732A54/TDDE31 Big Data Analytics
Lecture 10: Machine Learning with MapReduce

Jose M. Pefia
IDA, Linkdping University, Sweden

Contents

> MapReduce Framework

> Machine Learning with MapReduce
> Neural Networks
> Linear Support Vector Machines
> K-Means Algorithm
> EM Algorithm

» Summary

Literature

> Main sources
> Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107-113, 2008.
> Chu, C.-T. et al. Map-Reduce for Machine Learning on Multicore. In
Proceedings of the 19th International Conference on Neural Information
Processing Systems, 281-288, 2006.

> Additional sources

» Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation, 2004.

> Gillick, D., Faria, A. and DeNero, J. MapReduce: Distributed Computing
for Machine Learning. Technical Report, Berkley, 2006.

» Yahoo tutorial at
https://developer.yahoo.com/hadoop/tutorial/module4.html

> Slides for 732A99/TDDEO1 Machine Learning.

MapReduce Framework

>

Programming framework developed at Google to process large amounts of
data by parallelizing computations across a cluster of computers.

Easy to use, since the parallelization happens automatically.
Easy to speed up by using/adding more computers to the cluster.

Typical uses at Google:
> Large-scale machine learning problems, e.g. clustering documents from
Google News.
Extracting properties of web pages, e.g. web access log data.
Large-scale graph computations, e.g. web link graph.
Statistical machine translation.
Processing satellite images.
Production of the indexing system used for Google's web search engine.

vVvYyvVvYyy

Google replaced it with Cloud Dataflow/Dataproc/Platform, since it could
not process the amount of data they produce.

However, it is still the processing core of Apache Hadoop, another
framework for distributed storage and distributed processing of large
datasets on computer clusters.

Moreover, it is a straightforward way to adapt some machine learning
algorithms to cope with big data.

Apache Mahout is a project to produce distributed implementations of
machine learning algorithms. Many available implementations build on
Hadoop's MapReduce. However, these implementations are deprecated.

MapReduce Framework

> The user only has to implement the following two functions:

> Map function:
> Input: A pair (in_key, in_value).
> Output: A list list(out_key, intermediate_value).
> Reduce function:
> Input: A pair (out_key, list(intermediate_value)).
> Output: A list list(out_value).
> All intermediate values associated with the same intermediate key are
grouped together before passing them to the reduce function.

» Example for counting word occurrences in a collection of documents:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1™);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = O;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

MapReduce Framework

|

tntermedite [Kivkivioy | [kin [k [vioy [y [Kivisy |

Grouped

[]
[Ftiioning Funetion__|

T T M ek 10T TMwpTask2 | MapTak3 3
N Y N S | i \@II)
‘ 6? 6? i e [~ |i ik:»kdv‘khkix i [y i

Process

User Program

Master

wait

Assign tasks to worker machines.

Worker | [Map 1] Map3]
Worker 2 Map 2
Worker 3 []

Worker 4

Reduce 2

MapReduce Framework

User
Program
(1) fork _- .. (1) fork

(1)ifork
@) - 12)
assign assign
~map reduce

””"f/ |

split1 | 4) local writ
i e
e I =
splits | -

split0 |

splits | Y
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

Fig. 1. Execution overview:

1. Split the input file in M pieces and store them on the local disks of the
nodes of the cluster. Start up many copies of the user's program on the
nodes.

2. One copy (the master) assigns tasks to the rest of the copies (the
workers). To reduce communication, it tries to assign map workers to
nodes with input data.

MapReduce Framework

User
Program
(1) fork .- U]

[l);fork

o

splito [A

split1 | (4) local write
2 |B)read

SP! worker

splits | g

split4 | "\

Input Map intermediate files Reduce Output
files phasr fon local disks) phase files

Fig. 1. Execution overview:

3. Each map worker processes a piece of input data by running the user’'s map
function on each pair (key, value). The results are buffered in memory.

4. The buffered results are written to local disk. The disk is partitioned in R
pieces, e.g. hash(out_key) mod R. The location of the partitions on disk
are passed back to the master so that they can be forwarded to the reduce

workers.

MapReduce Framework

User
Program

) fork . . (1) fork

[l);fork

assign assign

; _;.‘inap redut_g
sito |- A g

split1 |-

E3; ;;;d /__\(-\ll local write

split 2 S

splits | w

splits [

Input Map Intermediate fles Reduce Output
files phasr o local disks) phase files

Fig. 1. Execution overview:

. The reduce worker reads its partition remotely (a.k.a shuffle) and sorts it
by key.

. The reduce worker processes each key using the user's reduce function.
The result is written to the global file system.

. The output of a MapReduce call may be the input to another. Note that
we have performed M map tasks and R reduce tasks.

MapReduce Framework

> MapReduce can emulate any distributed computation, since this consists
of nodes that perform local computations and occasionally exchange
messages.
> Therefore, any distributed computation can be divided into a sequence of
MapReduce calls:
> First, nodes perform local computations (map), and
> then, they exchange messages (reduce).

Figure 10. Emulating an arbitrary distributed computation with MapReduce.

(a) MapReduce provides primitives
for local computation and all-to-all
communication

(b} By chaining these steps together,
we can emulate any distributed
computation. The main costs for this
emulation are the latency of the rounds
and the overhead of passing state
across steps.

> However, the emulation may be inefficient since the message exchange
relies on external storage, e.g. disk.

MapReduce Framework

> Fault tolerance:

> Necessary since thousands of nodes may be used.

> The master pings the workers periodically. No answer means failure.

> If a worker fails then its completed and in-progress map tasks are
re-executed, since its local disk is inaccessible.

> Note the importance of storing several copies (typically 3) of the input data
on different nodes.

> If a worker fails then its in-progress reduce task is re-executed. The results
of its completed reduce tasks are stored on the global file system and, thus,
they are accessible.

> To be able to recover from the unlikely event of a master failure, the master
periodically saves the state of the different tasks (idle, in-progress,
completed) and the identity of the worker for the non-idle tasks.

> Task granularity:
> M and R are larger than the number of nodes available.
> Large M and R values benefit dynamic load balance and fast failure
recovery.
> Too large values may imply too many scheduling decisions, and too many

output files.
> For instance, M = 200000 and R = 5000 for 2000 available nodes.

Machine Learning with MapReduce: Neural Networks

hidden units

> Activations: aj =Y ; ij.l)x,- + W
» Hidden units and activation function: z; = h(a;)
> Output activations: ax = ¥; w,sz)zj + Wk(g)

» Output activation function for regression: yi(x) = ax

» Output activation function for classification: yx(x) = o(ak)
» Sigmoid function: o(a) =
> Two-layer NN:

7 = o(ZwPh(e i) + D)
J I

> Evaluating the previous expression is known as forward propagation. The
NN is said to have a feed-forward architecture.
> All the previous is, of course, generalizable to more layers.

1
1+exp(—a)

Machine Learning with MapReduce: Neural Networks

>

Consider regressing an K-dimensional continuous random variable on a
D-dimensional continuous random variable.

Consider a training set {(xn,t,)} of size N. Consider minimizing the error
function

Ew) = Y Ex(w) = 3 3 () <87 = 35 5 ())’

The weight space is highly multimodal and, thus, we have to resort to
approximate iterative methods to minimize the previous expression.

Batch gradient descent

Wt+1 _ Wt _nvE(Wt) _ Wt —’r]ZVEn(Wt)

where 1 > 0 is the learning rate, and VE,(w") can be computed efficiently
thanks to the backpropagation algorithm.
Each iteration of batch gradient descent can easily be casted into

MapReduce terms:

> Map function: Compute the gradient for a training point. Note that this
implies forward and backward propagation.
> Reduce function: Sum the partial gradients and update w accordingly.

Note that 1 < M < N, whereas R = 1.
What is the key and what is the value ? What needs to be broadcasted ?

Machine Learning with MapReduce: Linear Support Vector Machines

» Consider binary classification with input space RP. Consider a training set
{(xn,tn)} where t, € {-1,+1}. Consider using the linear model

y(x)=w'x+b

so that a new point x is classified according to the sign of y(x).

> If the training data is linearly separable, the separating hyperplane with
the largest margin (i.e. the largest smallest perpendicular distance from
any point to the hyperplane) is given by

y=-1
y=0
y=1

» The motivation is that the larger the margin, the smaller the
generalization error.

Machine Learning with MapReduce: Linear Support Vector Machines

» Without the assumption of linearly separability and with a quadratic
penalty for (almost-)misclassified points, the optimal separating
hyperplane is given by

argmin,, 3[|W|P + C X e (W xn — tn)°
— —

&n

where C is a user-defined parameter, and n € E if and only if toy(x,) < 1.
> Note that the previous expression is a quadratic function and, thus, it is
concave (up) and, thus, "easy” to minimize. For instance, we can use

again batch gradient descent.
> The gradient is given by
w+2C Y (W X0 — t)xs
neE
> Each iteration of batch gradient descent can easily be casted into
MapReduce terms:

» Map function: Compute the gradient for a training point.
> Reduce function: Sum the partial gradients and update w accordingly.

> Note that 1 < M < N, whereas R = 1. What is the key and what is the
value 7 What needs to be broadcasted ?

Machine Learning with MapReduce: K-Means Algorithm
> Consider data clustering (a.k.a. unsupervised learning) via the K-means

algorithm.

Assign each point to a cluster (a.k.a. subpopulation) at random
Compute the cluster centroids as the averages of the points assigned to each cluster

Assign each point to the cluster with the closest centroid

1

2

3 Repeat until the centroids do not change

4

5 Update the cluster centroids as the averages of the points assigned to each cluster

Machine Learning with MapReduce: K-Means Algorithm

1 Assign each point to a cluster (a.k.a. subpopulation) at random

2 Compute the cluster centroids as the averages of the points assigned to each cluster
3 Repeat until the centroids do not change

4 Assign each point to the cluster with the closest centroid

5 Update the cluster centroids as the averages of the points assigned to each cluster

> Each iteration of the K-means algorithm can easily be casted into
MapReduce terms:
> Map function: Assign a training point to the population with the closest
mean.
> Reduce function: Recalculate the population means from the assignments
of the map tasks.
> Note that 1 < M < N, whereas R =1 or R = K depending on whether we
decide to use the population assignment as intermediate key or not.

> What is the key and what is the value ? What needs to be broadcasted ?

Machine Learning with MapReduce: EM Algorithm

» The K-means algorithm partitions the data, i.e. it hard-assigns instances
to subpopulations. Model-based clustering on the other hand aims to
soft-assign instances to the subpopulations by applying Bayes theorem as
follows:
mip(x|6)

i mkp(x|0k)

where p(x|0x) are called mixture components, and 7, = p(k) are called
mixing coefficients. A component models the data distribution for a
chosen subpopulation, and a coefficient represents the probability of a
subpopulation being chosen.

p(kix,0,7) =

> More specifically, for components modeled as multivariate Gaussian
distributions, we have that:

1 1 (e TE (xe
p(x|0k) = N (x|ur, Xk) = 557 7‘zk|1/2e 2 () B (xom),

> To solve model-based clustering, we have to estimate the model
parameters (0, 7) from data. To this end, we use the EM algorithm.

Machine Learning with MapReduce: EM Algorithm
> Given a sample {x,} of size N from a mixture of multivariate Gaussian
distributions, the expected log likelihood function is maximized when

ML _ Zn P(znk|xn,7|'7ll'7:)
Tk =
N
I—"II:”L _ Zanp(an‘X,,,ﬂ',/ll,X)
Zn p(z"k|xf7?7r7l‘l‘3z)
g _ Zalo =) Oo = i) p(znin, T 1, E)

Xn p(an‘X,,,Tr,[,L,z)
where z, is a K-dimensional binary vector indicating component
memberships (one-hot encoding):
D 2okl 1,y) = P KolZoo T B)p(znm p 3) P OXalpte Ti)
2k p(X,,‘Z,,k,ﬂ',;L,z)p(znk‘ﬂ',p,z) 2k Wkp(x'?'F‘k’zk)
> This is not a closed form solution, but it suggests the following algorithm.

EM algorithm

Set w, 4 and X to some initial values

Repeat until w, g and X do not change
Compute p(znk|xn,m,pu,X) for all n /* E step */
Set my to ', i to ppt, and Xi to TP for all k- /* M step */

Machine Learning with MapReduce: EM Algorithm

’ 16 R
O
i

K-means algorithm

EM algorithm

Machine Learning with MapReduce: EM Algorithm

> Each iteration of the EM algorithm can easily be casted into two chained
MapReduce jobs:

> Map function I: For the n-th training point, compute

p(an|Xn,7l',[L,z) (1)

and
XnP(Zok|[Xn, 70, 1, 2). (2)
> Reduce function |: Sum up the results (1) of the map tasks and divide it by
N. Sum up the results (2) of the map tasks and divide it by the sum of the

results (1). This gives 7}t and pit.
> Map function II: For the n-th training point, compute

P(Znk|Xn, ™, p,) (3)
and ML ML\ T
(n =) (xn =) " P(znklxn, 7, 1,). (4)
> Reduce function Il: Sum up the results (4) of the map tasks and divide it by
the sum of the results (3). This gives M-,
> Note that 1 < M < N, whereas R =1 or R = K in both jobs, depending on
whether we decide to use the component index as intermediate key or not.
What is the key and what is the value ? What needs to be broadcasted ?

Machine Learning with MapReduce

Data Sets samples (m) features (n)

Adult 30162 14

Helicopter Control 44170 21

Corel Image Features 68040 32

IPUMS Census 88443 61

Synthetic Time Series 100001 10

Census Income 199523 40

ACIP Sensor 229564 8

KDD Cup 99 494021 41

Forest Cover Type 581012 55

1990 US Census 2458285 68

Iwlr gda nb logistic pea ica svm nn kmeans em
Adult 1.922 1.801 1.844 1.962 1.809 1.857 1.643 1.825 1.947 1.854
Helicopter 1.93 2.155 1.924 1.92 1.791 1.856 1.744 1.847 1.857 1.86
Corel Image 196 1876 2.002 1.929 197 193 1754 2018 1921 1832
IPUMS 1.963 223 1.965 1.938 1.965 2.025 1.799 1.974 1.957 1.984
Synthetic 1909 1964 1972 192 1842 1907 176 1902 1.888 1.804
Census Income 1.975 2.179 1.967 1.941 2.019 1.941 1.88 1.896 1.961 1.99
Sensor 1.927 1.853 201 1913 1.955 1.893 1.803 1.914 1.953 1.949
KDD 1.969 2216 1.848 1.927 2.012 1.998 1.946 1.899 1.973 1.979
Cover Type 1.961 2232 1.951 1.935 2.007 2.029 1.906 1.887 1.963 1.991
Census 2.327 2292 2.008 1.906 1.997 2.001 1.959 1.883 1.946 1.977
[ae [1985 2080 1950 _ 1930 _ 1937 1944 1819 1905 1937 1922 |

Table 3: Speedups achieved on a dual core processor, without load time. Numbers reported are dual-
core time / single-core time. Super linear speedup sometimes occurs due to a reduction in processor
idle time with multiple threads.

Machine Learning with MapReduce

() (hy (0]

Figure 2: (a)-(i) show the speedup from 1 to 16 processors of all the algorithms over all the data
sets. The Bold line is the average, error bars are the max and min speedups and the dashed lines are
the variance.

Summary

> MapReduce is a framework to process large datasets by parallelizing
computations.

> The user only has to specify the map and reduce functions, and
parallelization happens automatically.

» Many machine learning algorithms (e.g. SVMs, NNs, MMs, K-means and
EM algorithms) can easily be reformulated in terms of such functions.

> This does not apply for algorithms based on stochastic gradient descent.

> Moreover, MapReduce is inefficient for iterative tasks on the same
dataset: Each iteration is a MapReduce call that loads the data anew from
disk.

> Such iterative tasks are common in many machine learning algorithms,
e.g. gradient descent, K-means and EM algorithms.

> Solution: Spark framework, in the next lecture.

