

𝑉 =
𝑓 𝑦ห𝑥, 𝑯𝒉

𝑓 𝑦ห𝑯𝒂

𝑓 ∙ ห𝑥, 𝑯𝒉 usually Gaussian

𝑓 ∙ ห𝑯𝒂 general variation, 

typically non-Gaussian

𝑯𝒎: The fragment(s) originate(s) from the broken glass object

𝑯𝒂: The fragment(s) originate(s) from another glass object



Using multivariate data – elemental composition

𝑯𝒎: The fragment(s) originate(s) from the broken glass object

𝑯𝒂: The fragment(s) originate(s) from another glass object

Material Na Mg Al Si S K Ca Fe O
Glass 1 9.28 2.52 0.29 34.68 0.15 0.16 5.65 0.08 47.19
Glass 2 9.27 2.47 0.29 34.70 0.10 0.11 5.72 0.18 47.15
Glass 3 9.22 2.48 0.32 34.65 0.19 0.17 5.71 0.04 47.21
Glass 4 9.32 2.45 0.29 34.66 0.13 0.16 5.80 0.05 47.15
Glass 5 9.33 2.47 0.29 34.72 0.13 0.13 5.70 0.03 47.20

Weight percentages of element – deduced by Scanning Electron Microscopy 

or Inductively Coupled Plasma Mass Spectrometry 

Compositional data (sum to 100%).

Normalise by the weight percent of one element (usually Oxygene (O)) and take 

natural logarithms.



Example Comparison of seizures of illicit drugs

Gas-chromatographic analysis

Overlaid chromatograms 

of two amphetamine 

materials, one in green 

and one in violet.

The peaks in a chromatogram correspond to specific substances in the material 

analysed.

Besides the active substance (that makes it a classified drug) a number of

impurities are monitored.

These arise in a “random” fashion at or after the stage of 

manufacturing/preparation – chemical fingerprint.



Example of analytical data for precipitated amphetamine powder:
TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18 TS19 TS20 TS21 TS22 TS23 TS24 TS25 TS26 TS27 TS28 TS29 TS30

Manufcaturing
batch

Sample
Multiplier

Inner
standard Ketoxime 1 Ketoxime 2

4-Methyl-5-
phenylpyrimid
ine Unknown C 

N-
Benzylpyrimid
ine

N-
Acetylamp
hetamine

N-
Formylamp
hetamine

1,2-
Diphenylet
ylamine

N,N-
Dibenzylam
ine

1,2-
Diphenylet
hanone

Benzylamp
hetamine DPPA DPIA 1 DPIA 2

alfa-
Methyldiph
enetyletyla
mine DPIMA 1 DPIMA 2

Unknown
A2

Naphthalen
e 1

Unknown
A3

Naphthalen
e 2

N-
Benzoylam
phetamine Unknown B2 2-Oxo

2,6-
Dimethyl-
3,5-
diphenylpyr
idine

2,4-
Dimetyl-
3,5-
diphenylpyr
idine

Pyridine 7 
and 14

2,6-
Diphenyl-
3,4-
dimethylpy
ridine DPIF 1 DPIF 2

1 25 3013810 16476.74 5743.792 73655551.9 0 19605541.9 26975.65 87782.06 13687.44 0 57478.5 4241024 0 312960094.5 0 1002481 3031821 2092618 1451857 619155.3 0 78968.59 39242.94 2639141.39 0 444501 247555.2 1284954 255470.5 3113537.611 1555577

1 25 3041807 14647.12 6180.482 70972473.2 0 19014426.5 25421.87 87877.86 15871.02 0 55061.52 4099645 0 299165990.7 0 972134.5 2920446 1998073 1406672 600259.7 0 76315.09 38561.96 2515551.16 0 426041 229865.3 1245866 249647 2968307.003 1490150

1 25 2953134 14305.01 6220.258 69591541 0 18603912.3 27185.12 94006.3 14528.86 0 50755.59 3977849 0 290492463 0 936249.6 2842872 1962398 1305926 585274.8 0 76609.67 36961.51 2313236.55 0 417432.9 233694.8 1211059 242617.2 2833923.16 1365461

1 25 2987421 14060.76 5049.846 69969199.1 0 18694664.6 25039.16 84376.91 13780.97 0 51941.6 3945832 0 282162353.9 0 943215.4 2897387 2003740 1342803 601940.4 0 76087.32 36726.86 2455721.21 0 427800.8 233039.6 1232473 236088.8 2919125.854 1463175

1 25 3016062 13945.42 5786.284 70397076.3 0 18837813.5 25138.61 85836.93 12957.78 0 52974.17 4018744 0 295889196.3 0 943355.3 2852884 1947757 1352582 595472.4 0 76249.4 37179.79 2426612.46 0 419281.2 225739.6 1205542 233699.6 2862987.054 1419028

1 20 3031551 216117.3 100238.2 2131672.7 0 786369.673 293466 94173.32 0 0 14663.85 2204719 0 291092096.2 0 684171.8 2002366 1343762 1739857 501488.1 0 77609.63 544246.9 3826524 0 523745.7 357879.5 1581245 380597.5 4774159.742 2442870

1 20 3056269 215690.4 97407.6 2258413.22 0 829676.709 275575.5 94023.11 0 0 16570.79 2214260 0 282455295.1 0 665452.8 1927273 1280830 1689038 485353.8 0 71723.27 527817.8 3714198.65 0 520590.6 350905.6 1531466 374475.1 4726833.757 2412960

1 5 2846569 223754.6 115411.4 462763.166 0 203162.577 448899.6 78368.2 12562.88 0 40149.94 541765.2 0 234254300.6 0 595854.2 1880780 1251785 5063921 540045.4 724296.2 127213.9 2184442 12496394.8 43751.86 1358373 898749.5 4156964 1149792 15663212.08 8213142

1 5 2887200 198264.8 101397.5 449267.33 0 191566.429 400046.3 76392.33 12420.26 0 37813.36 442926.2 0 212362374.7 0 552614.5 1617674 1081968 5174910 463241.4 712926.6 112759.4 2130383 12317762.6 42971.28 1264927 868448.2 3867105 1093061 14906590.96 7859105

2 25 3018222 17235.38 6273.184 73795105.4 0 19884851.6 31318.66 91299.77 14805.19 0 42614.29 4262590 0 310292921.5 0 1006233 3085157 2099866 1349110 635707.6 0 82821 41819.85 2502275.93 0 442165.4 242220 1295051 254409.5 3062769.471 1535756

2 25 3032803 16486.07 6588.997 69989151.9 0 18808925.3 31242.22 87923.64 14027.28 0 42727.26 4000821 0 295475405.6 0 949630.8 2870445 1960282 1293844 587420.9 0 76199.06 38823.08 2277234.65 0 421240.5 234206.7 1202510 241997.1 2861701.334 1421529

2 25 3093308 17334.19 6658.91 71332017.7 0 19114878.4 32870.71 96246.09 14116.99 0 43932.69 4136092 0 299072632.2 0 975972.4 2893586 1996587 1229466 565350.2 0 80193.82 37429.97 2327861.52 0 434360.5 236498.9 1255750 248931.3 2981716.115 1495762

2 25 3011433 16603.03 6018.898 70676469.4 0 18967759.7 31139.8 89539.75 13580.49 0 43627.72 4087477 0 298390830.9 0 966309.3 2939138 2023813 1355112 603248.6 0 75225.9 38629.29 2379279.46 0 434714 231513.5 1239024 244545.1 2942339.146 1463058

2 25 3059922 15722.31 5606.733 70905652.3 0 18928398.8 29165.71 86859.77 14137.84 0 43067.68 4076822 0 298719208.4 0 976948.4 2944149 2038768 1282194 597795.7 0 77894.46 37511.44 2202687.2 0 427023.7 229608.7 1236216 239138.7 2920589.525 1449480

2 40 3077662 178896 75889.71 71814424.2 0 15542103.7 187158.6 87911.72 14248.71 0 0 3184093 0 318566574.6 0 747023.4 1790711 1215665 1139194 426881.3 0 58359.41 249335.6 2100986.47 0 309043.4 196261.6 911329.9 208454.1 2382829.131 1225717

2 40 3275898 165542.3 72158.51 65975170.7 0 14644070.2 189549.9 85298.39 13544.59 0 0 3192797 0 322008447.5 0 749451.3 1857280 1262796 1179858 427100.9 0 58957.3 274632.2 2166807.11 0 306692.9 206207.7 904196.8 212105.7 2442386.069 1280992

2 40 2858661 173236.3 77108.35 47721502.8 0 11507987.4 203291.6 85753.25 12221.95 0 17992.9 2868951 0 285494707.6 0 679980.5 1626189 1085313 1035338 376839.1 0 51921.54 239207.5 1923159.93 0 286706.9 185862.1 855203.6 193823.4 2275978.484 1165615

2 40 2847073 157448.7 73347.42 35982682.3 0 9041385.15 177208.3 77365.75 9922.968 0 16977.06 2505916 0 251327048.1 0 593684.8 1413638 954316.4 953965.5 324549.1 0 44531.81 233229.2 1778910.14 0 266918.6 169995 771503.5 176002.7 2151603.139 1103499

3 25 3024978 15607.52 5833.815 59645680.9 0 16015474.4 53950.45 67241.06 9779.744 0 0 3579062 0 279276553.7 0 854365.2 2597974 1779715 1063657 533248.5 0 67806.59 49673.13 2016302.7 0 376795.3 215574.6 1104076 213645 2545781.282 1267058

3 25 2995500 16215.85 6413.923 57174318.8 0 15234840 52817.96 75399.23 12213.11 0 0 3433564 0 263578179.3 0 819306.6 2469062 1687622 1043238 505854 0 66045 48345.05 1939895.72 0 365183.6 200097 1050345 204744 2451076.604 1220952

3 25 3032406 17079.95 6694.254 58666625.9 0 15739273.6 53317.58 75970.87 11812.23 0 0 3539252 0 271711669.9 0 831251.8 2542547 1746838 1089627 531437.9 0 68687.11 52513.96 1977221.34 0 374291.9 210147.1 1087723 208897.3 2486091.871 1231996

3 25 2952422 15556.18 6017.646 57887709.7 0 15416450 51059.19 72203.99 10403.01 0 0 3401931 0 264203741.3 0 805165.6 2435965 1680434 1025507 513742.1 0 65493.74 47121.08 1823383.87 0 354211.8 197743.3 1008050 207999.9 2430919.031 1196256

3 25 3027947 15140.22 6185.819 56180439.6 0 15145942.1 51805.34 70626.69 12047.86 0 0 3421193 0 266249064.7 0 811393.3 2471560 1726829 1105805 517060.9 0 66215.68 48943.09 1879516.06 0 362179.2 198102.6 1048641 200843 2397721.845 1188657

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

74 6 1865214 0 0 83250724.5 0 29063838.4 362015.8 268600.4 122649.1 0 0 3024261 0 217270428.8 0 26728193 1.26E+08 84078822 4961858 194871.9 0 106852.2 450913 7487676.86 482016.6 402237.8 2296577 1329297 908851.4 78080710.63 48598815

74 6 1821220 0 0 79105948.7 0 27696046.1 339782.3 250356.5 119647.6 0 0 2874472 0 206274177.8 0 25272801 1.2E+08 80499916 4746880 180781.9 0 99057.5 434049.7 7277979.9 462626.5 375928.3 2142432 1268401 864014.3 74449963.53 45884385

74 6 1808019 0 0 78977011.9 0 27569888.2 345568 255667.9 117992.3 0 0 2870990 0 206115314.4 0 25291400 1.19E+08 80935945 4720790 186857 0 100145.5 420449.4 7303971.36 462712.8 381782.8 2155029 1249315 867676.8 74379382.6 46129454

74 6 1838779 0 0 80329906.7 0 28068889.2 348891.8 254045.4 121521.8 0 0 2918690 0 210766488.9 0 25714842 1.22E+08 82295184 4851210 184289.5 0 105446.8 434654.8 7449699.68 478072.8 384772 2186955 1270928 884023 75746352.76 46671158

74 6 1814855 0 0 78636244.2 0 27455903.8 342626.1 250075 117475.9 0 0 2883142 0 206593937.2 0 25252017 1.2E+08 80182295 4840192 185783 0 98698.24 427460.6 7280252.38 465360.2 375721.1 2154055 1251466 867590 75037389.84 46402684

TS5 TS6 TS7 TS8

N-Benzylpyrimidine N-Acetylamphetamine N-Formylamphetamine 1,2-Diphenyletylamine

19605541.9 26975.65 87782.06 13687.44

19014426.5 25421.87 87877.86 15871.02

18603912.3 27185.12 94006.3 14528.86

18694664.6 25039.16 84376.91 13780.97

18837813.5 25138.61 85836.93 12957.78

786369.673 293466 94173.32 0

829676.709 275575.5 94023.11 0

203162.577 448899.6 78368.2 12562.88

191566.429 400046.3 76392.33 12420.26

19884851.6 31318.66 91299.77 14805.19

18808925.3 31242.22 87923.64 14027.28

Peak areas of 

30 impurities



The forensic hypotheses for comparing two seizures of a drug:

Hm : The two seizures have a common origin

Ha : The two seizures have different origins

Case data (generic format):

𝑬𝟏 = 𝒚1 =

𝑦1,1,1 𝑦1,1,2 ⋯ 𝑦1,1,𝑝

⋮ ⋮ ⋱ ⋮
𝑦1,𝑚1,1 𝑦1,𝑚1,2 ⋯ 𝑦1,𝑚1,𝑝

𝑚1 replicate analyses (𝑛1 × 𝑝 peak 

areas) on material 1

𝑬𝟐 = 𝒚2 =

𝑦1,1,1 𝑦1,1,2 ⋯ 𝑦1,1,𝑝

⋮ ⋮ ⋱ ⋮
𝑦1,𝑚2,1 𝑦1,𝑚2,2 ⋯ 𝑦1,𝑚2,𝑝

𝑚2 replicate analyses (𝑛2 × 𝑝 peak 

areas) on material 2

Numbers of replicate analyses are usually very small (1, 2 or 3). 

How to use such data to obtain a Bayes factor, V ?



1. Feature-based evaluation

Model the probability distributions of 𝒚1 and 𝒚2. 

𝑬𝟏 = 𝒚1 =

𝑦1,1,1 𝑦1,1,2 ⋯ 𝑦1,1,𝑝

⋮ ⋮ ⋱ ⋮
𝑦1,𝑚1,1 𝑦1,𝑚,2 ⋯ 𝑦1,𝑚1,𝑝

𝑬𝟐 = 𝒚2 =

𝑦1,1,1 𝑦1,1,2 ⋯ 𝑦1,1,𝑝

⋮ ⋮ ⋱ ⋮
𝑦1,𝑚2,1 𝑦1,𝑚2,2 ⋯ 𝑦1,𝑚2,𝑝

Normally distributed data  sufficient to model the distributions of ഥ𝒚1 and ഥ𝒚2. 

Always strong attempts from chemists to transform their data to be Gaussian.

The following probability densities will be involved: 

𝑓 ഥ𝒚1ȁ𝜽 , 𝑓 ഥ𝒚2ȁ𝜽 where 𝜽 is the unknown mean vector of the peak areas

𝑔 𝜽 the (prior) distribution of 𝜽 – empirically deduced

The Bayes factor is then

𝑉 =
׬ 𝑓 ഥ𝒚1ȁ𝜽 ⋅ 𝑓 ഥ𝒚2ȁ𝜽 ⋅ 𝑔 𝜽 𝑑𝜽

׬ 𝑓 ഥ𝒚1ȁ𝜽 𝑔 𝜽 𝑑𝜽 × ׬ 𝑓 ഥ𝒚2ȁ𝜽 𝑔 𝜽 𝑑𝜽
(Lindley, Biometrika, 1977):



𝑉 =
׬ 𝑓 ഥ𝒚1ȁ𝜽 ⋅ 𝑓 ഥ𝒚2ȁ𝜽 ⋅ 𝑔 𝜽 𝑑𝜽

׬ 𝑓 ഥ𝒚1ȁ𝜽 𝑔 𝜽 𝑑𝜽 × ׬ 𝑓 ഥ𝒚2ȁ𝜽 𝑔 𝜽 𝑑𝜽

Learning density functions from multivariate distributions is always a challenge.

Even if data shows Gaussian behaviour, the covariance structures needs a lot of 

data to be accurately estimated.

Training data with known ground truth: Usually limited: “n” > p, but not 

sufficiently larger.

Dimension reduction?

Principal components?

Removal of “unimportant” dimensions?



Dimension reduction via graphical modelling

For a multivariate random vector with correlation matrix 𝑹 = 𝑟𝑖𝑗  the matrix of 

partial correlation coefficients can be obtained as follows:

Compute the inverse of 𝑹 ⇒ 𝑹−1 = 𝑸 = 𝑞𝑖𝑗

The partial correlation matrix is then 𝑷 = 𝑝𝑖𝑗 where 𝑝𝑖𝑗 =
−𝑞𝑖𝑗

𝑞𝑖𝑖∙𝑞𝑗𝑗

The partial correlation between two components (marginal variables) of a 

random vector is the degree of linear dependence that is unique between them, 

i.e. when all dependencies via the other components have been taken out.

A graphical model of a random vector can be defined as a graphical model where 

the links (edges) between two components exist provided their partial correlation 

exceeds a chosen threshold.



Example Random vector with 7 components, all partial correlations are > 0.

Full model (pij > 0):

Reduced model (pij > 0.5):



Example: For training data with amphetamine impurities we 

name the impurities TS1, TS2, …, TS30  (Target Substance)

A graphical model based on partial correlations  0.2 becomes



Chemical considerations about the substances gives that 28 of the 

30 impurities should be retained (TS3 and TS5 are taken out).

Then, a graphical model based on partial correlations  0.4 becomes

with another layout:



If we know assume that partial 

correlations less than 0.4 can be 

considered as noise, we have 10 

approximately uncorrelated 

graphs instead of 1 single graph 

with correlated components.

The largest graph has 13 nodes –

13 correlated variables.

Thus, we have reduced the dimension 

from 28 to 13.

By using junction trees we can (most often) factorize the probability density 

function of the largest graph and so reduce the dimension even more. 

The Bayes factor may then be 

factorized into 10 factors:

𝑉 = 𝑉1 ∙ 𝑉2 ∙ 𝑉3 ∙ 𝑉4 ∙ 𝑉5 ∙ 𝑉6 ∙ 𝑉7 ∙ 𝑉8 ∙ 𝑉9 ∙ 𝑉10



1. Score-based evaluation

Instead of modelling the data from the two seizures, we can compare the data and 

use a measure of distance or similarity them between.

Examples:

• Euclidean distance

• City-block distance

• Canberra distance

• Pearson correlation 

“distance”

𝐷 ഥ𝒚1, ഥ𝒚2 = ෍
𝑗

ത𝑦1∙𝑗 − ത𝑦2∙𝑗
2

𝐷 ഥ𝒚1, ഥ𝒚2 = ෍
𝑗

ത𝑦1∙𝑗 − ത𝑦2∙𝑗

𝐷 ഥ𝒚1, ഥ𝒚2 = ෍
𝑗

ത𝑦1∙𝑗 − ത𝑦2∙𝑗

ത𝑦1∙𝑗 + ത𝑦2∙𝑗

𝐷 ഥ𝒚1, ഥ𝒚2 = 1 −
σ𝑗 ത𝑦1∙𝑗 − ത𝑦1∙∙ ത𝑦2∙𝑗 − ത𝑦2∙∙

σ𝑗 ത𝑦1∙𝑗 − ത𝑦1∙∙
2

∙ σ𝑗 ത𝑦1∙𝑗 − ത𝑦1∙∙
2



From a score to a Bayes factor

Training data:

• 𝑁1 pairs of materials with the same origin

• 𝑁2 pairs of materials with different origins

Fit the distribution of 𝐷 for the pairs with same origin



Score density for same origin:

Score density for different origins:  

𝑓 𝐷 𝑯𝒎

𝑓 𝐷 𝑯𝒂

𝑉 =
𝑓 𝐷𝑜𝑏𝑠 𝑯𝒎

𝑓 𝐷𝑜𝑏𝑠 𝑯𝒂
Bayes factor:

𝐷𝑜𝑏𝑠



Are the methods of finding Bayes factors valid?

𝑃 𝑯𝒉ȁ𝑬

𝑃 𝑯𝒂ȁ𝑬
= 𝑉 ×

𝑃 𝑯𝒉

𝑃 𝑯𝒂

𝑯𝒉 true 𝑯𝒂 true

𝑉 > 1 Basically valid Not valid

𝑉 < 1 Not valid Basically valid

But is it sufficient with 𝑉 not giving support in the wrong direction?

When do we expect 𝑉 to reflect strong and weak evidence for a hypothesis?



Validation using Empirical Cross-Entropy (ECE)

Entropy of a random variable, 𝑋: 𝐻 𝑋 = −𝔼 log 𝑓 𝑋

Classical Shannon entropy for finite discrete probability distribution: 𝐻 = − σ1
𝑁 𝑝𝑖 ∙ log2 𝑝𝑖

Cross-entropy between two probability distributions with the same support:

𝐻 𝑋, 𝑌 = −𝔼𝑋 log 𝑓𝑌 𝑋

𝔼 is the 

expectation 

operator



Validation data set (for assessing Bayes factors for comparisons)

Sm = Data from comparisons of samples with common origin

Nm = Number of comparisons of samples with common origin

Sa = Data from comparisons of samples with different origins

Na = Number of comparisons of samples with different origins

𝒳 = 𝑯𝒎, 𝑯𝒂 can be seen as a bivariate random variable (usually with 

probability distribution 𝑝, 1 − 𝑝 )

𝒴 = 𝑯𝒎ȁ𝑬, 𝑯𝒂ȁ𝑬 is another bivariate random variable with the same support as 

𝒳 (and analogously with probability distribution 𝑞, 1 − 𝑞 )

It can be shown that the expected entropy of 𝒴 over all possible instances of 𝑬
cannot be lower than the entropy of 𝒳.



Empirical Cross-Entropy:

𝐸𝐶𝐸 = − ෍

𝑖∈𝑆𝑚

log2𝑃 𝐻𝑚 𝐸𝑖 ⋅
𝑃 𝐻𝑚

𝑁𝑚
− ෍

𝑗∈𝑆𝑎

log2𝑃 𝐻𝑎 𝐸𝑗 ⋅
𝑃 𝐻𝑎

𝑁𝑎

= − ෍

𝑖∈𝑆𝑚

log2

𝑉𝑖 ⋅
𝑃 𝐻𝑚

𝑃 𝐻𝑎

1 + 𝑉𝑖 ⋅
𝑃 𝐻𝑚

𝑃 𝐻𝑎

⋅
𝑃 𝐻𝑚

𝑁𝑚
− ෍

𝑗∈𝑆𝑎

log2

1

1 + 𝑉𝑗 ⋅
𝑃 𝐻𝑚

𝑃 𝐻𝑎

⋅
𝑃 𝐻𝑎

𝑁𝑎

= − ෍

𝑖∈𝑆𝑚

log2

1

1 +
1

𝑉𝑖 ⋅
𝑃 𝐻𝑚

𝑃 𝐻𝑎

⋅
𝑃 𝐻𝑚

𝑁𝑚
− ෍

𝑗∈𝑆𝑎

log2

1

1 + 𝑉𝑗 ⋅
𝑃 𝐻𝑚

𝑃 𝐻𝑎

⋅
𝑃 𝐻𝑎

𝑁𝑎

= ෍

𝑖∈𝑆𝑚

log2 1 +
1

𝑉𝑖 ⋅
𝑃 𝐻𝑚

𝑃 𝐻𝑎

⋅
𝑃 𝐻𝑚

𝑁𝑚
+ ෍

𝑗∈𝑆𝑎

log2 1 + 𝑉𝑗 ⋅
𝑃 𝐻𝑚

𝑃 𝐻𝑎
⋅

𝑃 𝐻𝑎

𝑁𝑎

Sm = Data from comparisons of samples with common origin

Nm = Number of comparisons of samples with common origin

Sa = Data from comparisons of samples with different origins

Na = Number of comparisons of samples with different origins



Sm = Data from comparisons of samples with common origin

Nm = Number of comparisons of samples with common origin

Sa = Data from comparisons of samples with different origins

Na = Number of comparisons of samples with different origins

The ECE plot
𝐸𝐶𝐸 = ෍

𝑖∈𝑆𝑚

log2 1 +
1

𝑉𝑖 ⋅
𝑃 𝐻𝑚

𝑃 𝐻𝑎

⋅
𝑃 𝑯𝒎

𝑁𝑚

+ ෍

𝑗∈𝑆𝑎

log2 1 + 𝑉𝑗 ⋅
𝑃 𝐻𝑚

𝑃 𝐻𝑎
⋅

𝑃 𝑯𝒂

𝑁𝑎

The Bayes factors 𝑉𝑖 , 𝑉𝑗 are calculated in 𝑆𝑚 and 𝑆𝑎 respectively, but the ECE 

depends on the prior odds 
𝑃 𝐻𝑚

𝑃 𝐻𝑎
(and/or the prior probability 𝑃 𝐻𝑚 = 1 − 𝑃 𝐻𝑎 )

The validity of the set of Bayes factors can therefore be assessed by plotting 

ECE against the prior odds.

The entropy of 𝒳 = 𝑯𝒎, 𝑯𝒂 is as highest when the prior odds are 1, and thus 

the ECE should reach its maximum at that point with basically valid Bayes 

factors. 

The further from 1 the prior odds are the lower the cross-entropy should be.



Example:

Symmetric shape around prior 

odds=1 (i.e. log10 𝑜𝑑𝑑𝑠 = 0)

 Basically valid, but how good are 

the Bayes factors?

Measure of performance:

𝐶𝑙𝑙𝑟 = 𝐸𝐶𝐸 prior odds = 1

“Cost of log-likelihood ratio”

Can be used to compare different methods of 

calculating Bayes factors.



The ECE curve can be compared to a curve constructed such that all Bayes factors 

are equal to 1 (all-over neutral evidence).

If the ECE curve stretches above the neutral curve this mean that one would do worse 

using Bayes factors calculated with the assessed method than to just base decisions 

on the prior odds.

Moreover, since the ground truth is known for the validation set it is possible to 

calibrate the calculated Bayes factors using the PAV algorithm to values that are the 

best that could be reached (with this validation set). The corresponding curve is thus 

the optimal ECE curve.

This shows that the method of 

calculating Bayes factors is very good. 

The red curve is close to the optimal 

blue curve, and far away from the 

neutral (null) black curve.



Example: Back to the comparison of amphetamine seízures

Trying to calculated a feature-based Bayes factor 

from 12 of the 30 impurities monitored

The Bayes factor

can be approximated by replacing the prior distributions of means and 

covariances with estimates from the training set and using normal distributions 

for 𝑓 ഥ𝒚1ȁ𝜽 and 𝑓 ഥ𝒚2ȁ𝜽 and a multivariate kernel density (Gaussian kernel) for 

𝑔 𝜽 . 

𝑉 =
׬ 𝑓 ഥ𝒚1ȁ𝜽 ⋅ 𝑓 ഥ𝒚2ȁ𝜽 ⋅ 𝑔 𝜽 𝑑𝜽

׬ 𝑓 ഥ𝒚1ȁ𝜽 𝑔 𝜽 𝑑𝜽 × ׬ 𝑓 ഥ𝒚2ȁ𝜽 𝑔 𝜽 𝑑𝜽



𝑉 ≈
𝑓𝑛 ഥ𝒚1, ഥ𝒚2ȁ𝑝, 𝑚, 𝑛1, 𝑛2, 𝑼, 𝑪

𝑓𝑑 ഥ𝒚1, ഥ𝒚2ȁ𝑝, 𝑚, 𝑛1, 𝑛2, 𝑼, 𝑪
with

𝑓𝑛 ഥ𝒚1, ഥ𝒚2ȁ𝑝, 𝑚, 𝑛1, 𝑛2, 𝑼, 𝑪 =

= 2𝜋 −𝑝
𝑼

𝑛1

− Τ1 2
𝑼

𝑛2

− Τ1 2

𝑪 − Τ1 2 𝑚ℎ𝑝 − Τ1 2
𝑼

𝑛1

−1

+
𝑼

𝑛2

−1

+ ℎ2𝑪 −1

− Τ1 2

× exp −
1

2
ഥ𝒚1 − ഥ𝒚2

′
𝑼

𝑛1
+

𝑼

𝑛2

−1

ഥ𝒚1 − ഥ𝒚2
′

× ෍

𝑖=1

𝑚

exp −
1

2
𝒚∗ − ഥ𝒙𝑖

′
𝑼

𝑛1

−1

+
𝑼

𝑛2

−1 −1

+ ℎ2𝑪

−1

𝒘 − ഥ𝒙𝑖

where

𝑼 = within-material covariance matrix

𝑪 = between-material covariance matrix

ഥ𝒙𝑖 = mean vector of peak areas of the replicate analyses from material i in training set

𝒚∗ =
𝑼

𝑛1

−1

+
𝑼

𝑛2

−1 −1
𝑼

𝑛1

−1

ഥ𝒚1 +
𝑼

𝑛2

−1

ഥ𝒚2

h = bandwidth of kernel density estimate



𝑓𝑑 ഥ𝒚1, ഥ𝒚2ȁ𝑝, 𝑚, 𝑛1, 𝑛2, 𝑼, 𝑪 =

= 2𝜋 −𝑝 𝑪 −1 𝑚ℎ𝑝 − Τ1 2 ෑ

𝑘=1

2
𝑼

𝑛𝑘

− Τ1 2

∙
𝑼

𝑛𝑘

−1

+ ℎ2𝑪 −1

− Τ1 2

× ⋯

⋯ × exp −
1

2
ഥ𝒚𝑘 − ഥ𝒙𝑖

′
𝑼

𝑛𝑘
+ ℎ2𝑪

−1

ഥ𝒚𝑘 − ′

(Aitken & Lucy, JRSS C, 2004)

ECE plot:
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Not so good!!
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