Meeting 14 and 15:

The decisive approach to statistical inference.

The decisive approach to statistical inference, part I

Point estimation of an unknown parameter θ :
The decision rule is a point estimator (the functional form): $\delta(\widetilde{x})=\hat{\theta}(\widetilde{x})$
The action is a particular point estimate. $a=\hat{\theta}_{o b s}=\hat{\theta}(\boldsymbol{x})$
State of nature is the true value of θ.
The loss function is a measure of how far away the estimator is from θ :

$$
L(\delta(\widetilde{\boldsymbol{x}}), \theta)=L(\hat{\theta}, \theta)
$$

Prior information is quantified by the prior distribution (pdf/pmf) $f^{\prime}(\theta)$.

Data is the random sample \boldsymbol{x} from a distribution with (pdf/pmf) $f(\boldsymbol{x} \mid \theta)$.

Three simple loss functions (univariate case)

Zero-one loss:
$L(\hat{\theta}, \theta)=\left\{\begin{array}{ll}0 & |\hat{\theta}-\theta|<m \\ k & |\hat{\theta}-\theta| \geq m\end{array} \quad k, m>0\right.$

Absolute error loss:
$L(\hat{\theta}, \theta)=k \cdot|\hat{\theta}-\theta| \quad k>0$

Quadratic (error) loss (or squared loss):
$L(\hat{\theta}, \theta)=k \cdot(\hat{\theta}-\theta)^{2} \quad k>0$

Bayes estimators:

A Bayes estimator is the estimator that minimizes the expected posterior loss:

$$
\begin{aligned}
& E(L(\hat{\theta}(\boldsymbol{x}) \mid \boldsymbol{x}))=\int_{\theta} L(\hat{\theta}(\boldsymbol{x}), \theta) \cdot f^{\prime \prime}(\theta \mid \boldsymbol{x}) d \theta \\
& \quad \Rightarrow \hat{\theta}_{B}(\boldsymbol{x})=\min _{\delta}\left(\int_{\theta} L(\delta(\boldsymbol{x}), \theta) \cdot f^{\prime \prime}(\theta \mid \boldsymbol{x}) d \theta\right)
\end{aligned}
$$

Minimization with respect to different loss functions will result in measures of location in the posterior distribution of θ.

Zero-one loss: $\quad \hat{\theta}_{B}(\boldsymbol{x})$ is the posterior mode of $\tilde{\theta}$ given \boldsymbol{x}
Absolute error loss: $\quad \hat{\theta}_{B}(\boldsymbol{x})$ is the posterior median of $\tilde{\theta}$ given \boldsymbol{x}
Quadratic loss:
$\hat{\theta}_{B}(\boldsymbol{x})$ is the posterior mean of $\tilde{\theta}$ given $\boldsymbol{x}: E(\tilde{\theta} \mid \boldsymbol{x})$

Example

Assume we have a sample $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ from $U(0, \theta)$ and that a prior density for θ is the Pareto density

$$
f^{\prime}(\theta \mid \alpha, \beta)=(\alpha-1) \cdot \beta^{\alpha-1} \cdot \theta^{-\alpha}, \theta \geq 2 ; \alpha>1 ; \beta>0
$$

What is the Bayes estimator of θ under quadratic loss?

The posterior distribution is also Pareto with

$$
x_{(n)}=\max \left\{x_{1}, \ldots, x_{n}\right\}
$$

$$
f^{\prime \prime}(\theta \mid n, \boldsymbol{x}, \alpha, \beta)=(\alpha+n-1) \cdot\left(\max \left\{\beta, x_{(n)}\right\}\right)^{\alpha+n-1} \cdot \theta^{-(\alpha+n)}, \theta \geq \max \left\{\beta, x_{(n)}\right\}
$$

$$
\Rightarrow \hat{\theta}_{B}=E(\tilde{\theta} \mid x)=\int_{\theta=\max \left\{\beta, x_{(n)}\right\}}^{\infty} \theta \cdot(\alpha+n-1) \cdot\left(\max \left\{\beta, x_{(n)}\right\}\right)^{\alpha+n-1} \cdot \theta^{-(\alpha+n)} d \theta=
$$

$$
=(\alpha+n-1) \cdot\left(\max \left\{\beta, x_{(n)}\right\}\right)^{\alpha+n-1} \cdot \int_{\theta=\max \left\{\beta, x_{(n)}\right\}}^{\infty} \theta \cdot \theta^{-(\alpha+n-1)} d \theta=
$$

$$
=\frac{\alpha+n-1}{\alpha+n-2} \max \left\{\beta, x_{(n)}\right\}
$$

Compare with $\hat{\theta}_{M L E}=x_{(n)}$

Minimax estimators:

Find the value of θ that maximizes the expected loss with respect to the sample values, i.e. that maximizes the risk over the set of estimators.

Then, the particular estimator that minimizes the risk for that value of θ is the minimax estimator.

$$
\hat{\theta}_{\text {minimax }}=\underset{\delta}{\operatorname{argmin}}\left(\max _{\theta} D(\delta, \theta)\right)
$$

Usually difficult to find minimax estimators, but there is one method to find it via a Bayes' estimator.

Theorem (actually a corollary of a theorem both presented in "Lehmann E.L. Theory of point estimation. Wiley, 1983")

If a Bayes' estimator has constant risk. [i.e. not dependent on θ] it is also a minimax estimator.

Example We wish to estimate the parameter p under quadratic loss in a binomial sampling model for sample size n. Hence we (will) have observed a random variable \tilde{r} that is $B i(n, p)$.
We (should) know that (with n fixed) the maximum-likelihood estimator of p is

$$
\hat{p}_{M L E}=\frac{\tilde{r}}{n}
$$

but can we find a minimax estimator under quadratic loss?
A Bayes' estimator under quadratic loss is the posterior mean of p, hence we need to specify a prior distribution - Natural to use the conjugate beta distribution with density function

$$
f^{\prime}(p \mid a, b)=\frac{p^{a-1} \cdot(1-p)^{b-1}}{B(a, b)} \quad 0 \leq p \leq 1 \quad B(a, b)=\frac{\Gamma(a) \cdot \Gamma(b)}{\Gamma(a+b)}
$$

The posterior density function is then

$$
f^{\prime \prime}(p \mid n, r, a, b)=\frac{p^{a+r-1} \cdot(1-p)^{b+n-r-1}}{B(a+r, b+n-r)}
$$

and the Bayes' estimator is its mean:

$$
\hat{p}_{B}=\hat{p}_{B}(\tilde{r})=\frac{a+\tilde{r}}{a+r+b+n-r}=\frac{a+\tilde{r}}{a+b+n}
$$

$$
\begin{aligned}
& D\left(\hat{p}_{B}, p\right)=E_{\tilde{r}}\left(\left(\hat{p}_{B}-p\right)^{2}\right)=\sum_{r=0}^{n}\left(\hat{p}_{B}-p\right)^{2} \cdot\binom{n}{r} \cdot p^{r} \cdot(1-p)^{r}= \\
& =\sum_{r=0}^{n}\left(\frac{a+r}{a+b+n}-p\right)^{2} \cdot\binom{n}{r} \cdot p^{r} \cdot(1-p)^{r}= \\
& =\sum_{r=0}^{n}\left[\left(\frac{a^{2}}{(a+b+n)^{2}}-\frac{2 \cdot a \cdot p}{a+b+n}+p^{2}\right)+\left(\frac{2 \cdot a}{(a+b+n)^{2}}-\frac{2 \cdot p}{a+b+n}\right) \cdot r+\right. \\
& \left.+\frac{1}{(a+b+n)^{2}} \cdot r^{2}\right] \cdot\binom{n}{r} \cdot p^{r} \cdot(1-p)^{r}=\frac{a^{2}}{(a+b+n)^{2}}-\frac{2 \cdot a \cdot p}{a+b+n}+p^{2}+ \\
& +\left(\frac{2 \cdot a}{(a+b+n)^{2}}-\frac{2 \cdot p}{a+b+n}\right) \cdot \underbrace{\sum_{r=0}^{n} r \cdot\binom{n}{r} \cdot p^{r} \cdot(1-p)^{r}+\frac{1}{(a+b+n)^{2}} \cdot \sum_{r=0}^{n} r^{2} \cdot\binom{n}{r} \cdot p^{r} \cdot(1-p)^{r}}_{r=0} \\
& E(\tilde{r} \mid p) \\
& E\left(\tilde{r}^{2} \mid p\right)= \\
& \operatorname{Var}(\tilde{r} \mid p)+(E(\tilde{r} \mid p))^{2}
\end{aligned}
$$

$$
\begin{aligned}
& E(\tilde{r} \mid p)=n \cdot p \quad \hat{p}_{B}=\frac{a+\tilde{r}}{a+b+n} \\
& \operatorname{Var}(\tilde{r} \mid p)=n \cdot p \cdot(1-p) \\
& \Rightarrow D\left(\hat{p}_{B}, p\right)=\frac{a^{2}}{(a+b+n)^{2}}-\frac{2 \cdot a \cdot p}{a+b+n}+p^{2}+\left(\frac{2 \cdot a}{(a+b+n)^{2}}-\frac{2 \cdot p}{a+b+n}\right) \cdot n \cdot p+ \\
& +\frac{1}{(a+b+n)^{2}} \cdot\left(n \cdot p \cdot(1-p)+(n \cdot p)^{2}\right)=\cdots= \\
& =\frac{1}{(a+b+n)^{2}} \cdot\left(a^{2}+(n-2 \cdot a \cdot(a+b)) \cdot p+\left((a+b)^{2}-n\right) \cdot p^{2}\right)
\end{aligned}
$$

This risk function will be constant (for fixed n) if

$$
\begin{aligned}
& (n-2 \cdot a \cdot(a+b))=0 \quad \text { and } \quad\left((a+b)^{2}-n\right)=0 \\
& \Leftrightarrow a=b=\frac{\sqrt{n}}{2}
\end{aligned}
$$

Hence, the estimator

$$
\hat{p}_{B}=\frac{\frac{\sqrt{n}}{2}+\tilde{r}}{\frac{\sqrt{n}}{2}+\frac{\sqrt{n}}{2}+n}=\frac{\sqrt{n}+2 \cdot \tilde{r}}{\sqrt{n}+n}
$$

is a Bayes' estimator with constant risk, and according to the theorem above it is also a minimax estimator.

The value of the constant (but actually n-dependent) risk is

$$
\frac{1}{\left(\frac{\sqrt{n}}{2}+\frac{\sqrt{n}}{2}+n\right)^{2}} \cdot\left(\frac{n}{4}+0 \cdot p+0 \cdot p^{2}\right)=\frac{n}{4 \cdot(\sqrt{n}+n)^{2}}=\frac{1}{4 \cdot(1+\sqrt{n})^{2}}
$$

Exercise:

Is \hat{p}_{B} unbiased? What is the risk of the unbiased $\hat{p}_{M L E}=\tilde{r} / n$? For which range of n is the risk of \hat{p}_{B} lower than the risk of $\hat{p}_{M L E}$?

In an inferential setup we may work with propositions or hypotheses.

A hypothesis is a central component in all building of science.
The "standard situation" would be that we have two hypotheses at a time:
H_{0} The forwarded hypothesis
H_{1} The alternative hypothesis
These must be mutually exclusive.
Successive falsification of hypotheses (cf. Popper ${ }^{1}$) until only one is left is one strategy for science building.

From a perspective of statistical inference "falsification" is never a decision with 100% certainty, and there are different ways of handling this uncertainty.
${ }^{1}$ Popper K., Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge, London, 1963

Classical statistical hypothesis testing

```
(Neyman J. and Pearson E.S., 1933)
```

The two hypotheses are different explanations to the Data.
\Rightarrow Each hypothesis provides $\operatorname{model}(s)$ for Data
The purpose is to use Data to try to falsify H_{0}.

Decision is in one direction only.

Type-I-error: \quad Falsifying a true H_{0}
Type-II-error: \quad Not falsifying a false H_{0}
Size or Significance level: $\quad \alpha=P$ (Type-I-error)
If each hypothesis provides one and only one model for Data:
Power:

$$
1-P(\text { Type-II-error })=1-\beta
$$

Both hypotheses are then referred to as simple hypotheses

Most powerful test for simple hypotheses (Neyman-Pearson lemma):

$$
\text { Reject (falsify) } H_{0} \text { when } \frac{\mathcal{L}\left(H_{1} \mid \text { Data }\right)}{\mathcal{L}\left(H_{0} \mid \text { Data }\right)} \geq A
$$

where $\mathcal{L}\left(H_{0} \mid\right.$ Data $)$ and $\mathcal{L}\left(H_{1} \mid\right.$ Data $)$ are the likelihoods of H_{0} and H_{1} respectively (notation with calligraphic \mathcal{L} to not confuse with loss function).
\ldots and where $A>0$ is chosen so that

$$
P\left(\left.\frac{\mathcal{L}\left(H_{1} \mid \text { Data }\right)}{\mathcal{L}\left(H_{0} \mid \text { Data }\right)} \geq A \right\rvert\, H_{0}\right)=\alpha
$$

This minimises β for fixed α.
Note that the probability is taken with respect to Data, i.e. with respect to the probability model for Data given H_{0}.

Extension to composite hypotheses: Uniformly most powerful test (UMP)

Example: A seizure of pills, suspected to be Ecstasy, is sampled for the purpose of investigating whether the proportion of Ecstasy pills is "around" 80% or "around" 50%.

In a sample of 50 pills, 39 proved to be Ecstasy pills.

As the forwarded hypothesis we can formulate
H_{0} : Around 80% of the pills in the seizure are Ecstasy and as the alternative hypothesis
H_{1} : Around 50% of the pills in the seizure are Ecstasy

The likelihood of the two hypotheses are
$\mathcal{L}\left(H_{0} \mid\right.$ Data $)=$ Probability of obtaining 39 Ecstasy pills out of 50 sampled when the seizure proportion of Ecstasy pills is 80%.
$\mathcal{L}\left(H_{1} \mid\right.$ Data $)=$ Probability of obtaining 39 Ecstasy pills out of 50 sampled when the seizure proportion of Ecstasy pills is 50%.

Assuming a large seizure these probabilities can be calculated using a binomial sampling model $\operatorname{Bin}(50, p)$, where H_{0} states that $p=p_{0}=0.8$ and H_{1} states that $p=p_{1}=0.5$.

In generic form, if we have obtained x Ecstasy pills out of n sampled:

$$
\begin{aligned}
& \mathcal{L}\left(H_{0} \mid \text { Data }\right)=\mathcal{L}\left(H_{0} \mid x,(n)\right)=\binom{n}{x} \cdot p_{0}^{x} \cdot\left(1-p_{0}\right)^{n-x} \\
& \mathcal{L}\left(H_{1} \mid \text { Data }\right)=\mathcal{L}\left(H_{1} \mid x,(n)\right)=\binom{n}{x} \cdot p_{1}^{x} \cdot\left(1-p_{1}\right)^{n-x}
\end{aligned}
$$

The Neyman-Pearson lemma now states that the most powerful test is of the form

$$
\begin{aligned}
& \frac{\mathcal{L}\left(H_{1} \mid \text { Data }\right)}{\mathcal{L}\left(H_{0} \mid \text { Data }\right)} \geq A \Rightarrow \frac{p_{1}^{x} \cdot\left(1-p_{1}\right)^{n-x}}{p_{0}^{x} \cdot\left(1-p_{0}\right)^{n-x}}=\left(\frac{p_{1}}{p_{0}}\right)^{x} \cdot\left(\frac{1-p_{1}}{1-p_{0}}\right)^{n-x} \geq A \\
& \quad \Leftrightarrow \\
& \quad x \cdot \ln \left(\frac{p_{1}}{p_{0}}\right)+(n-x) \cdot \ln \left(\frac{1-p_{1}}{1-p_{0}}\right) \geq \ln A \\
& \quad \Leftrightarrow \\
& \quad x \leq \frac{\ln A-n \cdot \ln \left(\frac{1-p_{1}}{1-p_{0}}\right)}{\ln \left(\frac{p_{1}}{p_{0}}\right)-\ln \left(\frac{1-p_{1}}{1-p_{0}}\right)} \\
& \left.\quad=C(n) \quad \text { since } p_{1}<p_{0} \Rightarrow \ln \left(\frac{p_{1}}{p_{0}}\right)-\ln \left(\frac{1-p_{1}}{1-p_{0}}\right)<0\right)
\end{aligned}
$$

Hence, H_{0} should be rejected in favour of H_{1} as soon as $x \leq C$ How to choose C ?

Normally, we would set the significance level α and the find C so that

$$
P\left(X \leq C \mid H_{0}\right)=\alpha
$$

If α is chosen to 0.05 we can search the binomial distribution valid under H_{0} for a value C such that

$$
\sum_{k=0}^{C} P\left(X=k \mid H_{0}\right) \leq 0.05 \Rightarrow \sum_{k=0}^{C}\binom{50}{k} \cdot 0.8^{k} \cdot 0.2^{50-k} \leq 0.05
$$

MSExcel:
BINOM.INV ($50 ; 0.8 ; 0.05$) returns the lowest value of B for which the sum is at least $0.05 \Rightarrow 35$

BINOM.DIST (35;50;0.8;TRUE) $\Rightarrow 0.06072208$
BINOM.DIST (34;50;0.8;TRUE) $\Rightarrow 0.030803423$
\Rightarrow Choose $C=34 . \Rightarrow$ Since $x=39$ we cannot reject H_{0}

Drawbacks with the classical approach

- Data alone "decides". Small amounts of data \Rightarrow Low power
- Difficulties in interpretation:

When H_{0} is rejected, it means
"If we repeat the collection of data under (in principal) identical circumstances then in (at most) $100 \alpha \%$ of all cases when H_{0} is true $\frac{\mathcal{L}\left(H_{1} \mid \text { Data }\right)}{\mathcal{L}\left(H_{0} \mid \text { Data }\right)} \geq A$ "

Can we (always) repeat the collection of data?

- "Falling off the cliff" - What is the difference between "just rejecting" and "almost rejecting"?
- "Isolated" falsification (or no falsification) - Tests using other data but with the same hypotheses cannot be easily combined

The Bayesian Approach

There is always a process that leads to the formulation of the hypotheses. \Rightarrow A prior probability exists for each of them:

$$
\begin{aligned}
& p_{0}=P\left(H_{0} \mid I\right)=P\left(H_{0}\right) \\
& p_{1}=P\left(H_{1} \mid I\right)=P\left(H_{1}\right) \\
& p_{0}+p_{1}=1
\end{aligned}
$$

Simpler expressed as prior odds for the hypothesis H_{0} :

$$
\operatorname{Odds}\left(H_{0} \mid I\right)=\frac{p_{0}}{p_{1}}=\frac{P\left(H_{0} \mid I\right)}{P\left(H_{1} \mid I\right)}
$$

Non-informative priors: $p_{0}=p_{1}=0.5$ gives prior odds $=1$

Data should help us calculating posterior odds

$$
\begin{aligned}
& \text { Odds }\left(H_{0} \mid \text { Data }, I\right)=\frac{P\left(H_{0} \mid \text { Data }, I\right)}{P\left(H_{1} \mid \text { Data }, I\right)}=\frac{q_{0}}{q_{1}} \\
& \Rightarrow \\
& q_{0}=P\left(H_{0} \mid \text { Data }, I\right)=\frac{\text { Odds }\left(H_{0} \mid \text { Data }, I\right)}{O d d s\left(H_{0} \mid \text { Data }, I\right)+1}
\end{aligned}
$$

The "hypothesis testing" is replaced by a judgement upon whether q_{0} is

- small enough to make us believe in H_{1} (falsifying H_{0})
- large enough to make us believe in H_{0} (falsifying H_{1})

Confirming/Undermining support of H_{0}.
i.e. no pre-setting of the decision direction is made.

How can we obtain the posterior odds?

The odds ratio (posterior odds/prior odds) is know as the Bayes factor:

$$
\begin{aligned}
& B=\frac{O d d s\left(H_{0} \mid \text { Data }, I\right)}{O d d s\left(H_{0} \mid I\right)}=\frac{P\left(H_{0} \mid \text { Data }, I\right) / P\left(H_{1} \mid \text { Data }, I\right)}{P\left(H_{0} \mid I\right) / P\left(H_{1} \mid I\right)} \\
& \Rightarrow \\
& \text { Odds }\left(H_{0} \mid \text { Data }, I\right)=B \cdot \operatorname{Odds}\left(H_{0} \mid I\right)
\end{aligned}
$$

Hence, if we know the Bayes factor, we can calculate the posterior odds (since we can always set the prior odds).

There are different situations depending on the complexities of the hypotheses and the probability measure applicable to Data.

1. Both hypotheses are simple, i.e. they each give one and only one model for Data
a) Distinct probabilities can be assigned to Data

Bayes' theorem on odds-form then gives

$$
\frac{P\left(H_{0} \mid \text { Data }, I\right)}{P\left(H_{1} \mid \text { Data }, I\right)}=\frac{P\left(\text { Data } \mid H_{0}, I\right)}{P\left(\text { Data } \mid H_{1}, I\right)} \cdot \frac{P\left(H_{0} \mid I\right)}{P\left(H_{1} \mid I\right)}
$$

Hence, the Bayes factor is $\quad B=\frac{P\left(\text { Data } \mid H_{0}, I\right)}{P\left(\text { Data } \mid H_{1}, I\right)}$

The probabilities of the numerator and denominator respectively can be calculated (estimated) using the model provided by respective hypothesis.
b) Data is the observed value \boldsymbol{x} of a continuous (possibly multidimensional) random variable

It can be shown that

$$
\frac{P\left(H_{0} \mid \text { Data }, I\right)}{P\left(H_{1} \mid \text { Data }, I\right)}=\frac{f\left(\boldsymbol{x} \mid H_{0}, I\right)}{f\left(\boldsymbol{x} \mid H_{1}, I\right)} \cdot \frac{P\left(H_{0} \mid I\right)}{P\left(H_{1} \mid I\right)}
$$

where $f\left(\boldsymbol{x} \mid H_{0}, I\right)$ and $f\left(\boldsymbol{x} \mid H_{1}, I\right)$ are the probability density functions given by the models specified by H_{0} and H_{1} respectively.

Hence, the Bayes factor is

$$
B=\frac{f\left(\boldsymbol{x} \mid H_{0}, I\right)}{f\left(\boldsymbol{x} \mid H_{1}, I\right)}
$$

Known (or estimated) density functions under each model can then be used to calculate the Bayes factor.

In both cases we can see that the Bayes factor is a likelihood ratio since the numerator and denominator are likelihoods for respective hypothesis.
\Rightarrow

$$
B=\frac{\mathcal{L}\left(H_{0} \mid \text { Data }, I\right)}{\mathcal{L}\left(H_{1} \mid \text { Data }, I\right)}
$$

Example Ecstasy pills revisited
The likelihoods for the hypotheses are

H_{0} : Around 80% of the pills
in the seizure are Ecstasy
H_{1} : Around 50% of the pills
in the seizure are Ecstasy

$$
\begin{aligned}
& \mathcal{L}\left(H_{0} \mid \text { Data }\right)=\binom{50}{39} \cdot 0.8^{39} \cdot 0.2^{11} \approx 0.1271082 \\
& \mathcal{L}\left(H_{1} \mid \text { Data }\right)=\binom{50}{39} \cdot 0.5^{39} \cdot 0.5^{11} \approx 3.317678 e-05 \\
& \Rightarrow B \approx \frac{0.1271082}{3.317678 e-05} \approx 3831
\end{aligned}
$$

Hence, Data are 3831 times more probable if H_{0} is true compared to if H_{1} is true.

Assume we have no particular belief in any of the two hypothesis prior to obtaining the data.

$$
\begin{aligned}
& \Rightarrow \text { Odds }\left(H_{0}\right)=1 \\
& \Rightarrow \text { Odds }\left(H_{0} \mid \text { Data }\right) \approx 3831 \cdot 1 \\
& \Rightarrow P\left(H_{0} \mid \text { Data }\right)=\frac{3831}{3831+1} \approx 0.9997
\end{aligned}
$$

Hence, upon the analysis of data we can be 99.97% certain that H_{0} is true.

Note however that it may be unrealistic to assume only two possible proportions of Ecstasy pills in the seizure!
2. The hypothesis H_{0} is simple but the hypothesis H_{1} is composite, i.e. it provides several models for Data (several explanations)

The various models of H_{1} would (in general) provide different likelihoods for the different explanations.
\Rightarrow We cannot come up with one unique likelihood for H_{1}.
If in addition, the different explanations have different prior probabilities we have to weigh the different likelihoods with these.

If the composition in H_{1} is in form of a set of discrete alternatives, the Bayes factor can be written

$$
B=\frac{\mathcal{L}\left(H_{0} \mid \text { Data }\right)}{\sum_{i} \mathcal{L}\left(H_{1 i} \mid \text { Data }\right) \cdot P\left(H_{1 i} \mid H_{1}\right)}
$$

where $P\left(H_{1 i} \mid H_{1}\right)$ is the conditional prior probability that $H_{1 i}$ is true given that H_{1} is true (relative prior), and the sum is over all alternatives H_{11}, H_{12}, \ldots

$$
B=\frac{\mathcal{L}\left(H_{0} \mid \text { Data }\right)}{\sum_{i} \mathcal{L}\left(H_{1 i} \mid \text { Data }\right) \cdot P\left(H_{1 i} \mid H_{1}\right)}
$$

If the relative priors are (fairly) equal the denominator reduces to the average likelihood of the alternatives.

If the likelihoods of the alternatives are equal the denominator reduces to that likelihood since the relative priors sum to one.

If the composition is defined by a continuously valued parameter, θ we must use the conditional prior density of θ given that H_{1} is true: $f^{\prime}\left(\theta \mid H_{1}\right)$ and integrate the likelihood with respect to that density.
\Rightarrow The Bayes factor can be written

$$
B=\frac{\mathcal{L}\left(H_{0} \mid \text { Data }\right)}{\int_{{ }^{\theta \in H_{1}}} \mathcal{L}(\theta \mid \text { Data }) \cdot f^{\prime}\left(\theta \mid H_{1}\right) d \theta}
$$

3. Both hypothesis are composite, i.e. each provides several models for Data (several explanations)

This gives different sub-cases, depending on whether the compositions in the hypotheses are discrete or according to a continuously valued parameter.

The "discrete-discrete" case gives the Bayes factor

$$
B=\frac{\sum_{j} \mathcal{L}\left(H_{0_{j}} \mid \text { Data }\right) \cdot P\left(H_{0 j} \mid H_{0}\right)}{\sum_{i} \mathcal{L}\left(H_{1 i} \mid \text { Data }\right) \cdot P\left(H_{1 i} \mid H_{1}\right)}
$$

and the "continuous-continuous" case gives the Bayes factor

$$
B=\frac{\int_{" \theta \in H_{0}} \mathcal{L}(\theta \mid \text { Data }) \cdot f^{\prime}\left(\theta \mid H_{0}\right) d \theta}{\int_{" \theta \in H_{1}{ }^{1}} \mathcal{L}(\theta \mid \text { Data }) \cdot f^{\prime}\left(\theta \mid H_{1}\right) d \theta}
$$

where $f^{\prime}\left(\theta \mid H_{0}\right)$ is the conditional prior density of θ given that H_{0} is true.

Example Ecstasy pills revisited again
Assume a more realistic case where we from a sample of the seizure shall investigate whether the proportion of Ecstasy pills is higher than 80%.
\Rightarrow

$$
\begin{aligned}
& H_{0}: \text { Proportion } \theta>0.8 \\
& H_{1}: \text { Proportion } \theta \leq 0.8
\end{aligned}
$$

i.e. both are composite

We further assume that all θ within the region of each hypothesis are equally likely, hence having uniform distributions. The conditional prior densities for θ under each hypothesis can thus be defined as

$$
\begin{aligned}
& f^{\prime}\left(\theta \mid H_{0}\right)=\left\{\begin{array}{cc}
\frac{1}{1-0.8}=5 & 0.8<\theta \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
& f^{\prime}\left(\theta \mid H_{1}\right)=\left\{\begin{array}{cc}
\frac{1}{0.8-0}=1.25 & 0 \leq \theta \leq 0.8 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

The likelihood function is (irrespective of the hypotheses)

$$
\mathcal{L}(\theta \mid \text { Data })=\binom{50}{39} \cdot \theta^{39} \cdot(1-\theta)^{11}
$$

Then, the Bayes factor is

$$
\begin{aligned}
& B=\frac{\int_{\theta} \mathcal{L}(\theta \mid \text { Data }) \cdot f^{\prime}\left(\theta \mid H_{0}\right) d \theta}{\int_{\theta} \mathcal{L}(\theta \mid \text { Data }) \cdot f^{\prime}\left(\theta \mid H_{1}\right) d \theta}=\frac{\int_{0.8}^{1}\binom{50}{39} \cdot \theta^{39} \cdot(1-\theta)^{11} \cdot 5 d \theta}{\int_{0}^{0.8}\binom{50}{39} \cdot \theta^{39} \cdot(1-\theta)^{11} \cdot 1.25 d \theta} \\
& = \\
& =4 \cdot \frac{\int_{0.8}^{1} \theta^{39} \cdot(1-\theta)^{11} \cdot 1 d \theta}{\int_{0}^{0.8} \theta^{39} \cdot(1-\theta)^{11} \cdot 1 d \theta}
\end{aligned}
$$

How do we solve these integrals?

The Beta distribution:
(We should know that) a random variable is said to have a Beta distribution with parameters a and b if its probability density function is

$$
\begin{aligned}
& f(x)=C \cdot x^{a-1} \cdot(1-x)^{b-1} ; 0 \leq x \leq 1 \\
& \text { with } C=\int_{0}^{1} x^{a-1} \cdot(1-x)^{b-1} d x=\mathrm{B}(a, b)
\end{aligned}
$$

Hence, we can identify the integrals of the Bayes factor as proportional to different probabilities of the same beta distribution

$$
\begin{aligned}
& \frac{\int_{0.8}^{1} \theta^{39} \cdot(1-\theta)^{11} d \theta}{\int_{0}^{0.8} \theta^{39} \cdot(1-\theta)^{11} d \theta}=\frac{\int_{0.8}^{1} C \cdot \theta^{39} \cdot(1-\theta)^{11} d \theta}{\int_{0}^{0.8} C \cdot \theta^{39} \cdot(1-\theta)^{11} d \theta} \\
& =\frac{\int_{0.8}^{1} C \cdot \theta^{40-1} \cdot(1-\theta)^{12-1} d \theta}{\int_{0}^{0.8} C \cdot \theta^{40-1} \cdot(1-\theta)^{12-1} d \theta}
\end{aligned}
$$

namely a beta distribution with parameters $a=40$ and $b=12$.

```
> num <- 1-pbeta(q=0.8, shape1=40, shape2=12)
> den <- 1 - num
> num
[1] 0.314754
> den
[1] 0.685246
> ratio <- num/den
> B <- 4*ratio
> B
[1] 1.83732
```

Hence, the Bayes factor is 1.83732 .
With even prior odds $\left(\operatorname{Odds}\left(H_{0}\right)=1\right)$ we get the posterior odds equal to the Bayes factor and the posterior probability of H_{0} is

$$
P\left(H_{0} \mid \text { Data }\right)=\frac{1.83732}{1.83732+1} \approx 0.65
$$

\Rightarrow Data does not provide us with evidence clearly against any of the hypotheses.

Finite action problems revisited

So far the confirming/undermining of a hypothesis has been made by the calculation of the posterior odds:

$$
\frac{P\left(H_{0} \mid \boldsymbol{x}\right)}{P\left(H_{1} \mid \boldsymbol{x}\right)}=B \cdot \frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}
$$

Concluding which of H_{0} and H_{1} should be the hypothesis to be retained has thus been a question about whether the posterior probability of one of the hypothesis is "high enough".

Coupling the posterior probabilities with losses (or utilities) will define a decision problem.

The loss function is

Action	State of nature	
	H_{0} true	H_{1} true
Accept H_{0}	0	c_{0}
Accept H_{1}	c_{1}	0

c_{0} : Cost of accepting H_{0} when H_{1} is true
c_{1} : Cost of accepting H_{1} when H_{0} is true

The Bayes action is the action that minimises the expected posterior loss:

Action	Expected posterior loss
Accept H_{0}	$0 \cdot \operatorname{Pr}\left(H_{0} \boldsymbol{x}\right)+c_{0} \cdot \operatorname{Pr}\left(H_{1} \boldsymbol{x}\right)=c_{0} \cdot \operatorname{Pr}\left(H_{1} \boldsymbol{x}\right)$
Accept H_{1}	$c_{1} \cdot \operatorname{Pr}\left(H_{0} \boldsymbol{x}\right)+0 \cdot \operatorname{Pr}\left(H_{1} \boldsymbol{x}\right)=c_{1} \cdot \operatorname{Pr}\left(H_{0} \boldsymbol{x}\right)$

Example: Return again to the example with dye on banknotes
The posterior probabilities were obtained before (Meeting 1):

$$
\begin{aligned}
& P(\text { "'Dye is present"' } \mid \text { "Positive detection })=0.047 \\
& P(\text { "'Dye is not present'" } \mid \text { "Positive detection"" })=0.953
\end{aligned}
$$

The loss function proposed in Meeting 10 was (transformed from disutilities):

Hence,

Action	State of the world	
	Dye is present $\left(H_{0}\right)$	Dye is not present $\left(H_{1}\right)$
Destroy banknote	0	100
Use banknote	5000	0

Action	Expected posterior loss
Destroy banknote	$0 \cdot 0.047+100 \cdot 0.953=95.3$
Use banknote	$5000 \cdot 0.047+0.953=235.0$

Minimising the expected posterior loss gives the action "Destroy banknote".
How low must the fine be for the action to be changed?

General decision-theoretic approach

A loss function of " 0 - k " type is used (there may be two different values of k):

Action	States of the world	
	H_{0} is true	H_{1} is true
Accept H_{0}	0	L (Type-II-error) $=$ L (II)
Accept H_{1}	L (Type-I-error) $=$ $L(\mathrm{I})$	0

Expected posterior losses (assuming availability of data \boldsymbol{x}):

Action is "Accept H_{0} ": $\quad 0 \cdot \operatorname{Pr}\left(H_{0} \mid \mathrm{x}\right)+L(\mathrm{II}) \cdot \operatorname{Pr}\left(H_{1} \mid \mathrm{x}\right)=L(\mathrm{II}) \cdot \operatorname{Pr}\left(H_{1} \mid \mathrm{x}\right)$ Action is "Accept H_{1} ": $L(\mathrm{I}) \cdot \operatorname{Pr}\left(H_{0} \mid \mathrm{x}\right)+0 \cdot \operatorname{Pr}\left(H_{1} \mid \mathrm{x}\right)=L(\mathrm{I}) \cdot \operatorname{Pr}\left(H_{0} \mid \mathrm{x}\right)$

Hence the optimal action would be "Accept H_{0} " when

$$
\begin{aligned}
& L(\mathrm{II}) \cdot P\left(H_{1} \mid \mathrm{x}\right)<L(\mathrm{I}) \cdot P\left(H_{0} \mid \mathrm{x}\right) \Leftrightarrow \frac{P\left(H_{0} \mid \mathrm{x}\right)}{P\left(H_{1} \mid \mathrm{x}\right)}>\frac{L(\mathrm{II})}{L(\mathrm{I})} \\
& \Leftrightarrow \\
& B \cdot \frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}>\frac{L(\mathrm{II})}{L(\mathrm{I})} \Leftrightarrow B>\frac{P\left(H_{1}\right)}{P\left(H_{0}\right)} \cdot \frac{L(\mathrm{II})}{L(\mathrm{I})}
\end{aligned}
$$

... and the optimal action would be "Accept H_{1} " when

$$
\begin{aligned}
& L(\mathrm{II}) \cdot P\left(H_{1} \mid \mathrm{x}\right)>L(\mathrm{I}) \cdot P\left(H_{0} \mid \mathrm{x}\right) \Leftrightarrow \frac{P\left(H_{0} \mid \mathrm{x}\right)}{P\left(H_{1} \mid \mathrm{x}\right)}<\frac{L(\mathrm{II})}{L(\mathrm{I})} \\
& \Leftrightarrow \\
& B \cdot \frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}<\frac{L(\mathrm{II})}{L(\mathrm{I})} \Leftrightarrow B<\frac{P\left(H_{1}\right)}{P\left(H_{0}\right)} \cdot \frac{L(\mathrm{II})}{L(\mathrm{I})}
\end{aligned}
$$

Return to example with banknotes:
P ("Dye is present" \mid "Positive detection $)=P\left(H_{0} \mid \boldsymbol{x}\right)=0.047$
$P\left(\right.$ "Dye is not present" \mid "Positive detection") $=P\left(H_{0} \mid \boldsymbol{x}\right)=0.953$
$L(\mathrm{I})=5000$
$L(\mathrm{II})=100$

$$
\begin{aligned}
& \Rightarrow \\
& \frac{P\left(H_{0} \mid \mathrm{x}\right)}{P\left(H_{1} \mid \mathrm{x}\right)}=\frac{0.047}{0.953} \approx 0.049 \quad ; \quad \frac{L(\mathrm{II})}{L(\mathrm{I})}=\frac{100}{5000}=0.02
\end{aligned}
$$

Since $0.049>0.02$ we should accept H_{0}, i.e. believe that dye is present, and hence destroy the banknote.

For accepting H_{1} (and use the banknote), then fine ($L(\mathrm{I}$)) must satisfy

$$
\frac{0.047}{0.953}<\frac{100}{L(\mathrm{I})} \Rightarrow L(\mathrm{I})<\frac{100 \cdot 0.953}{0.047} \approx 2028
$$

