Meeting 19 Forensic applications, part II

Example:

Upon a shooting incident a person is apprehended, suspected of being the shooter.
His hands and clothes are sampled for searching so-called gunshot residues (GSR) [or firearm discharge residues (FDR), equal things].

Findings of GSR is expected to give evidence for the suspect being the shooter.

What are GSR?

GSR are very small metallic/metalloid particles that come from the explosive primer of a cartridge. When the firing pin hits the explosive primer, it explodes and lightens the powder in the cartridge making the bullet to eject.

When exploding, the primer is fragmented into these very small particles.

The GSR are spread around the firearm that was discharged.
A typical pattern with shooting indoors with a pistol is:

Patterns with shooting outdoors are of course affected by the weather conditions.

GSR are volatile.

Drop off garments and body parts quite quickly after deposition - half-life on hands is about 60 minutes, on gloves about 80 minutes
99% vanished after 6 hours.
Very sensitive to washing-off, sensitive to adverse weather (rain, wind).
Risk of contamination from other persons (e.g. upon apprehension by the police) or materials (e.g. contact with firearms).

Hence, search for GSR must be done as early as possible after a shooting incident.
GSR are not visible to the human eye.
Size is about $1 \mu \mathrm{~m}$
They can be observed using Scanning Electron Microscopy (SEM) technique.

GSR have low degree of polymorphism (the way they are analysed today).

Characteristic elemental compositions:

- Type 1 (lead, barium and antimony)
- Type 2 (lead, barium, antimony and tin)
- Type 3 (lead, barium, antimony and aluminium)

Non-characteristic compositions:

- Type 4 (lead, barium, calcium, silicon and tin)
- Type 5 (antimony, tin, potassium and clorine)

Such small variation makes it difficult to attribute GSR to a specific source.

The forensic hypotheses

The main hypothesis:
Since it is not meaningful to try to attribute GSR to a specific source, the main hypothesis can only address a shooting activity. Moreover, since the risk of contamination is high, it is not meaningful to limit the hypothesis to a shooting activity.
$\boldsymbol{H}_{\boldsymbol{m}}$: The suspect has recently discharged a firearm or been in contact with firearmrelated material.

The alternative hypothesis:
$\boldsymbol{H}_{\boldsymbol{a}}$: The suspect has neither recently discharged a firearm nor been in contact with firearm-related material.

Note that these hypotheses are about activities.
$\boldsymbol{H}_{\boldsymbol{m}}$: The suspect has recently discharged a firearm or been in contact with firearm-related material.
$\boldsymbol{H}_{\boldsymbol{a}}$: The suspect has neither recently discharged a firearm nor been in contact with firearm-related material.

The evidence

Assume that $\mathbf{4}$ GSR were recovered from the taping of the sleeves of the suspect's jacket (\boldsymbol{E}) (recovered using SEM).

Additional information:
The shooting took place around 10 p.m. on April 15.
The weather during the evening and night on April 15 was fair (no precipitation) The suspect was apprehended about 4 hours after the shooting incident.

$E: 4$ recovered GSR

 from the sleeves of the suspect's jacket.Evaluation:
There are no data bases that can assist in eliciting probabilities of the evidence.
$P\left(E \mid \boldsymbol{H}_{\boldsymbol{h}}\right): \quad$ It is expected to recover this amount of GSR if $\boldsymbol{H}_{\boldsymbol{h}}$ is true given the additional information, hence $P\left(E \mid H_{h}\right) \approx 1$
$P\left(E \mid \boldsymbol{H}_{a}\right): \quad$ Experience with the expert and studies made gives that if $\boldsymbol{H}_{\boldsymbol{a}}$ is true, recovering 4 GSR is quite rare. The probability $P\left(E \mid \boldsymbol{H}_{a}\right)$ is in the range 0.01 to 0.1
\Rightarrow The Bayes factor $\quad V=\frac{P\left(E \mid H_{h}\right)}{P\left(E \mid H_{a}\right)} \geq \frac{1}{0.1}=10$
The forensic findings are at least 10 times more probable if H_{m} is true compared to if H_{a} is true.

What if the suspect says he visited a shooting range that evening?

Continuous data and validation of calculated values of evidence.

In forensic chemistry, most of the data used for evidence evaluation is continuously-valued

Example: Comparison of glass

Typically fragment(s) of glass are recovered from somebody suspected to have broken a glass object (window (burglary), container (assault) etc.).

Forensic hypotheses (at source level):
$\boldsymbol{H}_{\boldsymbol{m}}$: The fragment(s) originate(s) from the broken glass object
$\boldsymbol{H}_{\boldsymbol{a}}$: The fragment(s) originate(s) from another glass object

```
\mp@subsup{H}{m}{}}:\mathrm{ :The fragment(s) originate(s) from the broken glass object
```

$\boldsymbol{H}_{\boldsymbol{a}}$: The fragment(s) originate(s) from another glass object

Using univariate data - measurements of refractive index, RI

Evidence, E (per fragment)
$y=$ Measured RI on recovered fragment $x=$ Measure RI on broken glass object

How data looks like

Material	RI		
Glass 1	1.51854		
Glass 2	1.52289		
Glass 3	1.52282		
Glass 4	1.52280	Bayes factor:	$V=\frac{f\left(y \mid x, \boldsymbol{H}_{\boldsymbol{h}}\right)}{f\left(y \mid \boldsymbol{H}_{\boldsymbol{a}}\right)}$

$\boldsymbol{H}_{\boldsymbol{m}}:$ The fragment(s) originate(s) from the broken glass object
$\boldsymbol{H}_{\boldsymbol{a}}$: The fragment(s) originate(s) from another glass object

Using multivariate data - elemental composition
Weight percentages of element - deduced by Scanning Electron Microscopy or Inductively Coupled Plasma Mass Spectrometry

Material	Na	Mg	Al	Si		S	K		Ca		Fe		O	
Glass 1	9.28	2.52	0.29	34.68	0.15	0.16	5.65	0.08	47.19					
Glass 2	9.27	2.47	0.29	34.70	0.10	0.11	5.72	0.18	47.15					
Glass 3	9.22	2.48	0.32	34.65	0.19	0.17	5.71	0.04	47.21					
Glass 4	9.32	2.45	0.29	34.66	0.13	0.16	5.80	0.05	47.15					
Glass 5	9.33	2.47	0.29	34.72	0.13	0.13	5.70	0.03	47.20					

Compositional data (sum to 100%).

Normalise by the weight percent of one element (usually Oxygene (O)) and take natural logarithms.

Example Comparison of seizures of illicit drugs

Gas-chromatographic analysis

Overlaid chromatograms of two amphetamine materials, one in green and one in violet.

The peaks in a chromatogram correspond to specific substances in the material analysed.

Besides the active substance (that makes it a classified drug) a number of impurities are monitored.

These arise in a "random" fashion at or after the stage of manufacturing/preparation - chemical fingerprint.

Example of analytical data for precipitated amphetamine powder:

			Ts1	Ts2	ts3	TS4	Tss Ts	TS6 Ts	T57	TS8	Ts9	Ts10 Tsi	TS11	TS12		TS13	TS14		TS15 Ts	TS16 TS	TS17 TS	TS18 TS	TS19	T 520	TS21 TS22	TS22	T 523	TS24	TS25 TS	T 526	TS27	TS28 T5	T 529	530
$\underset{\substack{\text { Manutaturing } \\ \text { batch }}}{ }$	Sample	$\underset{\text { lner }}{\substack{\text { Inerard } \\ \text { sand }}}$	Ketoxime 1 k	in	$\begin{aligned} & \text { 4-Methyl-5- } \\ & \text { phenylpyrimid } \\ & \text { ine } \end{aligned}$	Un			$\begin{aligned} & \text { Normyo } \\ & \text { Formamp } \\ & \text { hetamine }, ~ \end{aligned}$	1,2- Diphenyle ylamine	n,NDibenzylam ine	1,2m Dipheny hanone	Benzylamp hetamine	DPPA		PIA 1	A2		alfa- Methyldiph enetyletyla mine	PIMA 1	PIMA	Unknown A2	$\begin{aligned} & \text { Naphthalen } \begin{array}{l} \text { U } \\ \text { e } 1 \end{array} \end{aligned}$	$\begin{aligned} & \text { Unknown } \\ & \text { A3 } \end{aligned}$	$\begin{array}{ll} \\ \text { Naphthalen } \\ \text { e } 2 \end{array}$	N - Benzoylam phetamine phetamin	Unkow	2-0xo		2,4- Dime diphenylpy idine	$\begin{aligned} & \text { Pyridine } 7 \\ & \text { and } 14 \end{aligned}$		Dif 1	1 F 2
1	25	25313810	-16476.74	5743.792	7365551.9		1960554.9	2697.65	87782.06	13687.44		57478.5	4241024		0	312960994.5		0	1002481	3031821	2092618	1451857	619155.3		78968.59	39242.94	2639141.39		444501	24755.2	1284954	25477.5	3113537.611	1555577
1	25	53041807	714647.12	6188.482	70972473.2		19014426.5	25421.87	87877.86	15871.02		55061.52	4099645		0	299165990.7		0	972134.5	292046	1998073	1406672	600259.7		76315.09	38561.96	2515551.16		426041	229865.3	1245866	249647	2988307.003	1990150
1	25	25295313	14305.01	6220.258	69591541		186039213	27185.12	94006.3	14528.86		5075.59	3977849		0	290992463		0	936249.6	2848872	1962398	1305926	585274.8		76609.67	36961.51	2313236.55		417432.9	233694.8	1211059	242617.2	2833923.16	1365461
1	25	2987421	114060.76	5049.846	69699199.1		18699664.6	25039.16	84376.91	${ }^{13780.97}$		51941.6	394532		0	282162353.9		0	943215.4	2897387	2003740	1342803	601940.4		76087.32	36726.86	2455721.21		427800.8	233039.6	1232473	236088.8	2919125.854	1463175
1	25	53016062	13945.42	5786.284	7039706.3		18837813.5	25138.61	85836.93	12957.78		52974.17	401874		0	295889196.3		0	943355.3	285288	194757	1352582	595472.4		762494	37179.79	2426612.46		419281.2	225739.6	1205542	23369996	2862887.054	1419028
1	20	- 3031551	12161173	3100238.2	2131672.7		7886396.673	293466	94173.32	0	0	14663.85	2204719		0	291092996.2		0	684171.8	200236	1343762	173985	501488.1		77609.63	544246.9	3826524		523745.7	357879.5	1581245	380597.5	4774159.742	2442870
1	20	- 3056269	215690.4	97407.6	2258413.22		829676.79	275575.5	94023.11	0	0 O	16570.79	2214260		0	282455295.1			665452.8	192723	1288830	1689038	485353.8		71723.27	527817.8	3714198.65		520590.6	350905.6	1531466	374475.1	472683.757	2412960
1		5284659	223754.6	115411.4	462763.166		203162.577	448899.6	78368.2	12562.88		40199.94	541765.2		0	2382543300.6		0	599854.2	1880780	1251785	506392	540045.4	724296.2	127213.9	2184442	12496394.8	43751.86	1358373	898749.5	415694	1149792	15663212.08	8213142
1		52887200	198264.8	8101397.5	449267.33		191566.429	400046.3	7639233	12420.26		37813.36	442926.2		0	212362374.7		0	552614.5	1617674	1081988	5174910	463241.4	712926	112759.4	2130383	12317762.6	42971.28	1264927	868448.2	3867105	1093661	14906590.96	7859105
2	25	5301822	17235.38	6273.184	73795105.4		19888851.6	61318.66	9129977	14805.19		42614.29	4262590		0	31029292.5		0	1006233	3085157	209886	1349110	633707.6		88821	41819.85	2502775.93		442165.4	24222	1295051	254099.5	3062769.471	1535756
2	25	53032803	16486.07	6588.997	6988151.9		18808925.3	311242.22	87923.64	14027.28		42727.26	4000821		0	2954754095.6		0	949630.8	2870445	196028	129384	587720.9		76199.06	38823.08	2277234.65		421240.5	234206.7	1202510	241997.1	2861701.334	1421529
2	25	5309338	17334.19	6658.91	71332017.7		19114878.4	43887.71	96246.09	14116.99		43932.69	413692		0	299072633.2		0	975972.4	289358	199587	1229466	565350.2		80193.82	37429.97	2327861.52		434360.5	236498.9	1255750	248931.3	2981716.115	1995762
2	25	53011433	16603.03	6018.898	70676469.4		18967759.7	71139.8	89539.75	13580.49		043627.72	408747		-	298390830.9		0	966309.3	2939138	2023813	1355112	603248.6		75225.9	38629.29	2379279.46		434714	231513.5	123922	244545.1	2942339.146	1463058
2	25	5 3059922	1572.31	15606.73	70905652.3		18928398.8	2965.71	86899.77	14137.84		43067.88	407882		0	298719208.4		0	976988.4	294149	2038768	1282194	59795.7		77894.46	37511.44	2202887.2		427023.7	229608.7	1236216	239138.7	2920589.525	1499980
2	40	- 307762	178896	65889.71	71814424.2		15542103.7	187158.6	87911.72	14248.71		0	3184093		0	${ }^{31856657.6}$		0	747023.4	179071	1215665	1139194	426881.3		58359.41	249335.6	2100986.47		309043.4	196261.6	911329.9	208454.1	2382829.131	1225717
2	40	(3275898	165422.3	372158.51	65975170.7		14644070.2	189549.9	8529839	13544.59			3192797		0	32208847.5		0	749451.3	1857280	1262796	1179858	427100.9		58957.3	274632.2	2166807.11		306929	206207.7	904196.8	212105.7	2442386.069	1280992
2	40	- 2888661	173326.3	77108.35	4721502.8		11507987.4	+203291.6	85753.25	12221.95		- 17992.9	2868951		0	285994707.6		0	679980.5	1626189	1085313	1035338	376839.1		51921.54	239207.5	1923159.93		286706.9	185882.1	855203.6	193823.4	2275978.484	1165615
	40	- 2847073	157448.7	73347.42	35982682,3		9041385.15	1772083	77365.75	9922.968		016977.06	2505916		0	251327048.1		0	593684.8	1413638	954316.4	953965.5	324599.1		44531.81	233229.2	1778910.14		266918.6	16995	71.15035	176002.7	2151603.139	1103499
3	25	5302498	15607.52	583.815	59645680.9		16015474.4	-53950.45	67241.06	979.744		0	3579062		0	279276553.7		0	854365.2	2597974	179715	1063657	533248.5		67806.59	49673.13	2016302.7		376799.3	215577.6	1104076	213645	2545781.282	1267058
3	25	2999500	16215.85	6413.223	57174318.8		15238480	52817.96	75399.23	12213.11		0	3433564		0	263578179.3		0	819306.6	2469062	168762	1043238	505854		66045	48345.05	1939895.72		365183.6	20009	1050345	20474	2451076.604	1220952
3	25	25303406	1779.95	6694.254	5866662.9		15739273.6	653317.58	75970.87	${ }^{11812.23}$		0	353925		0	271711699.9		0	831251.8	254254	1748838	108962	531437.9		68687.11	52513.96	1977221.34		374291.9	21014.1	108723	208897.3	2486091.871	1231996
3	25	25.295422	15556.18	6017.646	5788709.7		15416450	51059.19	72203.99	10003.01		0	3401931		0	266203741.3		0	805165.6	2435965	1680434	102507	513742.1		65993.74	47121.08	1823383.87		354211.8	197743.3	100850	207999	2430919.031	1196256
3	25	253027947	15140.22	2185.819	56180439.6		15145942.1	51805.34	70626.99	12047.86		0	3421193		0	266249064.7		0	811393	2471560	172682	1105805	517060.9	-	66215.68	48943.09	1879516.06	-	362179.2	198102.6	1098641	200843	2397721.845	118857
1	1	\|	-	I	-	1	-	-	1	-	1	I	I	I		1	।		-	-	-	।	-	I	1	1	।	-	-	1	1	1	-	।
1	1	1	-	1	1	1	-	1	1	1	1	1	1	I		1	।		1	1	1	1	।	1	1		1					1		
74	6	$6_{6} 1865214$	-	0	83250724.5		2966838.4	362015.8	268600.4	122699.1		0	3024261		0	217270428.8		0	2678893	1.26 E+08	8407882	4961858	19487.9		106852.2	450913	788767.86	482016.6	402237.8	229657	132929	908851.4	78080710.63	48598815
74		61821220	-	0	79105988.7		27696046.1	339782.3	250366.5	${ }^{119647.6}$		0	2874472		0	206274177.8		0	25278801	$1.22+08$	80499916	4746880	180781.9		99957.5	434099.7	7277999.9	462626.5	37598.3	2142432	1268401	864014.3	74449963.53	45884385
74		61888019	-	0	7897701.9		2759888.2	345568	255667.9	117992.3		0	2870990		0	206115314.4		0	2529140	1.19E+08	80935945	472079	188857		100145.5	420499.4	7303971.36	462712.8	381782.8	2155029	1249315	86767.8	74379382.6	4612954
74		61838779	-	0	8032996.7		28068899.2	348891.8	254045.4	121521.8		0	2918990		0	210766888.9		0	25714842	$1.22 \mathrm{E}+08$	8295184	4851210	184289.5		10546.8	434654.8	749969.68	478072.8	384772	218695	127992	884023	75746352.76	4667158
74		1818855	-	00	78863624.2		2745993.8	342626.1	25007	117475.9		0	2883142		0	206593937.2		0	25252017	1.2 E +08	8018295	4840192	185783	-	098698.24	427460.6	728025.38	465360.2	37572.1	2154055	125146	867590	75037389.84	46402884

TS5		TS6	TS7	TS8
N -Benzylpyrimidine		N -Acetylamphetamine	N -Formylamphetamine	phenyletylamine
	19605541.9	26975.65	87782.06	13687.44
	19014426.5	25421.87	87877.86	15871.02
	18603912.3	27185.12	94006.3	14528.86
	18694664.6	25039.16	84376.91	13780.97
	18837813.5	25138.61	85836.93	12957.78
	786369.673	293466	94173.32	0
	829676.709	275575.5	94023.11	0
	203162.577	448899.6	78368.2	12562.88
	191566.429	400046.3	76392.33	12420.26
	19884851.6	31318.66	91299.77	14805.19
	18808925.3	31242.22	87923.64	14027.28

Peak areas of 30 impurities

The forensic hypotheses for comparing two seizures of a drug:
$\boldsymbol{H}_{\boldsymbol{m}}$: The two seizures have a common origin
\boldsymbol{H}_{a} : The two seizures have different origins

Case data (generic format):

$$
\begin{aligned}
& \boldsymbol{E}_{\mathbf{1}}=\boldsymbol{y}_{1}=\left(\begin{array}{cccc}
y_{1,1,1} & y_{1,1,2} & \cdots & y_{1,1, p} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1, m_{1}, 1} & y_{1, m_{1}, 2} & \cdots & y_{1, m_{1}, p}
\end{array}\right) \begin{array}{l}
m_{1} \text { replicate analyses }\left(n_{1} \times p\right. \text { peak } \\
\text { areas) on material 1 }
\end{array} \\
& \boldsymbol{E}_{2}=\boldsymbol{y}_{2}=\left(\begin{array}{cccc}
y_{1,1,1} & y_{1,1,2} & \cdots & y_{1,1, p} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1, m_{2}, 1} & y_{1, m_{2}, 2} & \cdots & y_{1, m_{2}, p}
\end{array}\right) \begin{array}{l}
m_{2} \text { replicate analyses }\left(n_{2} \times p\right. \text { peak } \\
\text { areas) on material 2 }
\end{array}
\end{aligned}
$$

Numbers of replicate analyses are usually very small (1,2 or 3).
How to use such data to obtain a Bayes factor, V ?

1. Feature-based evaluation

$$
\begin{aligned}
& \boldsymbol{E}_{\mathbf{1}}=\boldsymbol{y}_{1}=\left(\begin{array}{cccc}
y_{1,1,1} & y_{1,1,2} & \cdots & y_{1,1, p} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1, m_{1}, 1} & y_{1, m, 2} & \cdots & y_{1, m_{1}, p}
\end{array}\right) \\
& \boldsymbol{E}_{2}=\boldsymbol{y}_{2}=\left(\begin{array}{cccc}
y_{1,1,1} & y_{1,1,2} & \cdots & y_{1,1, p} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1, m_{2}, 1} & y_{1, m_{2}, 2} & \cdots & y_{1, m_{2}, p}
\end{array}\right)
\end{aligned}
$$

Model the probability distributions of \boldsymbol{y}_{1} and \boldsymbol{y}_{2}.
Normally distributed data \Rightarrow sufficient to model the distributions of $\overline{\boldsymbol{y}}_{1}$ and $\overline{\boldsymbol{y}}_{2}$.
Always strong attempts from chemists to transform their data to be Gaussian.
The following probability densities will be involved:
$f\left(\overline{\boldsymbol{y}}_{1} \mid \boldsymbol{\theta}\right), f\left(\overline{\boldsymbol{y}}_{2} \mid \boldsymbol{\theta}\right) \quad$ where $\boldsymbol{\theta}$ is the unknown mean vector of the peak areas
$g(\boldsymbol{\theta}) \quad$ the (prior) distribution of $\boldsymbol{\theta}$ - empirically deduced

The Bayes factor is then

$$
V=\frac{\int f\left(\overline{\boldsymbol{y}}_{1} \mid \boldsymbol{\theta}\right) \cdot f\left(\overline{\boldsymbol{y}}_{2} \mid \boldsymbol{\theta}\right) \cdot g(\boldsymbol{\theta}) d \boldsymbol{\theta}}{\int f\left(\overline{\boldsymbol{y}}_{1} \mid \boldsymbol{\theta}\right) g(\boldsymbol{\theta}) d \boldsymbol{\theta} \times \int f\left(\overline{\boldsymbol{y}}_{2} \mid \boldsymbol{\theta}\right) g(\boldsymbol{\theta}) d \boldsymbol{\theta}}
$$

$$
V=\frac{\int f\left(\overline{\boldsymbol{y}}_{1} \mid \boldsymbol{\theta}\right) \cdot f\left(\overline{\boldsymbol{y}}_{2} \mid \boldsymbol{\theta}\right) \cdot g(\boldsymbol{\theta}) d \boldsymbol{\theta}}{\int f\left(\overline{\boldsymbol{y}}_{1} \mid \boldsymbol{\theta}\right) g(\boldsymbol{\theta}) d \boldsymbol{\theta} \times \int f\left(\overline{\boldsymbol{y}}_{2} \mid \boldsymbol{\theta}\right) g(\boldsymbol{\theta}) d \boldsymbol{\theta}}
$$

Learning density functions from multivariate distributions is always a challenge. Even if data shows Gaussian behaviour, the covariance structures needs a lot of data to be accurately estimated.

Training data with known ground truth: Usually limited: " n " $>p$, but not sufficiently larger.

Dimension reduction?

Principal components?

Removal of "unimportant" dimensions?

Dimension reduction via graphical modelling

For a multivariate random vector with correlation matrix $\boldsymbol{R}=\left(r_{i j}\right)$ the matrix of partial correlation coefficients can be obtained as follows:

Compute the inverse of $\boldsymbol{R} \Rightarrow \boldsymbol{R}^{-1}=\boldsymbol{Q}=\left(q_{i j}\right)$
The partial correlation matrix is then $\boldsymbol{P}=\left(p_{i j}\right)$ where $p_{i j}=\frac{-q_{i j}}{\sqrt{q_{i i} \cdot q_{j j}}}$

The partial correlation between two components (marginal variables) of a random vector is the degree of linear dependence that is unique between them, i.e. when all dependencies via the other components have been taken out.

A graphical model of a random vector can be defined as a graphical model where the links (edges) between two components exist provided their partial correlation exceeds a chosen threshold.

Example Random vector with 7 components, all partial correlations are >0.

Full model $\left(p_{i j}>0\right)$:

Reduced model ($p_{i j}>0.5$):

Example: For training data with amphetamine impurities we name the impurities TS1, TS2, ..., TS30 (Target Substance)

A graphical model based on partial correlations ≥ 0.2 becomes

Chemical considerations about the substances gives that 28 of the 30 impurities should be retained (TS3 and TS5 are taken out).

Then, a graphical model based on partial correlations ≥ 0.4 becomes

with another layout:

By using junction trees we can (most often) factorize the probability density function of the largest graph and so reduce the dimension even more.

1. Score-based evaluation

Instead of modelling the data from the two seizures, we can compare the data and use a measure of distance or similarity them between.

Examples:

- Euclidean distance

$$
D\left(\overline{\boldsymbol{y}}_{1}, \overline{\boldsymbol{y}}_{2}\right)=\sqrt{\sum_{j}\left(\bar{y}_{1 \cdot j}-\bar{y}_{2 \cdot j}\right)^{2}}
$$

- City-block distance

$$
D\left(\overline{\boldsymbol{y}}_{1}, \overline{\boldsymbol{y}}_{2}\right)=\sum_{j}\left|\bar{y}_{1 \cdot j}-\bar{y}_{2 \cdot j}\right|
$$

- Canberra distance

$$
D\left(\overline{\boldsymbol{y}}_{1}, \overline{\boldsymbol{y}}_{2}\right)=\sum_{j} \frac{\left|\bar{y}_{1 \cdot j}-\bar{y}_{2 \cdot j}\right|}{\left|\bar{y}_{1 \cdot j}\right|+\left|\bar{y}_{2 \cdot j}\right|}
$$

- Pearson correlation "distance"

$$
D\left(\overline{\boldsymbol{y}}_{1}, \overline{\boldsymbol{y}}_{2}\right)=1-\frac{\sum_{j}\left(\bar{y}_{1 \cdot j}-\bar{y}_{1 . .}\right)\left(\bar{y}_{2 \cdot j}-\bar{y}_{2 . .}\right)}{\sqrt{\sum_{j}\left(\bar{y}_{1 \cdot j}-\bar{y}_{1 . .}\right)^{2} \cdot \sum_{j}\left(\bar{y}_{1 \cdot j}-\bar{y}_{1 . .}\right)^{2}}}
$$

From a score to a Bayes factor

Training data:

- N_{1} pairs of materials with the same origin
- N_{2} pairs of materials with different origins

Fit the distribution of D for the pairs with same origin
\Rightarrow
Score density for same origin: $\quad f\left(D \mid H_{m}\right)$
Score density for different origins: $\quad f\left(D \mid \boldsymbol{H}_{\boldsymbol{a}}\right)$

Bayes factor: $\quad V=\frac{f\left(D_{o b s} \mid H_{m}\right)}{f\left(D_{o b s} \mid H_{a}\right)}$

Are the methods of finding Bayes factors valid?

$$
\frac{P\left(\boldsymbol{H}_{h} \mid E\right)}{P\left(\boldsymbol{H}_{\boldsymbol{a}} \mid E\right)}=V \times \frac{P\left(\boldsymbol{H}_{\boldsymbol{h}}\right)}{P\left(\boldsymbol{H}_{\boldsymbol{a}}\right)}
$$

	$\boldsymbol{H}_{\boldsymbol{h}}$ true	$\boldsymbol{H}_{\boldsymbol{a}}$ true
$V>1$	Basically valid	Not valid
$V<1$	Not valid	Basically valid

But is it sufficient with V not giving support in the wrong direction?

When do we expect V to reflect strong and weak evidence for a hypothesis?

Validation using Empirical Cross-Entropy (ECE)

$$
\text { Entropy of a random variable, } X: \quad H(X)=-\mathbb{E}\{\log (f(X))\} \quad \begin{aligned}
& \mathbb{E} \text { is the } \\
& \text { expectation } \\
& \text { operator }
\end{aligned}
$$

Classical Shannon entropy for finite discrete probability distribution: $H=-\sum_{1}^{N} p_{i} \cdot \log _{2}\left(p_{i}\right)$

Cross-entropy between two probability distributions with the same support:

$$
H(X, Y)=-\mathbb{E}_{X}\left\{\log \left(f_{Y}(X)\right)\right\}
$$

Validation data set (for assessing Bayes factors for comparisons)
$S_{m}=$ Data from comparisons of samples with common origin
$N_{m}=$ Number of comparisons of samples with common origin
$S_{a}=$ Data from comparisons of samples with different origins
$N_{a}=$ Number of comparisons of samples with different origins
$\mathcal{X}=\left(\boldsymbol{H}_{m}, \boldsymbol{H}_{\boldsymbol{a}}\right)$ can be seen as a bivariate random variable (usually with probability distribution $(p, 1-p)$)
$\mathcal{Y}=\left(\boldsymbol{H}_{m}\left|E, \boldsymbol{H}_{\boldsymbol{a}}\right| E\right)$ is another bivariate random variable with the same support as \mathcal{X} (and analogously with probability distribution $(q, 1-q)$)

It can be shown that the expected entropy of \mathcal{Y} over all possible instances of \boldsymbol{E} cannot be lower than the entropy of \mathcal{X}.
$S_{m}=$ Data from comparisons of samples with common origin $N_{m}=$ Number of comparisons of samples with common origin $S_{a}=$ Data from comparisons of samples with different origins $N_{a}=$ Number of comparisons of samples with different origins Empirical Cross-Entropy:

$$
\begin{aligned}
& E C E=-\sum_{i \in S_{m}} \log _{2} P\left(H_{m} \mid E_{i}\right) \cdot \frac{P\left(H_{m}\right)}{N_{m}}-\sum_{j \in S_{a}} \log _{2} P\left(H_{a} \mid E_{j}\right) \cdot \frac{P\left(H_{a}\right)}{N_{a}} \\
& =-\sum_{i \in S_{m}} \log _{2}\left(\frac{V_{i} \cdot \frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}}{\left.1+V_{i} \cdot \frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}\right)} \cdot \frac{P\left(H_{m}\right)}{N_{m}}-\sum_{j \in S_{a}} \log _{2}\left(\frac{1}{1+V_{j} \cdot \frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}}\right) \cdot \frac{P\left(H_{a}\right)}{N_{a}}\right. \\
& =-\sum_{i \in S_{m}} \log _{2}\left(\frac{1}{\left.1+\frac{1}{V_{i} \cdot \frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}}\right) \cdot \frac{P\left(H_{m}\right)}{N_{m}}-\sum_{j \in S_{a}} \log _{2}\left(\frac{1}{1+V_{j} \cdot \frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}}\right) \cdot \frac{P\left(H_{a}\right)}{N_{a}}}\right. \\
& =\sum_{i \in S_{m}} \log _{2}\left(1+\frac{1}{V_{i} \cdot \frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}}\right) \cdot \frac{P\left(H_{m}\right)}{N_{m}}+\sum_{j \in S_{a}} \log _{2}\left(1+V_{j} \cdot \frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}\right) \cdot \frac{P\left(H_{a}\right)}{N_{a}}
\end{aligned}
$$

$S_{m}=$ Data from comparisons of samples with common origin $N_{m}=$ Number of comparisons of samples with common origin
$S_{a}=$ Data from comparisons of samples with different origins
$N_{a}=$ Number of comparisons of samples with different origins

The ECE plot

$$
\begin{aligned}
& E C E=\sum_{i \in S_{m}} \log _{2}\left(1+\frac{1}{V_{i} \cdot \frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}}\right) \cdot \frac{P\left(H_{m}\right)}{N_{m}} \\
& +\sum_{j \in S_{a}} \log _{2}\left(1+V_{j} \cdot \frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}\right) \cdot \frac{P\left(\boldsymbol{H}_{a}\right)}{N_{a}}
\end{aligned}
$$

The Bayes factors V_{i}, V_{j} are calculated in S_{m} and S_{a} respectively, but the $E C E$ depends on the prior odds $\frac{P\left(H_{m}\right)}{P\left(H_{a}\right)}$ (and/or the prior probability $P\left(H_{m}\right)=1-P\left(H_{a}\right)$)

The validity of the set of Bayes factors can therefore be assessed by plotting $E C E$ against the prior odds.

The entropy of $\mathcal{X}=\left(\boldsymbol{H}_{m}, \boldsymbol{H}_{\boldsymbol{a}}\right)$ is as highest when the prior odds are 1, and thus the $E C E$ should reach its maximum at that point with basically valid Bayes factors.

The further from 1 the prior odds are the lower the cross-entropy should be.

Example:

Symmetric shape around prior odds $=1$ (i.e. $\left.\log _{10}(o d d s)=0\right)$
\Rightarrow Basically valid, but how good are the Bayes factors?

Measure of performance:

$$
C_{l l r}=E C E(\text { prior odds }=1)
$$

"Cost of log-likelihood ratio"

Can be used to compare different methods of calculating Bayes factors.

The $E C E$ curve can be compared to a curve constructed such that all Bayes factors are equal to 1 (all-over neutral evidence).

If the $E C E$ curve stretches above the neutral curve this mean that one would do worse using Bayes factors calculated with the assessed method than to just base decisions on the prior odds.

Moreover, since the ground truth is known for the validation set it is possible to calibrate the calculated Bayes factors using the PAV algorithm to values that are the best that could be reached (with this validation set). The corresponding curve is thus the optimal $E C E$ curve.

This shows that the method of calculating Bayes factors is very good. The red curve is close to the optimal blue curve, and far away from the neutral (null) black curve.

Example: Back to the comparison of amphetamine seízures

Trying to calculated a feature-based Bayes factor from 12 of the 30 impurities monitored

TS5		TS6	TS7	TS8
N -Benzylpyrimidine		N -Acetylamphetamine	N -Formylamphetamine	1,2-Diphenyletylamin
	19605541.9	26975.65	-87782.06	136
	19014426.5	25421.87	87877.86	158
	18603912.3	27185.12	94006.3	145
	18694664.6	25039.16	84376.91	137
	188378135	2513861	8583693	129

The Bayes factor $\quad V=\frac{\int f\left(\overline{\boldsymbol{y}}_{1} \mid \boldsymbol{\theta}\right) \cdot f\left(\overline{\boldsymbol{y}}_{2} \mid \boldsymbol{\theta}\right) \cdot g(\boldsymbol{\theta}) d \boldsymbol{\theta}}{\int f\left(\overline{\boldsymbol{y}}_{1} \mid \boldsymbol{\theta}\right) g(\boldsymbol{\theta}) d \boldsymbol{\theta} \times \int f\left(\overline{\boldsymbol{y}}_{2} \mid \boldsymbol{\theta}\right) g(\boldsymbol{\theta}) d \boldsymbol{\theta}}$
can be approximated by replacing the prior distributions of means and covariances with estimates from the training set and using normal distributions for $f\left(\overline{\boldsymbol{y}}_{1} \mid \boldsymbol{\theta}\right)$ and $f\left(\overline{\boldsymbol{y}}_{2} \mid \boldsymbol{\theta}\right)$ and a multivariate kernel density (Gaussian kernel) for $g(\boldsymbol{\theta})$.
$V \approx \frac{f_{n}\left(\overline{\boldsymbol{y}}_{1}, \overline{\boldsymbol{y}}_{2} \mid p, m, n_{1}, n_{2}, \boldsymbol{U}, \boldsymbol{C}\right)}{f_{d}\left(\overline{\boldsymbol{y}}_{1}, \overline{\boldsymbol{y}}_{2} \mid p, m, n_{1}, n_{2}, \boldsymbol{U}, \boldsymbol{C}\right)}$
with
$f_{n}\left(\overline{\boldsymbol{y}}_{1}, \overline{\boldsymbol{y}}_{2} \mid p, m, n_{1}, n_{2}, \boldsymbol{U}, \boldsymbol{C}\right)=$
$=(2 \pi)^{-p}\left|\frac{\boldsymbol{U}}{n_{1}}\right|^{-1 / 2}\left|\frac{\boldsymbol{U}}{n_{2}}\right|^{-1 / 2}|\boldsymbol{C}|^{-1 / 2}\left(m h^{p}\right)^{-1 / 2}\left|\left(\frac{\boldsymbol{U}}{n_{1}}\right)^{-1}+\left(\frac{\boldsymbol{U}}{n_{2}}\right)^{-1}+\left(h^{2} \boldsymbol{C}\right)^{-1}\right|^{-1 / 2}$
$\times \exp \left\{-\frac{1}{2}\left(\overline{\boldsymbol{y}}_{1}-\overline{\boldsymbol{y}}_{2}\right)^{\prime}\left(\frac{\boldsymbol{U}}{n_{1}}+\frac{\boldsymbol{U}}{n_{2}}\right)^{-1}\left(\overline{\boldsymbol{y}}_{1}-\overline{\boldsymbol{y}}_{2}\right)^{\prime}\right\}$
$\times \sum_{i=1}^{m} \exp \left\{-\frac{1}{2}\left(\boldsymbol{y}^{*}-\overline{\boldsymbol{x}}_{i}\right)^{\prime}\left[\left[\left(\frac{\boldsymbol{U}}{n_{1}}\right)^{-1}+\left(\frac{\boldsymbol{U}}{n_{2}}\right)^{-1}\right]^{-1}+h^{2} \boldsymbol{C}\right]^{-1}\left(\boldsymbol{w}-\overline{\boldsymbol{x}}_{i}\right)\right\}$
where
$\boldsymbol{U}=$ within-material covariance matrix
$\boldsymbol{C}=$ between-material covariance matrix
$\bar{x}_{i}=$ mean vector of peak areas of the replicate analyses from material i in training set
$\boldsymbol{y}^{*}=\left[\left(\frac{\boldsymbol{U}}{n_{1}}\right)^{-1}+\left(\frac{\boldsymbol{U}}{n_{2}}\right)^{-1}\right]^{-1}\left(\left(\frac{\boldsymbol{U}}{n_{1}}\right)^{-1} \overline{\boldsymbol{y}}_{1}+\left(\frac{\boldsymbol{U}}{n_{2}}\right)^{-1} \overline{\boldsymbol{y}}_{2}\right)$
$h=$ bandwidth of kernel density estimate
$f_{d}\left(\overline{\boldsymbol{y}}_{1}, \overline{\boldsymbol{y}}_{2} \mid p, m, n_{1}, n_{2}, \boldsymbol{U}, \boldsymbol{C}\right)=$
$=(2 \pi)^{-p}|\boldsymbol{C}|^{-1}\left(m h^{p}\right)^{-1 / 2} \prod_{k=1}^{2}\left[\begin{array}{l}\left|\frac{\boldsymbol{U}}{n_{k}}\right|^{-1 / 2} \cdot\left|\left(\frac{\boldsymbol{U}}{n_{k}}\right)^{-1}+\left(h^{2} \boldsymbol{C}\right)^{-1}\right|^{-1 / 2} \times \cdots \\ \cdots \times \exp \left\{-\frac{1}{2}\left(\overline{\boldsymbol{y}}_{k}-\overline{\boldsymbol{x}}_{i}\right)^{\prime}\left(\frac{\boldsymbol{U}}{n_{k}}+h^{2} \boldsymbol{C}\right)^{-1}\left(\overline{\boldsymbol{y}}_{k}-\right)^{\prime}\right\}\end{array}\right]$
(Aitken \& Lucy, JRSS C, 2004)

ECE plot:

Not so good!!

