
Meeting 10:

Using Bayesian (decision)

networks

Bayesian network (BayesNet, BN)

A connected directed acyclic graph (DAG) in which

• the nodes (vertices) represent random variables

• the links (edges, arcs) represent direct relevance

relationships among variables

• The probability distribution of a node satisfies the

local Markov property: The conditional probability

distribution of a node given the states of its parent nodes

does not depend on the states of its descendant nodes.

• The probability density (mass) function of the joint

distribution of a network with 𝑛 nodes is

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 =ෑ

𝑖=1

𝑛

𝑓 𝑥𝑖 𝒙PA 𝑥𝑖

where PA 𝑥𝑖 is the set of parent nodes of node 𝑖
𝑓 ℎ, 𝑡, 𝑒1, 𝑒2

= 𝑓 ℎ ∙ 𝑓 𝑡 ℎ ∙ 𝑓 𝑒1 𝑡 ∙ 𝑓 𝑒2 ℎ, 𝑒1

Three connections

Divergent connection

T and E2 are conditionally independent given H

Serial connection

T and E2 are conditionally independent given E1

Convergent connection

H and E1 are conditionally dependent given E2

Each node (random variable) has either discrete states (nominal or ordinal scale)

with a probability mass function or continuous states with a probability density

function.

A probability density function can be sampled into a finite set of states and

approximated by a probability mass function over these states (several software for

Bayesian network modelling has no “engine” to handle arbitrary continuous

distributions).

For a node that is solely a parent node:

The assigned probabilities or density function are conditional on background

information only (may be expressed as unconditional or prior probabilities)

For a node that is a child node (solely or joint parent/child):

The assigned probabilities or density function are conditional on the states of its

parent nodes (and on background information).

Completion of the BN: Probability “tables”

Example: Two states in each node

𝐇: ℎ1 𝑃 𝐇 = ℎ1

ℎ2 𝑃 𝐇 = ℎ2
H: ℎ1 ℎ2

T: 𝑡1 𝑃 𝐓 = 𝑡1 𝐇 = ℎ1 𝑃 𝐓 = 𝑡1 𝐇 = ℎ2

𝑡2 𝑃 𝐓 = 𝑡2 𝐇 = ℎ1 𝑃 𝐓 = 𝑡2 𝐇 = ℎ2

T: 𝑡1 𝑡2

E1: 𝑒11 𝑃 𝐄𝟏 = 𝑒11 𝐓 = 𝑡1 𝑃 𝐄𝟏 = 𝑒11 𝐓 = 𝑡2

𝑒12 𝑃 𝐄𝟏 = 𝑒12 𝐓 = 𝑡1 𝑃 𝐄𝟏 = 𝑒12 𝐓 = 𝑡2

H: ℎ1 ℎ2

E1: 𝑒11 𝑒12 𝑒11 𝑒12

E2: 𝑒21 𝑃 𝐄2 = 𝑒21
𝐇 = ℎ1 ,
𝐄𝟏 = 𝑒11

𝑃 𝐄2 = 𝑒21
𝐇 = ℎ1 ,
𝐄𝟏 = 𝑒12

𝑃 𝐄2 = 𝑒21
𝐇 = ℎ2 ,
𝐄𝟏 = 𝑒11

𝑃 𝐄2 = 𝑒21
𝐇 = ℎ2 ,
𝐄𝟏 = 𝑒12

𝑒22 𝑃 𝐄2 = 𝑒22
𝐇 = ℎ1 ,
𝐄𝟏 = 𝑒11

𝑃 𝐄2 = 𝑒22
𝐇 = ℎ1 ,
𝐄𝟏 = 𝑒12

𝑃 𝐄2 = 𝑒22
𝐇 = ℎ2 ,
𝐄𝟏 = 𝑒11

𝑃 𝐄2 = 𝑒22
𝐇 = ℎ2 ,
𝐄𝟏 = 𝑒12

• For a statistician, BN:s are models to be used for making

inference and/or classification/prediction.

• However, using BN software with graphical user interfaces, BN:s

can be a good tool to explain a statistical model to a practitioner.

• Practitioners outside the fields of statistics, computer science,

econometrics, theoretical physics, theoretical biology, … tend to

o be reluctant to the use of mathematical formulas.

o be reluctant to computer programming and algorithms.

• Communication skills are very important for a statistician

working in a multi-scientific environment.

Example

Return to the example with banknotes.

Let H0: Dye is present

 H1: Dye is not present

and let E1: Method gives positive detection

 E2: Method gives negative detection

Method of detection gives a positive result (detection)

in 99 % of the cases when the dye is present, i.e. the

proportion of false negatives is 1% and a negative

result in 98 % of the cases when the dye is absent, i.e.

the proportion of false positives is 2%

The presence of dye is rare: prevalence is about 0.1 %

H

E

H H0 0.001

H1 0.999

H: H0 H1

E E1 0.99 0.02

E2 0.01 0.98

Now, the model has to be executed (run).

This is what the “engine” (algorithm) in BN software does – applying probability

calculus.

This means that the marginal distributions in each node are calculated

For node H , the marginal distribution is the (prior) probabilities entered in the

probability table (since this node has no parents).

H
H H0 0.001

H1 0.999

For node E , the marginal distribution is calculated using the law of total probability:

E
E E1 𝑃 𝑬 = 𝐸1 = 𝑃 𝑬 = 𝐸1 𝑯 = 𝐻0 ∙ 𝑃 𝐻 = 𝐻0

+𝑃 𝑬 = 𝐸1 𝑯 = 𝐻1 ∙ 𝑃 𝐻 = 𝐻1 = 0.99 ∙ 0.001 + 0.02 ∙ 0.999
= 0.02097

E2 1 − 0.02097 = 0.97903

H

E

In an executed mode, different inferences may be done by fixing

(instantiating) the state of one or several nodes.

Here, the instantiation is entering the data: E E1

Consequently, the probabilities in node H are updated:

H

E E1

H H0 𝑃 𝐻0 𝐸1 =
𝑃 𝐸1 𝐻0 ∙ 𝑃 𝐻0

𝑃 𝐸1 𝐻0 ∙ 𝑃 𝐻0 + 𝑃 𝐸1 𝐻1 ∙ 𝑃 𝐻1

=
0.99 ∙ 0.001

0.99 ∙ 0001 + 0.02 ∙ 0.999
≈ 0.047

H1 ≈ 1 − 0.047 = 0.953

Again, this is what the engine does.

H

E

Example Who smashed the window?

A window (pane) was smashed and a person, Mr G is suspected for having done it.

On Mr G’s pullover 8 glass fragments were recovered, they all matched the (pane of)

the smashed window.

Let

H be a random variable with states

H1= ”Mr G smashed the window” and

H2: ”Someone (or something) else smashed the window”.

T be a random variable for which the states are the number of fragments transferred

to Mr G’s pullover when the window was smashed. Note that if Mr G’s pullover was

not sufficiently near the window when it was smashed, then T = 0.

E be a random variable for which the states are the number of fragments that could

be (and were) recovered from Mr G’s pullover. Note that E is not equal to T since

(i) it cannot be assumed that all fragments transferred to Mr G’s pullover persisted

and (ii) were detectable when analysing it.

H

T

E

H Probability

H1 𝑃 H = 𝐻1 𝐼

H2 𝑃 H = 𝐻2 𝐼

H1= ”Mr G smashed the window”

H2: ”Someone (or something)

 else smashed the window”.

Once the value of T is known the

state of H is no longer relevant

for the state of E.

Serial connection

Influence diagrams

Decision-theoretic components can be added to a Bayesian network. The complete

network is then related to as a Bayesian Decision Network or more common

Influence diagram (ID)

Two additional nodes are used

A Action (or Decision) node

All (m) actions are specified in a “table”

A

Action 1

Action 2

⋮

Action m

U

Utility (or Loss) node

All consequences (measured as utilities or losses) are

specified.

Must be the child node of the action node and the node

with the states of the world.

The decision matrix

𝑠1 ⋯ 𝑠𝑛

𝑎1 𝑈11 ⋯ 𝑈1𝑛

⋮ ⋮ ⋱ ⋮

𝑎𝑚 𝑈𝑚1 ⋯ 𝑈𝑚𝑛 is restructured to a “BN table”:

Action: 𝑎1 ⋯ 𝑎𝑚

State: 𝑠1 ⋯ 𝑠𝑛 ⋯ 𝑠1 ⋯ 𝑠𝑛

Utility: 𝑈11 ⋯ 𝑈1𝑛 ⋯ 𝑈𝑚1 ⋯ 𝑈𝑚𝑛

Example: Dye on banknotes

• The banknote is a SEK 100 banknote.

• If we deem the banknote to have been contaminated with the dye, we will

consider it as useless, and it will be destroyed.

• If we deem the banknote not to have been contaminated with the dye, we will

use it (in the future) for ordinary purchasing.

• Upon using the banknote for purchasing, if it is revealed (by other means than

our method) that the banknote is contaminated with the dye, there is a fine of

SEK 5000. Assume that if it is contaminated this will be revealed!

Hence, a payoff function for this problem is

Action State of the world

Dye is present (H0) Dye is not present (H1)

Destroy banknote 0 –100

Use banknote –5000 0

Note that the amounts of money should be entered as negative payoffs. If our

utilities are linear in money, this is also our (dis)utility function

We may however consider a loss function to better describe the situation.

Action State of the world

Dye is present (H0) Dye is not present (H1)

Destroy banknote 0 – 0 = 0 0 – (–100) = 100

Use banknote 0 – (–5000) = 5000 0 – 0 = 0

Recall: 𝐿 𝑎, 𝜽 = max
𝑎′∈𝒜

𝑈 𝑎′, 𝜽 − 𝑈 𝑎, 𝜽

but is this description so much better than the one with (dis)utilities?

Using the Bayesian network constructed before:

H

E

H H0 0.001

H1 0.999

H: H0 H1

E E1 0.99 0.02

E2 0.01 0.98

H0: Dye is present

H1: Dye is not present

E1: Method gives positive detection

E2: Method gives negative detection

This is the inference part of the network model.

Now, we add one node for the actions that can be taken and one for the utility

function

A

U

A

a1 Destroy banknote

a2 Use banknote

A: a1 a2

H: H0 H1 H0 H1

U: 0 –100 –5000 0

This is the decision part of the network model.

H

E

A

U

With this network we would like to be able to propagate data (backwards) from

node E to a choice of decision in node A.

Hence, in node A the posterior expected utility should be calculated, and the utilities

should be specified in node U.

The influence diagram

H

E

A

U

When the influence diagram is executed:

• Probabilities in node H are not affected

• Prior expected utilities are calculated in node A from

the probabilities in node H and the utilities in node U

H H0 0.001

H1 0.999

A

a1 𝐸 𝑈 𝑎1 = 0 ∙ 0.001 + −100 ∙ 0.999 = −99.9

a2 𝐸 𝑈 𝑎2 = −5000 ∙ 0.001 + 0 ∙ 0.999 = −5

Hence, the optimal action in prior sense is a2 = “Use banknote”

H

E

A

U

In the executed model, inference is now made by

instantiating node E to state E1, i.e. entering the

data: “Method gives positive detection”

• Probabilities in node H are updated

• Posterior expected utilities are calculated in node A from the

updated probabilities in node H and the utilities in node U

H H0 0.047

H1 0.953

A

a1 𝐸 𝑈 𝑎1 𝑬 = 𝐸1 = 0 ∙ 0.047 + −100 ∙ 0.953 ≈ −95.3

a2 𝐸 𝑈 𝑎2 𝑬 = 𝐸1 = (−5000) ∙ 0.047 + 0 ∙ 0.953 ≈ −235.0

Hence, the optimal action in posterior sense is a1 = “Destroy banknote”

Using software (exemplifying with Hugin Lite from Hugin Expert A/S)

Run the model

Prior expected utilities

are read here.

Instantiating node E to state E1: Done my double-clicking

on that state in the tree.

Posterior expected utilities

are read here.

Example: Newcomb’s problem

Recall Newcomb’s problem from Meeting 9:

You are exposed to two “boxes”.

You are offered to make one the following two choices:

• A1: Take both boxes

• A2: Take Box 2

Before you make your choice, a prediction expert will predict which choice you will make.

If her prediction is that your choice will be A2, $ 1 000 000 will be put in Box 2

If her prediction is that your choice will be A1, nothing will be put in Box 2.

The prediction expert’s accuracy is 99%, i.e. she has been right in 99% of her predictions.

In Box 1 you can see that there is an amount of $1000.

You cannot see what is in Box 2, but you are told that it is either nothing or

$1 000 000.

Decision matrix:

States

Actions Prediction is A1 Prediction is A2

A1: Take both boxes $ 1 000 $1 001 000

A2: Take Box 2 $ 0 $ 1 000 000

State probabilities depend on the action taken:

𝑃 Prediction is A1 Action is A1 = 0.99

𝑃 Prediction is A2 Action is A1 = 0.01

𝑃 Prediction is A1 Action is A2 = 0.01

𝑃 Prediction is A2 Action is A2 = 0.99

Influence diagram

A

A1 Take both boxes

A2 Take Box 2

A: A1 A2

H: Predict A1 0.99 0.01

Predict A2 0.01 0.99

A: A1 A2

H: Predict A1 Predict A2 Predict A1 Predict A2

U: 1 000 1 001 000 0 1 000 000

Using HuginLite

990 000 > 11 000 Take Box 2!

Extending the problem

Assume that the person presenting these choice to you has a tendency to be shaky in

his hands when the predicting person has predicted A2 (i.e. when $ 1 000 000 has

been put in Box 2.)

You were told that in 2 out of 5 cases when A2 is predicted, the presenter are shaky

in his hands, while this happens in 1 out of 10 cases when A1 is predicted.

Watching the presenter you cannot see that he is shaking.

Would this affect your choice?

Try adding a new chance node to the network, that represents the “evidence” (data,

observation)

H: Predict A1 Predict A2

Shaky? Not shaky 0.9 0.6

Shaky 0.1 0.4

Upon running the model, state “Not shaky” should

be instantiated and this will update the probabilities

in node H:

H: Predict A1 Predict A2

Shaky? Not shaky 0.9 0.6

Shaky 0.1 0.4

A: A1 A2

H: Predict A1 0.9 ∙ 0.99

0.9 ∙ 0.99 + 0.6 ∙ 0.01
≈ 0.9933

0.9 ∙ 0.01

0.9 ∙ 0.01 + 0.6 ∙ 0.99
≈ 0.0149

Predict A2 0.6 ∙ 0.01

0.9 ∙ 0.99 + 0.6 ∙ 0.01
≈ 0.0067

0.6 ∙ 0.99

0.9 ∙ 0.01 + 0.6 ∙ 0.99
≈ 0.9851

𝑃 Predict A1 Not shaky, A𝑗 =

=
𝑃 Not shaky Predict A1, A𝑗 ∙ 𝑃 Predict A1 A𝑗

ሾ𝑃 Not shaky Predict A1, A𝑗 ∙ 𝑃 Predict A1 A𝑗 +
ሿ𝑃 Not shaky Predict A2, A𝑗 ∙ 𝑃 Predict A2 A𝑗

, 𝑗 = 1,2

Analogously for 𝑃 Predict A2 Not shaky, A𝑗

A: A1 A2

H: Predict A1 0.99 0.01

Predict A2 0.01 0.99

With the updated probability table of node H,

A: A1 A2

H: Predict A1 0.9933 0.0149

Predict A2 0.0067 0.9851

A: A1 A2

H: Predict A1 Predict A2 Predict A1 Predict A2

U: 1 000 1 001 000 0 1 000 000
we calculate posterior

expected utilities:

𝐸 𝑈 A1 Not shaky = 1000 ∙ 0.9933 + 1001000 ∙ 0.0067 = 7700

𝐸 𝑈 A2 Not shaky = 0 ∙ 0.0149 + 1000000 ∙ 0.9851 = 985100

985 100 > 7 000 Still take Box 2!

But, can the state probabilities be updated this way?

	Bild 1: Meeting 10: Using Bayesian (decision) networks
	Bild 2
	Bild 3
	Bild 4
	Bild 5
	Bild 6
	Bild 7
	Bild 8
	Bild 9
	Bild 10
	Bild 11
	Bild 12
	Bild 13
	Bild 14
	Bild 15
	Bild 16
	Bild 17
	Bild 18
	Bild 19
	Bild 20
	Bild 21
	Bild 22
	Bild 23
	Bild 24
	Bild 25
	Bild 26
	Bild 27
	Bild 28
	Bild 29
	Bild 30
	Bild 31

