
Christoph Kessler, IDA,

Linköpings universitet.

Introduction to Spark

Christoph Kessler

IDA, Linköping University

2024

732A54 / TDDE31

Big Data Analytics

2C. Kessler, IDA, Linköpings universitet.

Recall: MapReduce Programming Model

▪ Designed to operate on LARGE distributed input data sets
stored e.g. in HDFS nodes

▪ Abstracts from parallelism, data distribution, load balancing, data
transfer, fault tolerance

▪ Implemented in Hadoop and other frameworks

▪ Provides a high-level parallel programming construct (= a skeleton)
called MapReduce

▪ A generalization of the data-parallel MapReduce skeleton of
Lect. 1

▪ Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

3C. Kessler, IDA, Linköpings universitet.

From MapReduce to Spark

MapReduce

▪ is for large-scale computations matching the MapReduce pattern,

▪ with input, intermediate and output data stored in secondary storage

Limitations

▪ For complex computations composed of multiple MapReduce steps

▪ E.g. iterative computations

e.g. parameter optimization by gradient search

→ Much unnecessary disk I/O – data for next MapReduce step
could remain in main memory or even cache memory

→ Data blocks used multiple times are read multiple times from disk

→ Bad data locality across subsequent Mapreduce phases

▪ Sharing of data only in secondary storage

▪ Latency can be too long for interactive analytics

▪ Fault tolerance by replication of data – more I/O to store copies → slow

…

By chaining multiple MapReduce steps, we

can emulate any distributed computation.

4C. Kessler, IDA, Linköpings universitet.

Splitting the MapReduce Construct

into Simpler Operations – 2 Main Categories:

▪ Transformations: Elementwise operations, fully parallelizable

▪ Working on distributed data. Mostly variants of Map

▪ Actions: Operations with internally global dependence structure

▪ Mostly variants of Reduce and writing back to non-distr. file / to master

RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.
Table source: Zaharia et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.

Local

dep.

Global

dep.

reduceByKey

sequentially on each partition of a

RDD and then reducing the results,

evaluated lazily. Returns another

RDD. Fn. must be associative only.

reduce

and commutative.

reduceByKey is a specialization of

aggregateByKey:

takes 2 functions: one that is applied

to each partition (sequentially) and

one that is applied among the results

of each partition (in parallel).

reduceByKey

associative function on both cases: to

do a sequential computing on each

partition and then combine those

results in

combineByKey

Global

dep.

Both input and

output data

operands are

distributed

Output data is

not distributed

Element-wise

dependences

only,

e.g. map, filter,

flatMap

Involves some

shuffle and

sorting across

blocks, but still

produces

distributed

output (“RDD”)

5C. Kessler, IDA, Linköpings universitet.

Remark on data types

▪ Most transformations and actions can work on arbitrary

element data types (i.e., not only on key-value pairs).

▪ Some transformations work only on key-value pairs,

namely groupByKey(), reduceByKey(), combineByKey(),

aggregateByKey().

▪ These are transformations (return a RDD, are evaluated

lazily) but include a shuffle-and-sort-by-key phase (as in

MapReduce) → a non-local dependence pattern

▪ Also some actions work only on key-value pairs, e.g.

countByKey

6C. Kessler, IDA, Linköpings universitet.

Spark Idea: Data Flow Computing in Memory

Instead of calling subsequent rigid MapReduce steps,
the Spark programmer describes the overall data flow graph
of how to compute all intermediate and final results from the
initial input data

▪ Lazy evaluation of transformations

▪ Transformations are just added to the graph (postponed)

▪ Actions ”push the button” for computing (= materializing
the results) according to the data flow graph

▪ Gives more flexibility to the scheduler

▪ Better data locality (esp. with local dependence patterns)

▪ Keep data in memory as capacity permits,
can skip unnecessary disk storage of temporary data

▪ No replication of data blocks for fault tolerance –
in case of task failure (worker failure),
recompute it from available, earlier computed data blocks
according to the data flow graph

▪ Needs a data structure for operand data that ”knows” how
its data blocks are to be computed: the RDD

7C. Kessler, IDA, Linköpings universitet.

Spark Execution Model

▪ Driver program (sequential) runs on host / master

▪ Operations on distributed data (RDDs) run on workers

▪ Collect data from workers to driver program on demand

Driver

Worker

Worker

Worker

8C. Kessler, IDA, Linköpings universitet.

Resilient Distributed Datasets (RDDs)

▪ Containers for operand data passed between parallel operations

▪ Read-only (after construction) collection of data objects

▪ Partitioned and distributed across workers (cluster nodes)

▪ Materialized on demand from construction description

▪ Can be rebuilt if a partition (data block) is lost

▪ By default, cached in main memory –
not persistent (in secondary storage) until written back

▪ Construction of new RDDs:

▪ By reading in from a file e.g. in HDFS

▪ By partitioning and distributing a non-distributed collection
(e.g., array) previously residing on master node (”scatter”)

▪ By a Map operation: A → List(B)
(elementwise transformation, filtering, …) applied on another RDD

▪ Changing persistence state of a RDD:

 By a caching hint for data to be reused – if enough space in memory

 By materializing (persisting, saving) to a file
(and discarding its copy in memory)

Partition/block

9C. Kessler, IDA, Linköpings universitet.

Resilient Distributed Datasets (RDDs)

▪ Containers for operand data passed between parallel operations

▪ Read-only (after construction) collection of data objects

▪ Partitioned and distributed across workers (cluster nodes)

▪ Materialized on demand from construction description

▪ Can be rebuilt if a partition (data block) is lost

▪ By default, cached in main memory –
not persistent (in secondary storage) until written back

▪ Construction of new RDDs:

▪ By reading in from a file e.g. in HDFS

▪ By partitioning and distributing a non-distributed collection
(e.g., array) previously residing on master node (”scatter”)

▪ By a Map operation: A → List(B)
(elementwise transformation, filtering, …) applied on another RDD

▪ Changing persistence state of a RDD:

 By a caching hint for data to be reused – if enough space in memory

 By materializing (persisting, saving) to a file
(and discarding its copy in memory)

Partition/block

data = [1, 2, 3, 4, 5]

distData = sc.parallelize(data)

10C. Kessler, IDA, Linköpings universitet.

Resilient Distributed Datasets (RDDs)

▪ Containers for operand data passed between parallel operations

▪ Read-only (after construction) collection of data objects

▪ Partitioned and distributed across workers (cluster nodes)

▪ Materialized on demand from construction description

▪ Can be rebuilt if a partition (data block) is lost

▪ By default, cached in main memory –
not persistent (in secondary storage) until written back

▪ Construction of new RDDs:

▪ By reading in from a file e.g. in HDFS

▪ By partitioning and distributing a non-distributed collection
(e.g., array) previously residing on master node (”scatter”)

▪ By a Map operation: A → List(B)
(elementwise transformation, filtering, …) applied on another RDD

▪ Changing persistence state of a RDD:

 By a caching hint for data to be reused – if enough space in memory

 By materializing (persisting, saving) to a file
(and discarding its copy in memory)

Partition/block

data = [1, 2, 3, 4, 5]

distData = sc.parallelize(data)

cachedData = distdata.cache()

distdata.saveAsTextFile(...)

11C. Kessler, IDA, Linköpings universitet.

Actions on RDDs

Recall: Spark execution model:

▪ Driver program (sequential) runs on host / master

▪ Operations on RDDs run on workers

▪ Collect data from workers to driver program on demand:

Parallel Collect Operations on RDDs:

▪ Reduce

▪ Combine RDD elements using an associative binary function to produce a
(scalar) result at the driver program

▪ Key-value pairs to reduce over are grouped by key, as in MapReduce

▪ Collect

▪ Send all elements of the RDD to the driver program (”gather”)

 The reverse operation of parallelize

▪ Foreach

▪ Pass each RDD element through a user-provided function

▪ Eager evaluation - Not producing another RDD (difference from Map/Filter)

▪ Might be used e.g. for copying data to another system

Driver

Worker

Worker

Worker

12C. Kessler, IDA, Linköpings universitet.

Classification of RDD Operations

▪ Transformations: Lazy, parallelizable

▪ Working on distributed data. Mostly variants of Map

▪ Actions: Materialization points (”push the button”)

▪ Mostly variants of Reduce and writing back to non-distr. file / master

RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.
Table source: Zaharia et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.

map

RDD[T1]

produce exactly one

output element per input

element. If T1 is List[T’],

only one output element

per input list will be

computed (usually also

a list). I.e., the

multidimensional

structure of the RDD is

preserved.

flatmap

RDD[List[T1]]

= map +

0, 1 or several basic

output elements per

input element (which

could be a

list/array/

target RDD.

Both input and

output data

operands are

distributed

Output data is

not distributed

13C. Kessler, IDA, Linköpings universitet.

Shared Variables

▪ shared = not partitioned and distributed,
accessible by all workers

▪ Broadcast Variables

▪ Replicated shared variables – 1 copy on each worker

▪ Read-only for workers

▪ For global data needed by all workers,
e.g. filtering parameters, lookup table

▪ Accumulator Variables

▪ Residing on driver program process

▪ Workers can not read,
only add their contributions using an associative operation

▪ Good for implementing counters and for global sum

Driver

Worker

Worker

Worker

14C. Kessler, IDA, Linköpings universitet.

Example: Text Search

▪ Count lines containing ”ERROR” in a large log file in HDFS

▪ RDDs errs and ones are lazy RDDs
that are never materialized to secondary storage.

▪ Call to reduce (action) triggers computation of ones, which triggers
computation of errs, which triggers reading blocks from the file.

// Create a RDD from file:

file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with ”ERROR”:

errs = file.filter(lambda line: line.find("ERROR”)>=0)

// Map each line to a 1:

ones = errs.map(lambda word: (word, 1))

// Add up the 1’s using Reduce:

count = ones.reduce(lambda x, y: x+y)

Python code adapted from Zaharia et al. 2010

The ”lineage” (DFG)

of RDDs leading

to the result count

15C. Kessler, IDA, Linköpings universitet.

Example: Text Search, with reuse of errs

▪ Count lines containing ”ERROR” in a large log file in HDFS

// Create a RDD from file:

file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with ”ERROR”:

errs = file.filter(lambda line: line.find("ERROR”)>=0)

// Cache hint that errs will be reused in another operation:

cachedErrs = errs.cache();

// Map each line to a 1:

ones = cachedErrs.map(lambda word: (word, 1))

// Add up the 1’s using Reduce:

count = ones.reduce(lambda x, y: x+y)

Python pseudocode

16C. Kessler, IDA, Linköpings universitet.

Example: Pi Calculation

▪ Stochastic approximation of Pi:

▪ A random point (x,y) in [0,1]x[0,1]

is located within quarter unit cycle

iff x2 + y2 < 1

def sample(p):

x, y = random(), random()

return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \

.map(sample) \

.reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)

1

1

Create a RDD containing all

indexes 0, …, NUM_SAMPLES-1

RDD variables are implicit

(operation return values)

Argument not used (index)

17C. Kessler, IDA, Linköpings universitet.

Example: Logistic Regression

▪ Iterative classification algorithm to find a hyperplane that best
separates 2 sets of data points

▪ Gradient descent method:

▪ Start at a random normal-vector (hyperplane) w

▪ In each iteration, add to w an error-correction term (based on the
gradient) that is a function of w and the data points, to improve w

// Read points from a text file and cache them:

points = sc.textFile(...).map(parsePoint).cache()

// Initialize w to random D-dimensional vector:

w = Vector.random(D)

// Run multiple iterations to update w:

for (i <- 1 to NUMBER_OF_ITERATIONS) {

grad = sc.accumulator(new Vector(D))

for (p <- points) { // Runs in parallel:

val s = (1/(1+exp(-p.y*(w dot p.x)))-1) * p.y

grad += s * p.x // remotely add contribution to gradient value

}

w -= grad.value // correction of w

}

Scala pseudocode, adapted from

Zaharia et al., 2010

18C. Kessler, IDA, Linköpings universitet.

Spark Execution Model

▪ Depending on the kind of operations,
the data dependences between RDDs in the lineage graph
can be local (elementwise) or global (shuffle-like)

▪ When a user (program) runs an action on an RDD,
the Spark scheduler builds a DAG (directed acyclic graph) of stages
from the RDD lineage graph (data flow graph, task graph).

▪ A stage contains a contiguous subDAG of as many as possible
operations with local (element-wise) dependencies between RDDs

▪ The boundary of a stage is thus defined by

 Operations with global dependencies

 Already computed (materialized) RDD partitions.

▪ Execution of the operations within a stage is pipelined

▪ intermediate results forwarded in memory

▪ The scheduler launches tasks to workers (cluster nodes) to compute
missing partitions from each stage until it computes the target RDD.

▪ Tasks are assigned to nodes based on data locality.

▪ If a task needs a partition that is available in the memory of a node,
the task is sent to that node.

Local

dep.

Global

dep.

Input RDD

Output RDD

19C. Kessler, IDA, Linköpings universitet.

Spark Performance

Results from original paper on Spark 2010:

▪ Spark can outperform Hadoop by 10x in iterative machine

learning jobs

▪ Interactive query of a 39GB data set in < 1s

Image source:

M. Zaharia et al.,

2010. © ACM

20C. Kessler, IDA, Linköpings universitet.

Using Spark

▪ Spark can run atop HDFS, but other implementations also exist

▪ Language bindings exist for Scala, Java, Python (PySpark)

▪ Some minor restrictions for Python

▪ Spark Context object

▪ The main entry point to Spark functionality

▪ Represents connection to a Spark cluster

▪ PySpark context sc is up and running from start

▪ Create your own Spark context object for stand-alone applications

 sc = new pyspark.SparkContext(master, applName, [sparkHome], […])

local

local[k]

spark://host:port

mesos://host:port

21C. Kessler, IDA, Linköpings universitet.

Spark Streaming

22C. Kessler, IDA, Linköpings universitet.

Pipelining (Pattern)

▪ applies a sequence of dependent computations/tasks (f1, f2, ..., fk)
elementwise to data sequence x = (x1,x2,x3,...,xn)

▪ For fixed xj, must compute fi(xj) before fi+1(xj)

▪ … and fi(xj) before fi(xj+1) if the tasks fi have a run-time state

▪ Parallelizability: Overlap execution of all fi for k subsequent xj

▪ time=1: compute f1(x1)

▪ time=2: compute f1(x2) and f2(x1)

▪ time=3: compute f1(x3) and f2(x2) and f3(x1)

▪ ...

▪ Total time: O ((n+k) maxi (time(fi))) with k processors

▪ Still, requires good mapping of the tasks fi to the processors
for even load balancing – often, static mapping (done before running)

▪ Notation with higher-order function:

▪ (y1,…,yn) = pipe ((f1, ..., fk), (x1,…,xn))
▪

…

x3

x2

x1

f1

f2

fk

stage

task

dependence

graph

pipeline

task instance

dependence

graph

23C. Kessler, IDA, Linköpings universitet.

Pipelining (Pattern)

▪ applies a sequence of dependent computations/tasks (f1, f2, ..., fk)
elementwise to data sequence x = (x1,x2,x3,...,xn)

▪ For fixed xj, must compute fi(xj) before fi+1(xj)

▪ … and fi(xj) before fi(xj+1) if the tasks fi have a run-time state

▪ Parallelizability: Overlap execution of all fi for k subsequent xj

▪ time=1: compute f1(x1)

▪ time=2: compute f1(x2) and f2(x1)

▪ time=3: compute f1(x3) and f2(x2) and f3(x1)

▪ ...

▪ Total time: O ((n+k) maxi (time(fi))) with k processors

▪ Still, requires good mapping of the tasks fi to the processors
for even load balancing – often, static mapping (done before running)

▪ Notation with higher-order function:

▪ (y1,…,yn) = pipe (f1, ..., fk) (x1,…,xn)

…

x3

x2

x1

f1

f2

fk

24C. Kessler, IDA, Linköpings universitet.

Streaming

▪ Streaming applies pipelining to processing

of large (possibly, infinite) data streams

from or to memory, network or devices,

usually partitioned in fixed-sized data packets,

▪ in order to overlap the processing of

each packet of data in time with

access of subsequent units of data

and/or processing of preceding packets

of data.

▪ Examples

▪ Video streaming from network to display

▪ Surveillance camera, face recognition

▪ Network data processing e.g. deep packet inspection

…

x3

x2

x1

f1

f2

f3

Read a

packet of

stream data

Process

a packet

Process

it more

fk
Write

result

26C. Kessler, IDA, Linköpings universitet.

Spark Streaming

▪ Extension of the core Spark API

for scalable, high-throughput, fault-tolerant stream processing

of live data streams.

▪ Discretized stream or DStream

▪ High-level abstraction representing a continuous stream of

data.

▪ Internally: A continuous series of RDDs

Spark

Streaming
Spark

Input data

stream
Batches of

input data
Batches of

processed data

27C. Kessler, IDA, Linköpings universitet.

Transformations on DStreams

▪ map(func), flatMap(func), filter(func) – return a new DStream

with map etc. applied to all its elements

▪ repartition(), union(other_stream)

▪ count() – returns a new DStream of single-element RDDs

containing the number of elements in each RDD of the source

DStream

▪ reduce(func), reduceByKey() – aggregate each RDD of the

source Dstream and return a new Dstream of single-element RDDs

▪ join (other_stream) – joins 2 streams of (K,V) and (K,W) pairs to a

stream of (K,(V,W)) pairs

▪ transform(func) – apply arbitrary RDD-to-RDD function to each

RDD in the source DStream

▪ …

map

RDD[T1]

produce exactly one

output element per input

element. If T1 is List[T’],

only one output element

per input list will be

computed (usually also

a list). I.e., the

multidimensional

structure of the RDD is

preserved.

flatmap

RDD[List[T1]]

= map + flatten: produce

0, 1 or several basic

output elements per

input element (which

could be a

list/array/

target RDD.

28C. Kessler, IDA, Linköpings universitet.

Spark Streaming Example

from pyspark import SparkContext

from pyspark.streaming import StreamingContext

Create a local StreamingContext with two working threads and batch interval of 1 second:

sc = SparkContext("local[2]", "NetworkWordCount")

ssc = StreamingContext(sc, 1)

Create a DStream that will connect to TCP hostname:port, like localhost:9999, as source:

lines = ssc.socketTextStream("localhost", 9999)

Split each line into words:

words = lines.flatMap(lambda line: line.split(" "))

Count each word in each batch:

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKey(lambda x, y: x + y)

Print the first ten elements of each RDD generated in this DStream to the console:

wordCounts.pprint()

ssc.start() # Start the computation

ssc.awaitTermination() # Wait for the computation to terminate

DStream of lines

Run on local host, alt. cluster name

29C. Kessler, IDA, Linköpings universitet.

Spark Streaming: Windowing

▪ Can define a sliding window over a source DStream

time 1 time 4time 2 time 3 time 5

Window

at time 3

Window

at time 5

Window length (here 3)

Slide length (here 2)

→ Overlap size (here 1)

Every time the window slides over a source

DStream, the source RDDs that fall within the

window are combined and operated upon to

produce the RDDs of the windowed DStream.

Example: Reduce last 30 seconds of data, every 10 seconds:

windowedWordCounts = \

 pairs.reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y: x - y, 30, 10)

30C. Kessler, IDA, Linköpings universitet.

APPENDIX

31C. Kessler, IDA, Linköpings universitet.

Questions for Reflection

▪ Why can MapReduce emulate any distributed computation?

▪ For a Spark program consisting of 2 subsequent Map computations,
show how Spark execution differs from Hadoop/MapReduce execution.

▪ Given is a file containing just integer numbers.
Write a Spark program that adds them up.

▪ Write a wordcount program for Spark.

▪ Solution proposal (from spark.apache.org):

▪ Note – there exist many variants for formulating this.

▪ Modify the wordcount program by only considering words
with at least 4 characters.

text_file = sc.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" ")) \

.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")

32C. Kessler, IDA, Linköpings universitet.

Map vs. FlatMap in Spark

map: transformation

RDD<T1> → RDD<T2>,

produces exactly one output element per input element.

If T1 is List<T’>, only one output element per input list will be computed

(usually also a list).

I.e., the multidimensional structure of the RDD is preserved.

flatmap:

RDD<List<T1>> → RDD<T2>

= map + flatten: produce 0, 1 or several basic output elements per

 input element (which could be a list/array/struct)

 in the target RDD.

Here (wordcount): The input textfile (its elements are lines) is map’ed with the split

function as operator. As a single line may contain multiple words, the result of each

operator application (one per line) is a list of words (hence, overall an RDD of lists).

Here, we are only interested in a single RDD of all words, without the line structure:

the flatmap concatenates all words of all lists into one flat target RDD of words.

33C. Kessler, IDA, Linköpings universitet.

Does Spark have a Combiner (as in MapReduce)?

▪ reduceByKey performs a full reduction by key including a combiner step,
while reduce does not use a separate combiner step.

▪ Input RDD must contain key-value pairs.

 Whereas ordinary reduce works on “flat” RDDs of arbitrary element type.

▪ The combiner step in reduceByKey counts as a transformation,
not an action like reduce: it generates a RDD (of key-value pairs)

▪ reduceByKey has a global dependence pattern (involves a shuffle-and-sort)
but is still evaluated lazily

▪ reduceByKey is a specialization of aggregateByKey

 aggregateByKey takes 2 user functions: one that is applied to each block in the
combiner step (sequentially) and one that is applied to reduce globally over the
results of each block (in parallel).
reduceByKey uses the same associative and commutative function in both steps.

▪ combineByKey() is a combiner working sequentially on each partition of a RDD, locally
reducing it, producing a new RDD.

▪ It is a transformation (evaluated lazily)

▪ The input and output element types need not match.

▪ The user function for combining must be associative only.

 Always processed sequentially for each block.

 But for reduce, the user function must be both associative and commutative.

34C. Kessler, IDA, Linköpings universitet.

Transformations
Transformation Meaning

map(func) Returns a new RDD formed by passing each element

of the source through a function func.

filter(func) Returns a new RDD formed by selecting those

elements of the source on which func returns true.

flatMap(func) Similar to map, but each input item can be mapped to 0

or more output items (so func should return a Seq

rather than a single item).

mapPartitions(func) Similar to map, but runs separately on each partition

(block) of the RDD, so func must be of type Iterator<T>

→ Iterator<U> when running on an RDD of type T.

mapPartitionsWithIndex

(func)

Similar to mapPartitions, but also provides func with an

integer value representing the index of the partition, so

func must be of type (Int, Iterator<T>)→Iterator<U>

when running on an RDD of type T.

sample (withReplacement,

fraction, seed)

Samples a fraction fraction of the data, with or without

replacement, using a given random number generator

seed.

union(otherDataset) Returns a new dataset that contains the union of the

elements in the source dataset and the argument.

Source: spark.apache.org

35C. Kessler, IDA, Linköpings universitet.

Transformation Meaning

intersection(otherDataset) Return a new RDD that contains the intersection of

elements in the source dataset and the argument.

distinct([numPartitions])) Return a new dataset that contains the distinct

elements of the source dataset.

groupByKey

([numPartitions])

When called on a dataset of (K,V) pairs,

returns a dataset of (K, Iterable<V>) pairs.

If using grouping in order to perform an aggregation

(such as a sum or average) over each key, using

reduceByKey or aggregateByKey will yield much better

performance.

By default, the level of parallelism in the output depends

on the number of partitions of the parent RDD.

One can pass an optional numPartitions argument to

set a different number of tasks.

reduceByKey(func,

[numPartitions])

When called on a dataset of (K,V) pairs,

returns a dataset of (K,V) pairs where the values for

each key are aggregated using the given reduce

function func, which must be of type (V,V)→V.

Like in groupByKey, the number of reduce tasks is

configurable through an optional second argument.

also: combineByKey

36C. Kessler, IDA, Linköpings universitet.

Transformation Meaning

aggregateByKey(

zeroValue) (seqOp,

combOp, [numPartitions])

When called on a dataset of (K,V) pairs, returns a

dataset of (K,U) pairs where the values for each key are

aggregated using the given combine functions and a

neutral "zero" value. Allows an aggregated value type

that is different than the input value type, while avoiding

unnecessary allocations. Like in groupByKey, the

number of reduce tasks is configurable through an

optional second argument.

sortByKey([ascending],

[numPartitions])

When called on a dataset of (K,V) pairs where K

implements Ordered, returns a dataset of (K, V) pairs

sorted by keys in ascending or descending order, as

specified in the boolean ascending argument.

join(otherDataset,

[numPartitions])

When called on datasets of type (K,V) and (K,W),

returns a dataset of (K, (V, W)) pairs with all pairs of

elements for each key. Outer joins are supported

through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

cogroup(otherDataset,

[numPartitions])

When called on datasets of type (K, V) and (K, W),

returns a dataset of (K, (Iterable<V>, Iterable<W>))

tuples. This operation is also called groupWith.

37C. Kessler, IDA, Linköpings universitet.

Transformation Meaning

cartesian(otherDataset) When called on datasets of types T and U, returns a

dataset of (T, U) pairs (all pairs of elements).

pipe(command, [envVars]) Pipe each partition of the RDD through a shell

command, e.g. a Perl or bash script.

RDD elements are written to that process's stdin,

and lines output to its stdout are returned as an RDD of

strings.

coalesce(numPartitions) Decreases the number of partitions in the RDD to

numPartitions. Useful for running operations more

efficiently after filtering down a large dataset.

repartition(numPartitions) Reshuffle the data in the RDD randomly to create either

more or fewer partitions and balance it across them.

This always shuffles all data over the network.

repartitionAndSortWithinP

artitions(partitioner)

Repartitions the RDD according to the given partitioner

and, within each resulting partition, sort records by their

keys. This is more efficient than calling repartition and

then sorting within each partition because it can push

the sorting down into the shuffle machinery.

38C. Kessler, IDA, Linköpings universitet.

Actions

Action Meaning

reduce(func) Aggregates the elements of the dataset using a function

func (which takes two arguments and returns one).

The function should be commutative and associative so

that it can be computed correctly in parallel.

collect() Returns all the elements of the dataset as an array at the

driver program.

This is usually useful after a filter or other operation that

returns a sufficiently small subset of the data.

count() Returns the number of elements in the dataset.

first() Returns the first element of the dataset (similar to take(1)).

take(n) Returns an array with the first n elements of the dataset.

takeSample(withReplac

ement, num, [seed])

Returns an array with a random sample of num elements

of the dataset, with or without replacement, optionally pre-

specifying a random number generator seed.

takeOrdered(n,

[ordering])

Returns the first n elements of the RDD using either their

natural order or a custom comparator.

39C. Kessler, IDA, Linköpings universitet.

Action Meaning

saveAsTextFile(path) Write the elements of the RDD as a text file (or set of text

files) in a given directory in the local filesystem, HDFS or

any other supported file system. Spark will call toString on

each element to convert it to a line of text in the file.

saveAsSequenceFile

(path)

(Java and Scala)

Write the elements of the RDD as a SequenceFile in a

given path in the local filesystem, HDFS or any other

supported file system. This is available on RDDs of key-

value pairs that implement Hadoop's Writable interface. In

Scala, it is also available on types that are implicitly

convertible to Writable (Spark includes conversions for

basic types like Int, Double, String, etc).

saveAsObjectFile(path)

(Java and Scala)

Write the elements of the dataset in a simple format using

Java serialization, which can then be loaded using

SparkContext.objectFile().

countByKey() Only available on RDDs of type (K, V). Returns a hashmap

of (K, Int) pairs with the count of each key.

foreach(func) Runs a function func on each element of the dataset.

This is usually done for side effects such as updating an

Accumulator or interacting with external storage systems.

Note: modifying variables other than Accumulators outside

of the foreach() may result in undefined behavior.

40C. Kessler, IDA, Linköpings universitet.

References

▪ M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica:

Spark: Cluster Computing with Working Sets.

Proceedings of the 2nd USENIX conference on Hot topics in

cloud computing (HotCloud'10), 2010, ACM.

▪ See also: M. Zaharia et al.: Apache Spark: A Unified

Engine for Big Data Processing. Communications of the

ACM, 59(11):56-65, Nov. 2016.

▪ Apache Spark: http://spark.apache.org

▪ A. Nandi: Spark for Python Developers. Packt Publishing,

2015.

	Slide 1: Introduction to Spark
	Slide 2: Recall: MapReduce Programming Model
	Slide 3: From MapReduce to Spark
	Slide 4: Splitting the MapReduce Construct into Simpler Operations – 2 Main Categories:
	Slide 5: Remark on data types
	Slide 6: Spark Idea: Data Flow Computing in Memory
	Slide 7: Spark Execution Model
	Slide 8: Resilient Distributed Datasets (RDDs)
	Slide 9: Resilient Distributed Datasets (RDDs)
	Slide 10: Resilient Distributed Datasets (RDDs)
	Slide 11: Actions on RDDs
	Slide 12: Classification of RDD Operations
	Slide 13: Shared Variables
	Slide 14: Example: Text Search
	Slide 15: Example: Text Search, with reuse of errs
	Slide 16: Example: Pi Calculation
	Slide 17: Example: Logistic Regression
	Slide 18: Spark Execution Model
	Slide 19: Spark Performance
	Slide 20: Using Spark
	Slide 21: Spark Streaming
	Slide 22: Pipelining (Pattern)
	Slide 23: Pipelining (Pattern)
	Slide 24: Streaming
	Slide 26: Spark Streaming
	Slide 27: Transformations on DStreams
	Slide 28: Spark Streaming Example
	Slide 29: Spark Streaming: Windowing
	Slide 30: APPENDIX
	Slide 31: Questions for Reflection
	Slide 32: Map vs. FlatMap in Spark
	Slide 33: Does Spark have a Combiner (as in MapReduce)?
	Slide 34: Transformations
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Actions
	Slide 39
	Slide 40: References

