Artificiell Intelligens, HKGBB0
Fördjupningsuppgift, HT 2006
Linköpings Universitetet

Cog – En humanoid robot

Natalia González
natgo178@student.liu.se

Natalia González
840329-0508
natgo178@student.liu.se
Abstract
Innehållsförteckning

1 Inledning .. 1
2 Bakgrund .. 1
 2.1 Människan .. 1
 2.2 Spädbarn .. 1
 2.3 Inspiration från hjärnan .. 2
 2.4 Humanoider .. 2
 2.5 Cog ... 2
3. Hårdvara .. 2
 3.1 Kroppen .. 3
 3.2 Oscillatorer .. 3
 3.3 Utvecklingsplattformar ... 3
 3.3.1 Visuell plattform ... 3
 3.3.2 Visuell – Auditiv plattform .. 3
 3.3.3 Kismet ... 4
4 Cogs kapaciteter ... 4
 4.1 Delad uppmärksamhet ... 4
 4.1.1 Uppmärksamma ögonkontakt ... 4
 4.1.2 Följa blickten .. 5
 4.2 Pekning ... 5
 4.2.1 Imperativ pekning .. 5
 4.2.2 Deklarativ pekning ... 5
 4.3 Huvudnickande ... 5
 4.4 Armrörelser ... 6
5 Hur Cog fungerar .. 6
 5.1 Subsumption Architecture ... 7
 5.1.1 Uppbyggnad .. 7
 5.1.2 Agentens egenskaper ... 8
 5.2 Visual-motorisk mappning ... 8
6 Framtiden ... 9
 6.1 Samverkan .. 9
 6.2 Perception .. 9
 6.3 Utvecklande av synen ... 10
 6.4 Tidsuppfattning ... 10
 6.5 Meso ... 10
 6.6 Förmågan att uppfatta andra .. 10
7 Diskussion .. 10
8 Källförteckning ... 12
1 Inledning

2 Bakgrund

2.1 Människan

Förmågan att kunna utvecklas genom lärdom är något som karaktäriserar mänsklig intelligens. Utveckling sker bland annat genom social interaktion mellan människor, fysisk förkroppsligande koppling till världen och fysisk integration samt interaction. Den sociala aspekten i mänskligt beteende är fördelaktig genom att vi kan utnyttja varandra för assistens samt förmedling av kunskap. En maximering av denna kunskap fås genom integration med världen som skapar komplement i form av exempelvis percept. För att människan ska kunna organisera och manipulera sin kunskap krävs alltså förkroppsligande koppling till världen. [2]

2.2 Spådbarn

Förmågan att behårliga sinnesintryck och motorik underlättar framtid problemantering. Även barns uppfostra spelar en viktig roll här. Genom att gradvis öka komplexiteten i uppgiften som ges kan barn applicera tidigare kunskap till det nya problemet och därmed underlätta inlärningen. [1]
2.3 Inspiration från hjärnan

När Cog skapades inspirerades Brooks och teamet på MIT av den mänskliga hjärnan och forskning inom neurovetenskap. Ett exempel på detta är hur Cog lärt sig manövrera sitt huvud efter att ha uppfattat rörelse eller ljud. Detta är helt inspirerat av studier om Superior Colliculus som är den del av hjärnan som specialiserar sig på att lokalisera percept och orientera delar av kroppen som är viktiga för mottagandet av perception, såsom ögon, nacke och öron. Man har funnit att Superior Colliculus organiserar i lager av utvidgade ordnade ”kartor”. Dessa förklaras i kapitel 5.2.

2.4 Humanoider

Humanoider är robotar som ska likna människor. De ska ha ungefär samma förutsättningar när det gäller rörelseförmåga, styrka, förmågan att använda händerna och kroppsstorlek. Roboten måste också kunna utföra ett självständigt arbete. En humanoid är en autonom robot som kan anpassa sig till förändringar i dess miljö eller i sig själv samtidigt som den fortsätter att sträva efter sitt mål. Det här är den största skillnaden mellan humanoider och andra typer av robotar, såsom industrirobotar som används till att utföra uppgifter i en oförändlig omgivning.

2.5 Cog

3. Hårdvara

Datakontrollen för Cog sker i ett heterogen nätverk bestående av många olika processoror som verkar på olika nivåer i kontrollhierarkin. Kontrollhierarkin sträcker sig allt från processor för små mikrokontroller för lednivåkontroll till complexa nätverk för ljudinterpretation. Kärnan i Cogs ”hjärna” består av 200 MHz industriidatorer som kör operativsystemet QNX. Detta operativsystem tillför en mer stabil kommunikation mellan nätverken. Kärnan i Cogs ”hjärna” arbetar tillsammans med Cogs gamla ”hjärna”. Denna består av ett nätverk av 16MHz Motorola 68332 mikrokontroller som är kopplade via en dual-port RAM. De båda kommunicerar genom ett specialtillverkat minneskort. [1]
3.1 Kroppen

Cog har sex frihetsgrader i varje arm och var och en av dessa är drivna av en elektrisk likströmsmotor via en serie fjädringar, som tillhandahåller noggrann vridningsfeedback. Ändrar man jämviktsläget för lederna så fastställs armens position. Fjädringarna i armen gör det möjligt för roboten att röra sig likt en människa. På bröstet sitter känselfadren som känner av hur mycket kraft som Cog utsätts för och var trycket är lokaliserat. Dessa känselfadren har även funnits på vissa varianter av Cogs händer. Nu har inte händerna känselfadren då det inte anses vara nödvändigt.

3.2 Oscillatorer

3.3 Utvecklingsplattformar

3.3.1 Visuell plattform

Denna plattform används för att utveckla ett eventuellt färgeende hos Cog. Dessa färgkameror är lättare än de gräskaliga kameror som nu används, vilket medför mindre arbete för motorerna.

3.3.2 Visuell – Auditiv plattform

Den tredje plattformen är skapad för att undersöka relationen mellan det visuella och det auditiva. Plattformen har liknande auditivt system som Cog medan det visuella har förenklats lite genom att endast ha en färgkamera placerad i mitten av huvudet.
3.3.3 Kismet

![Kismet är leden](image)

4 Cogs kapaciteter

Cog skapades i forskningssyfte och var därför aldrig tänkt för endast en uppgift. Genom åren har ett flertal beteenden genomförts, flera av dessa är fortfarande under utveckling medan andra har lagts ner. Cog kan exempelvis sträcka ut sin hand mot ett föremål som befinner sig i synfältet, något som barn lär sig i väldigt tidigt stadium, och imitera huvudrörelser som dess instruktör gör.

4.1 Delad uppmärksamhet

En grundläggande del av den sociala utvecklingen hos människor är begreppet delad uppmärksamhet. När människan föds innehås inte all sociala interaktion. Forskning tyder på att dessa egenskaper hos barn uppkommer i ungefär samma takt. [4]

Forskare har valt att implementera egenskaper för delad uppmärksamhet hos Cog. Forskning har visat att egenskapen att kunna dela uppmärksamhet är av mycket stor vikt när det gäller exempelvis social utveckling och språkutveckling [4]. Eftersom ett av målet är att roboten ska förstå mänsklig kognition är det viktigt att realisera denna egenskap hos Cog.

4.1.1 Uppmärksamma ögonkontakt

För att delad uppmärksamhets krävs till en början bekräftad ögonkontakt. För att utföra detta har Cog ett system som gör det möjligt för den att leta upp ett ansikte, upptäcka ögat för att till sist avgöra om ögat tittar på den eller inte. Systemet är förhållandevis säkert då i en undersökning med sju olika personer kunde en bild av ögat identifieras i 131 av 140 fall, det vill säga med 94 procents säkerhet. [4]
4.1.2 Följa blicken

4.2 Pekning

4.2.1 Imperativ pekning

4.2.2 Deklarativ pekning
Precis som i imperativ pekning krävs att objektet är utom räckhåll, det som skiljer är att i deklarativ pekning måste pekningen inte betyda en önskan efter objektet. Däremot måste det finnas en interaktion med en annan människa som kan ta del av den deklarativa pekningen.

För att få Cog att begripa att någon pekar på ett avlägsnat objekt, används liknande system som när den ska följa någons blick. Istället för blicken används vinkeln av armen i förhållande till kroppen och för detta krävs att Cog ska kunna känna igen vissa gester. Utförandet av deklarativ pekning bygger på att kunna utföra det vid rätt tillfälle så att det kan belönas i form av social interaktion. Dock kan Cog inte ännu känna igen dessa situationer utan kan bara själva handlingen.

4.3 Huvudnickande
4.4 Armrörelser

![Figur 2. Cog leker med en Slinky](image)

5 Hur Cog fungerar

5.1 Subsumption Architecture

5.1.1 Uppbyggnad

Alla beslut tas med intentionen att skapa observerbara beteenden i den verkliga världen och alla enkla beteenden är skapade av AFSM. Detta görs med en hierarkisk metod, genom ett bottom-up tillvägagångssätt, vilket gör att mer komplexa beteenden kan uppstå. I upplysningen finns så kallade hormoner, dessa utgör en mekanism som representerar minimal global state. Hormonerna skapades efter biologiska modeller och har aktivitetsmätare i sig som aktiverar beteenden när en viss nivå har uppnåtts. Hela systemet är skapat så att all data från sensorerna kan på ett direkt sätt reglera pådrivarna, vilket resulterar i snabb reaktionstid, och sensorer kan ge data till vilken nivå i arkitekturen som helst.

Mellan dessa tillstånd finns två möjliga sätt att samspela. Interaktion kan exempelvis skapas när man lägger till moduler i ett system. Detta görs genom att en förbindelse skapas av en knut mellan två enheter. [10]
5.1.2 Agentens egenskaper

5.2 Visual-motorisk mappning

6 Framtiden

Forskerteamet på MIT har koncentrerat sig på en rad uppgifter som ligger bortom många andra robotprojekt vilket medför att problematiken som stöts på är av en annan typ. Målet är att fullständigt förstå mänskliga kognitiva förmågor och sedan implementera dessa i Cog, som ska utvecklas och bete sig likt en människa. Det största problemet just nu är att få olika system att samverka. I dagsläget så skulle Cog inte klara av situationer där alla system samtidigt är aktiva.

6.1 Samverkan

6.2 Perception

6.3 Utvecklande av synen

6.4 Tidsuppfattning

6.5 Meso
Utveckling av ett system som gör att Cog uppmärksammar sin energikonsumtion tros vara viktigt för att Cog skall kunna agera som en människa. Detta system, som är under utveckling, kallas för Meso. Exempelvis vill man att Cog vid ”muskelanvändning” ska känna trötthet. Det fysiska välfinnandet är väldigt viktigt eftersom det påverkar kroppsspråk, beteende och sinnesstämning. Komplexiteten i ett sådant system gör det dock svårt att utveckla Meso. [8]

6.6 Förmågan att uppfatta andra
I det sociala sampelet är det viktigt att kunna förstå andras kunskaper, intentioner och percep. Förmågan att kunna tyda andra spelar en stor betydelse i barns utveckling. Detta har en betydande roll för utvecklingen av språket, utvecklingen av självmedvetandet och troligen även för utvecklingen av barns kreativa och fantasifulla lekar. Förmågan att korrekt förstå andra människors uppfattningar, intentioner, mål och percep kallas Theory of Mind. Tanken är att kunna implementera ett sådant system i Cog i framtiden. [9]

7 Diskussion

Artificiell intelligens är i förlängningen självförstärkande, det vill säga intelligenta system som kan göra sig själva mer intelligenta. Självklart dyker det upp frågeställningar kring detta och en av de vanligaste är om det i framtiden kommer att utvecklas ett AI-system som uppvisar alla tecken på det vi kallar mänsklig intelligens. Jag tror att mänsklig intelligens är väldigt svår att uppnå, om inte omöjlig, på ett artificiellt tillväggagångssätt. Den mänskliga komplexiteten gör det väldigt svårt att finna svar på utslagsgivande frågeställningar vilket gör att humanoidforskningen tvingas avstanna. Dock tror jag stark på en framtid för enklare typer av humanoider speciellt eftersom det verkar finnas en kommersiell marknad för det. Redan finns
exempelvis hundroboten AIBO tillgänglig och det är för liknande syften jag tror dessa humanoider kommer att användas, helt enkelt som sällskapsrobotar.
8 Källförteckning

