Sektion 1

General instructions

This exam consists of two parts:

Part A consists of 5 items (A1–A5), each worth 3 points. These items test your understanding of the basic methods that are covered in the course. They require only compact answers, such as a short text, calculation, or diagram.

Part B consists of 3 items (B1–B3), each worth 6 points. These items test your understanding of the more advanced methods that are covered in the course. They require detailed and coherent answers with correct terminology.

Note that surplus points in one part do not raise your score in another part.

Grade requirements 729G17

- Grade G: at least 12 points in Part A
- Grade VG: at least 12 points in Part A and at least 14 points in Part B

Grade requirements 729G86

- Grade E: at least 12 points in Part A
- Grade D: at least 12 points in Part A and at least 4 points in Part B
- Grade C: at least 12 points in Part A and at least 7 points in Part B
- Grade B: at least 12 points in Part A and at least 10 points in Part B
- Grade A: at least 12 points in Part A and at least 14 points in Part B

Grade requirements TDP030

- Grade 3: at least 12 points in Part A
- Grade 4: at least 12 points in Part A and at least 7 points in Part B
- Grade 5: at least 12 points in Part A and at least 14 points in Part B

Good luck!

Instructions on expressions

When instructed to 'answer with an expression', use the keypad to enter a mathematical expression. The expression must evaluate to a number. For example, all of the following expressions evaluate to the number 0.5:

$\frac{1}{2}$, $\frac{2}{4}$, $\frac{4-3}{2\times 1}$, $\frac{5\times 10}{10^2}$

You do not need to simplify the expression or evaluate it yourself.

Inside an expression, you can use mathematical operators and other numbers.

- Do not use operators or symbols that are not readily available on the keypad.
- When writing numbers with decimals, use a period, not a comma: write 0.5, not 0,5.
- Do not use thousands separators: write 2000000, not 2 000 000.

When instructed to 'answer with an fraction', answer with an expression in the form of a fraction.

Test question (not graded)

The year 2023 has 365 days and 52 Mondays. What is the percentage of Mondays among the days of the year 2023? Answer with a fraction.

1	
Corr	ect answers:
1	52 365

Sektion 2

Text classification

You want to train and evaluate a Naive Bayes classifier that predicts whether a speech held in the Swedish Riksdag was delivered by a left-wing politician or a right-wing politician. As your training and testing data, you use all the speeches held in the Riksdag in two consecutive sessions:

dataset	# speeches	# left-wing speeches	# right-wing speeches
training	12637	6889	5748
testing	12343	6636	5707

A1.1

The following table shows the token counts for the training data, broken down by class, along with the token counts for two selected words.

class	# tokens	token count for 'ekonomi'	token count for 'fred'
left-wing	1862855	285	155
right-wing	1807975	266	81

State the specified word probabilities of your trained classifier. Assume that probabilities are estimated using maximum likelihood estimation without smoothing. Answer with fractions.

class	class probability	word probability for 'ekonomi'	word probability for 'fred'
left- wing	$\frac{6889}{12637}$	1	2
right- wing	$\frac{5748}{12637}$	3	4
Correct a	answers:		
$1 \frac{285}{18628}$	$\frac{5}{855}$ 2 $\frac{155}{1862855}$	$3 \frac{266}{1807975} \qquad 4 \frac{81}{1807975}$	

class	word probability for 'linköping'	word probability for 'student'
left-wing	<u>924</u> 78239910	<u>924</u> 78239910
right-wing	$\frac{966}{75934950}$	$\frac{168}{75934950}$
hat are the cla ocument:	ss-specific scores that your Naive Bayes class	sifier uses to predict the class for the following
köping stude	ent student	
nswer with exp	pressions.	
left-wing	righ	it-wing
1	2	
Correct ans	swers:	
1 $\frac{6889}{12637}$ ×	Swers: $ \frac{924}{78239910} \times \left(\frac{924}{78239910}\right)^2 \qquad \frac{5748}{12637} \times \frac{7}{7} $	$\frac{966}{5934950} \times \left(\frac{168}{75934950}\right)^2$
		$\frac{966}{5934950} \times \left(\frac{168}{75934950}\right)^2$
¹ 6889 12637 ×		
¹ <u>6889</u> ×	$\left(\frac{924}{78239910} \times \left(\frac{924}{78239910}\right)^2 - \frac{2}{12637} \times \frac{5748}{7}\right)^2$	
¹ <u>6889</u> ×	$\left(\frac{924}{78239910} \times \left(\frac{924}{78239910}\right)^2 - \frac{2}{12637} \times \frac{5748}{7}\right)^2$	
¹ <u>6889</u> ×	$\frac{924}{78239910} \times \left(\frac{924}{78239910}\right)^2 \qquad \frac{2}{12637} \times \frac{5748}{7}$	

	0 .	<i>,</i>			nan Doyle's short sto	
			u46 tokens and ams and bigram		abulary of 15339 uniq	ue words. We have the
lear	sherlock	holmes	dear holmes	holmes dear	sherlock holmes	holmes sherlock
lear						

P(sherlock)	P(sherlock holmes)
1	2
Correct answers:	
$1 \frac{210}{384046}$ 2 $\frac{0}{1492}$	
A2.2	
Estimate the following probabiliti vith fractions.	es using maximum likelihood estimation with add- k smoothing, $k=rac{1}{4}$. Answer
P(sherlock)	P(holmes sherlock)
1	2
Correct answers:	
Correct answers: $1 \frac{210+\frac{1}{4}}{384046+\frac{1}{4} \times 15339}$ 2	$\frac{195 + \frac{1}{4}}{210 + \frac{1}{4} \times 15339}$
$\frac{1}{384046 + \frac{1}{4} \times 15339} = 2$	$\frac{195 + \frac{1}{4}}{210 + \frac{1}{4} \times 15339}$
$\frac{1}{\frac{210+\frac{1}{4}}{384046+\frac{1}{4}\times15339}} = 2$	$\frac{195 + \frac{1}{4}}{210 + \frac{1}{4} \times 15339}$ ram model with the following probabilities:
$1 \frac{210+\frac{1}{4}}{384046+\frac{1}{4}\times15339} $ A2.3 Suppose you have trained a unig	ram model with the following probabilities:
$1 \frac{210 + \frac{1}{4}}{384046 + \frac{1}{4} \times 15339} = 2$ A2.3 Suppose you have trained a unig $P(\text{foo}) = \frac{1}{2} = P(\text{bar}) = \frac{1}{4}$	ram model with the following probabilities:
$1 \frac{210+\frac{1}{4}}{384046+\frac{1}{4}\times15339} = 2$ A2.3 Suppose you have trained a unigpose you have trained a unigpo	ram model with the following probabilities: $P\left(ext{baz} ight)=rac{1}{8}$
$1 \frac{210+\frac{1}{4}}{384046+\frac{1}{4}\times15339} = 2$ A2.3 Suppose you have trained a unig $P(\text{foo}) = \frac{1}{2} P(\text{bar}) = \frac{1}{4}$ What is the entropy of your unigr	ram model with the following probabilities: $P\left(ext{baz} ight)=rac{1}{8}$
$1 \frac{210 + \frac{1}{4}}{384046 + \frac{1}{4} \times 15339} = 2$ A2.3 Suppose you have trained a unig $P(foo) = \frac{1}{2} P(bar) = \frac{1}{4}$ What is the entropy of your unigr tion bar bar baz Answer with a single number. To help you, here are some base	ram model with the following probabilities: $P(\text{baz}) = \frac{1}{8}$ am model on the following test sentence? -2 logarithms:
$1 \frac{210+\frac{1}{4}}{384046+\frac{1}{4}\times15339} = 2$ A2.3 Suppose you have trained a unique of the entropy of your unique of the en	ram model with the following probabilities: $P (baz) = \frac{1}{8}$ am model on the following test sentence? -2 logarithms: $\log_2 \frac{1}{4} = -2 \log_2 \frac{1}{8} = -3 \log_2 \frac{1}{16} = -4 \log_2 \frac{1}{32} = -5 \log_2 \frac{1}{64} = -6$
$1 \frac{210+\frac{1}{4}}{384046+\frac{1}{4}\times15339} 2$ A2.3 Suppose you have trained a unig $P(\text{foo}) = \frac{1}{2} P(\text{bar}) = \frac{1}{4}$ What is the entropy of your unigr foo bar bar baz Answer with a single number. To help you, here are some base $\log_2 \frac{1}{1} = 0 \log_2 \frac{1}{2} = -1$ lo	ram model with the following probabilities: $P (baz) = \frac{1}{8}$ am model on the following test sentence? -2 logarithms: $\log_2 \frac{1}{4} = -2 \log_2 \frac{1}{8} = -3 \log_2 \frac{1}{16} = -4 \log_2 \frac{1}{32} = -5 \log_2 \frac{1}{64} = -6$
$1 \frac{210+\frac{1}{4}}{384046+\frac{1}{4}\times15339} 2$ A2.3 Suppose you have trained a unigpoint of the entropy of your unigned by th	ram model with the following probabilities: $P (baz) = \frac{1}{8}$ am model on the following test sentence? -2 logarithms: $\log_2 \frac{1}{4} = -2 \log_2 \frac{1}{8} = -3 \log_2 \frac{1}{16} = -4 \log_2 \frac{1}{32} = -5 \log_2 \frac{1}{64} = -6$

A3.1

The evaluation of a part-of-speech tagger produced the confusion matrix shown below. The marked cell contains the number of times the tagger tagged a word as an adjective (ADJ) whereas the gold standard specified it as a determiner (DET).

	ADJ	DET	NOUN	VERB
ADJ	1475	0	221	31
DET	5	1835	3	0
NOUN	45	5	3887	167
VERB	28	1	387	2135

What is the F1-score with respect to nouns? Answer with a fraction.

Correct answers:

 $2 \times \frac{3887}{221+3+3887+387} \times \frac{45+5}{45+5}$

A3.2

The following matrices specify (parts of) a hidden Markov model. The marked cell specifies the probability for the transition from BOS to AB.

VB

 $\frac{1}{11}$

 $\frac{1}{10}$

EOS

 $\frac{1}{25}$

 $\frac{1}{14}$

Transition probabilities				
	AB	PN	PP	
BOS	$\frac{1}{11}$	$\frac{1}{10}$	$\frac{1}{12}$	
AB	$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$	
PN	1	1	$\frac{1}{12}$	

PN	$\frac{1}{11}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{10}$	$\frac{1}{16}$
PP	$\frac{1}{13}$	$\frac{1}{11}$	$\frac{1}{12}$	$\frac{1}{14}$	$\frac{1}{18}$
VB	$\frac{1}{11}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{13}$	$\frac{1}{15}$

Emission probabilities

	she	got	ир	
AB	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{14}$	
PN	$\frac{1}{13}$	$\frac{1}{25}$	$\frac{1}{25}$	
PP	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{13}$	
VB	$\frac{1}{25}$	$\frac{1}{14}$	$\frac{1}{19}$	

Under this model, what is the probability of the following tagged sentence? Answer with an expression.

she got up PN VB AB

1

Correct answers:

 $1 \quad \frac{1}{10} \times \frac{1}{13} \times \frac{1}{10} \times \frac{1}{14} \times \frac{1}{11} \times \frac{1}{14} \times \frac{1}{14}$

A3.3

Consider a part-of-speech tagger based on the multi-class perceptron with a feature window containing the following features:

- 1. tag of the previous word
- 2. current word
- 3. next word

The following table shows the values of these features when tagging the sentence

I want to live in peace

Complete the missing values. If a feature value is not defined, use the 'undefined' card.

eature 1	feature 2	feature 3	predicted tag
1	2	3	PRON
4	5	6	VERB
7	8	9	PART
10	11	12	VERB
13	14	15	ADP
16	17	18	I NOUN
	want :: to ::	live :: in :: peace	: PRON : VERB
	: PART :	ADP :: NOUN :: und	defined
orrect answe	rs:		
undefined	2 I 3 want	4 PRON 5 want 6	to 7 VERB
to 9 I	ive 10 PART 11	live 12 in 13 VERB	14 in 15 peace

A4.1	
Here are all NP-rules and all VP-rules from a ractions.	a certain probabilistic context-free grammar. Complete the missing

$P \rightarrow VB NP$						ę	4 <u>9</u>					
							2		<u>]</u>			
$P \rightarrow VB NP P$	P					<u>8</u>	<u>8</u> 9					
Correct answers	:											
$1 \frac{2}{9} 2 \frac{1}{9}$												
4.2												
re is a small phrase		ebank:										
Q	P	_		P	,			F)		-	Q
A R	Q	R	(2	R	~	F	2	R		R	C I
a B C		1 1	A	B	A .	B	A	T	B A		I	B c
b c	a b	a b	а	Ь	a	Ь	а	b	b a		а	b
	:											
Correct answers $ \begin{bmatrix} \frac{1}{3} \times \frac{4}{6} \times \frac{1}{6} \\ \hline 4.3 $ he following transition		creates a d	epender	ncy tr	ee for	a six-w	ord ser	ntenc	ve:			
$\frac{1}{3} \times \frac{4}{6} \times \frac{1}{6}$ A4.3 The following transition If SH SH LA SH SH	n sequence o	LA RA					ord ser	ntenc	e:			
$\frac{1}{3} \times \frac{4}{6} \times \frac{1}{6}$ A4.3 A 4.3 A 4.3	n sequence of SH LA RA	LA RA	ie same	depe	ndend	cy tree.	= 3 (_		7		
$\frac{1}{3} \times \frac{4}{6} \times \frac{1}{6}$ 4.3 The following transition H SH SH LA SH SH tate an alternative transition $\frac{1}{3} = \frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac$	n sequence (SH LA RA insition sequ	LA RA ence for th 3 	e same	depe	ndend	cy tree.	6	_		7		
$\frac{1}{3} \times \frac{4}{6} \times \frac{1}{6}$	n sequence of SH LA RA	LA RA ence for th 3 	e same	depe	ndeno		6	_		7		
$\begin{bmatrix} \frac{1}{3} \times \frac{4}{6} \times \frac{1}{6} \\ 4.3 \end{bmatrix}$ The following transition at the shift of t	n sequence of SH LA RA	LA RA ence for th 3 	e same	depe	ndeno		6	_		7		

Sektion	6	
Sektion	υ	

A5.1
For each of the following pairs of sentences, what is the semantic relation between the emphasized words?
A: The lake was calm, creating a peaceful atmosphere.
B: During the exam, the students were quiet , trying to focus on their answers.
Semantic relation: 1
A: Tracy is always cheerful .
B: John's recent breakup with Tracy has left him feeling gloomy and depressed.
Semantic relation: 2
A: She regretted squeezing her feet into heels the morning after the party.
B: It is important to wear the right kind of footwear when hiking in the mountains.
Semantic relation: 3
A: He deposited his paycheck at the bank .
B: Our bank was housed in a 19th-century building in the Old Town.
Semantic relation: 4
Correct answers:
1 synonymy 2 antonymy 3 hyponymy 4 polysemy
A5.2
Here are six synsets from WordNet:
1. preschool 2. educational institution
 central bank university
5. institution, establishment
 financial institution Arrange these synsets into a hierarchy as in WordNet. Based on this hierarchy, what is the path-length similarity
between preschool and central bank ? Answer with a fraction.
1
Correct answers:
$1 \frac{1}{1+4}$

AD.3

We read off word vectors from the following co-occurrence matrix (target words correspond to rows, context words correspond to columns):

	caws	dafad	
cheese	6	2	
sheep	0	4	
goat	1	6	
bread	5	0	

Order the four target words in increasing degree of semantic similarity to the word **bread** (least similar at the top, most similar at the bottom). Assume that semantic similarity is measured in terms of cosine similarity between word vectors.

≡ sheep)
1	Correct answer: sheep
≡ goat	
2	Correct answer: goat
≡ chees	e
3	Correct answer: cheese
≡ bread	
4	Correct answer: bread

B1.2

Compute the Levenshtein distance between the two words **fiction** and **fashion** using the Wagner–Fischer algorithm. Complete the matrix and state the distance.

n							
	1	2	3	4	5	6	7
0	9	10	11	12	13	14	15
i	17	18	19	20	21	22	23
t	25	26	27	28	29	30	31
с	33	34	35	36	37	38	39
i	41	42	43	44	45	46	47
f	49	50	51	52	53	54	55
#	57	58	59	60	61	62	63
	#	f	а	S	h	i	0

The Levenshtein distance is: 65

Correct answers:

1	7	2	6	3	6	4	6	5	6	6	5	7	4	8	3	9	6	10	5
11	5	12	5	13	5	14	4	15	3	16	4	17	5	18	4	19	4	20	4
21	4	22	3	23	4	24	5	25	4	26	3	27	3	28	3	29	3	30	4
31	5	32	5	33	3	34	2	35	2	36	2	37	3	38	4	39	4	40	5
41	2	42	1	43	1	44	2	45	3	46	3	47	4	48	5	49	1	50	0
51	1	52	2	53	3	54	4	55	5	56	6	57	0	58	1	59	2	60	3
61	4	62	5	63	6	64	7	65	3										

B1.3

A **subsequence** of a given word is a sequence of characters from that word. The characters must come in the same order as in the original word, but they do not need to be consecutive. For example, the following sequences are subsequences of the word *fiction: fi, on, fion.* On the other hand, these are not subsequences of *fiction: ac, if, noi.* A **longest common subsequence (LCS)** is the longest subsequence common to two words. For example, the LCS of the words *fiction* and *instruction* is *iction.*

Edit distance and LCS are closely related. To see this, note every word can be transformed into every other word via their LCS:

- 1. Delete all characters in the first word that are not part of the LCS.
- 2. Insert all characters of the second word that are not parts of the LCS.

For example (LCS in bold):

 $\textit{fiction} \rightarrow \textit{iction} \rightarrow \textit{instruction}$

Based on this observation, explain how a simplified version of the Wagner–Fisher algorithm can be used to compute the <u>length</u> of the LCS of two words.

0 / 500 Word Limit

Sektion 8

Viterbi algorithm

You only need to work on this item if you are aiming for a higher grade than Pass.

B2.1

Here is a Hidden Markov model specified in terms of costs (negative log probabilities).

Transition costs

The topmost, leftmost number is the transition cost from BOS to ADP.

	ADP	ADV	PRON	VERB	EOS
BOS	14	14	12	14	27
ADP	15	15	13	16	21
ADV	13	13	13	13	17
PRON	14	14	15	12	18
VERB	13	14	13	15	17

Emission costs

	she	got	up
ADP	28	28	15
ADV	27	27	16
PRON	16	28	28
VERB	28	16	21

When using the Viterbi algorithm to calculate the least expensive (most probable) tag sequence for the sentence 'she got up', one gets the matrix below. Fill in the missing values.

		she	got	ир	
BOS	0				
ADP		42	70	1	
ADV		41	69	2	
PRON		28	71	3	
VERB		42	56	4	
EOS					5

Correct answers:

1 84 2 86 3 97 4 92 5 103

B2.2

The mark is denote the number of tags in the HMM and the number of words in the input sentence, respectively, to following statements hold:
Is the number of tagged sentences grows exponentially with the sentence length. More specifically, that number is m².
Is the time that the Viterbi algorithm needs to find the best tag sequence is polynomial. More specifically, that number is in O(m²n).
State what these statements mean and argue why they hold.
Is the set set temest mean and argue why they hold.
D / 500 Word Limit

Sektion 9

You only need to work on this item if you are aiming for a higher grade than Pass. Here is a fragment of a probabilistic context-free grammar (PCFG). It is specified here in terms of costs (negative log probabilities) instead of regular probabilities:	
$S \to NP \; VP$	1
$NP \rightarrow Det N$	5
$VP \rightarrow V NP$	7
$V \rightarrow includes$	13
Det o a	4
Det \rightarrow the	4
$N \rightarrow flight$	17
$N \rightarrow meal$	20

We will use this grammar to parse the following sentence:

the flight includes a meal

B3.1

State the problem solved by the probabilistic extension of the CKY algorithm when applied to this grammar. Your statement should be detailed and understandable even to readers who have not taken this course. 0 / 500 Word Limit B3.2 The CKY algorithm assumes the input PCFG to be in Chomsky normal form. Explain what this restriction means, and provide an example of a grammar that does not satisfy this restriction. 0 / 500 Word Limit B3.3 Provide the full probabilistic CKY chart for the example sentence. Note that instead of multiplying probabilities, you should now add the corresponding costs. The other operations of the CKY algorithm remain unchanged. the flight includes meal а [0, 3] [0, 1] [0, 2] [0, 4] [0, 5] Det 1 **NP** 2 **S** 3 [1, 3] [1, 4] [1, 5] [1, 2] N 4 [2, 4] [2, 3] [2, 5] **V** 5 **VP** 6 [3, 4] [3, 5] Det 7 NP ⁸ [4, 5] N 9 Correct answers: 2 3 76 5 13 6 49 7 8 9 20 4 26 4 17 Δ 29