
TEXT MINING

INTRO TO PYTHON

Mattias Villani, Johan Falkenjack

NLPLAB
Dept. of Computer and Information Science

Linköping University

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 1 / 21

OVERVIEW

I What is Python? How is it special?

I Python's objects

I If-else, loops and list comprehensions

I Functions

I Classes

I Modules

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 2 / 21

WHAT IS PYTHON?

I First version in 1991

I High-level language

I Emphasizes readability

I Interpreted (bytecode .py and .pyc) [can be compiled via C/Java]

I Automatic memory management

I Strongly dynamically typed

I Functional and/or object-oriented

I Glue to other programs (interface to C/C++ or Java etc)

I Popular in data science (�Prototype in R, implement in Python�)

I Two currently developed versions, 2.x and 3.x

I This course uses Python 2.7

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 3 / 21

THE BENEVOLENT(?) DICTATOR FOR LIFE (BDFL)
GUIDO VAN ROSSUM

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 4 / 21

PYTHON PECULIARITES (COMPARED TO R/MATLAB)

I Not primarily a numerical language.

I Indexing begins at 0, as indexes refer to breakpoints between
elements.

I It follows that myVector[0:2] returns the �rst and second element,
but not the third.

I Integer division by default in 2.x. from __future__ import

division.

I Indentation matters!

I Can import speci�c functions from a module.

I Assignment by object, NOT by copy or by reference.

I Approximately, assignment by copy of reference.

I a = b = 1 assigns 1 to both a and b.

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 5 / 21

PYTHON’S OBJECTS

I Built-in types: numbers, strings, lists, dictionaries, tuples and �les.

I Vectors, arrays and matrices are available in the numpy/scipy
modules.

I Python is a strongly typed language. 'johan' + 3 gives an error.

I Python is a dynamically typed language. No need to declare a
variables type before it is used. Python �gures out the object's type.

I Implication: Polymorphism by default:

I �In other words, don't check whether it IS-a duck: check whether it
QUACKS-like-a duck, WALKS-like-a duck, etc, etc, depending on
exactly what subset of duck-like behaviour you need to play your
language-games with.� - Alex Martelli

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 6 / 21

STRINGS

I s = 'Spam'

I s[0] returns �rst letter, s[-2] return next to last letter. s[0:2]
returns �rst two letter.

I len(s) returns the number of letters.

I s.lower(), s.upper(), s.count('m'), s.endswith('am'),

...

I Which methods are available for my object? Try in Spyder: type
s. followed by TAB.

I + operator concatenates strings.

I (behind the scenes: the string object has an __add__ method:
s.__add__(anotherString))

I sentence = 'Guido is the benevolent dictator for

life'.sentence.split()

I s*3 returns 'SpamSpamSpam'supported and

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 7 / 21

THE LIST OBJECT

I A list is a container of several variables, possibly of di�erent types.

I myList = ['spam','spam','bacon',2]

I The list object has several associated methods

I myList.append('egg')
I myList.count('spam')
I myList.sort()

I + operator concatenates lists: myList + myOtherList merges the
two lists as one list.

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 8 / 21

THE LIST OBJECT

I Extract elements from a list: myList[1]

I Lists inside lists:

I myOtherList = ['monty','Python']
I myList[1] = myOtherList
I myList[1] returns the list ['monty','Python']
I myList[1][1] returns the string 'Python'

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 9 / 21

STRINGS AGAIN

I Strings are immutable, i.e. can't be changed after creation.

I Every �change� creates a new string.

I Try to avoid creating more strings than necessary:

I Avoid: my_string = 'Python ' + 'is ' + 'fun!'
I Instead: ' '.join(['Python', 'is', 'fun'])

I In loops where you construct strings, add constituents to a list and
join after loop �nishes.

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 10 / 21

TUPLES

I myTuple = (3,4,'johan')

I Like lists, but immutable

I Why?

I Faster than lists
I Protected from change
I Can be used as keys in dictionaries
I Multiple return object from function
I Swapping variable content (a, b) = (b, a) ([a,b = b,a] also

works)
I String formatting: name = "Johan"; age = 30; "My name is %s

and I am %d years old" % (name , age)
I Sequence unpacking a , b, c = myTuple

I list(myTuple) returns myTuple as a list. tuple(myList) does the
opposite.

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 11 / 21

VECTORS AND ARRAYS (AND MATRICES)
I from scipy import *

I x = array([1,7,3])

I 2-dimensional array (matrix): X = array([[2,3],[4,5]])

I Indexing arrays

I First row: X[0,]
I Second column: X[,1]
I Element in position 1,2: X[0,1]

I Array multiplication (*) is element-wise, for matrix multiplication use
dot().

I There is also a matrix object: X = matrix([[2,3],[4,5]])

I Arrays are preferred (not matrices).

I Submodule scipy.linalg contains a lot of matrix-functions applicable
to arrays (det(), inv(), eig() etc). I recommend: from
scipy.linalg import *

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 12 / 21

DICTIONARIES

I Unordered collection of objects (elements).

I myDict = {'Sarah':29, 'Erik':28, 'Evelina':26}

I Elements are accessed by keyword not by index (o�set):
myDict['Evelina'] returns 26.

I Values can contain any object: myDict = {'Marcus':[23,14],

'Cassandra':17, 'Per':[12,29]}. myDict['Marcus'][1]

returns 14.

I Any immutable object can be a key: myDict = {2:'contents of

box2', (3, 'a'):'content of box 4', 'blackbox':10}

I myDict.keys()

I myDict.values()

I myDict.items()

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 13 / 21

SETS

I Set. Contains objects in no order with no identi�cation.

I With a sequence, elements are ordered and identi�ed by position.
myVector[2]

I With a dictionary, elements are unordered but identi�ed by some key.
myDict['myKey']

I With a set, elements stand for themselves. No indexing, no
key-reference.

I Declaration: fib=set((1,1,2,3,5,8,13)) returns the set ([1,

2, 3, 5, 8, 13])

I Supported methods: len(s), x in s, set1 < set2, union,

intersection, add, remove, pop ...

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 14 / 21

BOOLEAN OPERATORS

I True/False

I and

I or

I not

I a = True; b = False; a and b [returns False].

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 15 / 21

IF-ELSE CONSTRUCTS

IF-ELSE STATEMENT
a =1
if a==1:

print('a is one')
elif a==2:

print('a is two)
else:

print('a is not one or two')

I Switch statements via dictionaries (see Jackson's Python book).

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 16 / 21

WHILE LOOPS

WHILE LOOP
a =10
while a>1:

print('bigger than one')

a = a - 1

else:

print('smaller than one')

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 17 / 21

FOR LOOPS

I for loops can iterate over any iterable.

I iterables: strings, lists, tuples

FOR LOOP
word = 'mattias'

for letter in word:

print(letter)

myList = [�]*10

for i in range(10):

myList = 'mattias' + str(i)

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 18 / 21

LIST COMPREHENSIONS

I As in R, loops can be slow. For small loops executed many times, try
list comprehensions:

I Set de�nition in mathematics

{x for x ∈ X}

where X is some a �nite set.

{f (x) for x ∈ X}

I List comprehension in Python:

I myList = [x for x in range(10)]
I myList = [sin(x) for x in range(10)] (don't forget from math

import sin)
I myList = [x + y for x in linspace(0.1,1,10) for y in

linspace(10,100,10)] (from scipy import linspace)

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 19 / 21

DEFINING FUNCTIONS AND CLASSES

DEFINING FUNCTIONS
def mySquare(x):

return x**2

I Calling the function: mySquare(x)

I Instance functions in classes are de�ned similarly using the self

reference.

I Make you own module by putting several functions in a .py �le. Then
import what you need.

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 20 / 21

MISC

I Comments on individual lines starts with #

I Doc-strings can be used as comments spanning over multiple lines but
this should be avoided """This is a looooong comment"""

JOHAN FALKENJACK (NLPLAB, LIU) TEXT MINING 21 / 21

