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A Neural Theory of Attentive Visual Search: Interactions of Boundary, 
Surface, Spatial, and Object Representations 

Stephen Grossberg, Ennio Mingolla, and William D. Ross 

Visual search data are given a unified quantitative explanation by a model of how spatial maps in the 
parietal cortex and object recognition categories in the inferotemporal cortex deploy attentional 
resources as they reciprocally interact with visual representations in the prestriate cortex, The model 
visual representations are organized into mUltiple boundary and surface representations, Visual 
search in the model is initiated by organizing mUltiple items that lie within a given boundary or 
surface representation into a candidate search grouping, These items are compared with object 
recognition categories to test for matches or mismatches. Mismatches can trigger deeper searches 
and recursive selection of new groupings until a target object is identified. The model provides an 
alternative to Feature Integration and Guided Search models. 

Section 1. Introduction: Attentive Spatial and Object 
Search of Three-Dimensional (3-D) Boundaries and 

Surfaces 

In recent psychophysical experiments on visual search (Na­
kayama & Silverman, 1986; Pashler, 1987; Treisman & Gelade, 
1980; Wolfe, Cave, & Franzel, 1989), a target item is predefined, 
either verbally or by visual exposure, and an observer is re­
quired to determine whether it is present in a scene that includes 
distractor items. Response times for scenes with various num­
bers of items can then be compared to determine whether 
search is accomplished by parallel processing of the entire vi­
sual field or by serial investigation of each item (Figure I). The 
alternatives of parallel processing and serial search among items 
or locations are not, however, exhaustive. Although discrete 
target and distractor items can be arbitrarily defined in the con­
struction of test scenes, it does not follow that each item will 
preattentively give rise. to a distinct perceptual object or region 
for further analysis. Typical laboratory-generated items (e.g., 
colored bars, Xs, and Os) bear little resemblance to the scenic 
objects that draw attention during naturally occurring tasks. 
Indeed, such items may occur as part of textures, in which they 
are grouped with other items into emergent perceptual objects 
(Figure 2), in accord with the suggestion that effortless texture 
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segregation and pop-out during visual search reflect the same 
underlying processes (Julesz, 1984). Wolfe (1992) has chal­
lenged the claim of unified processing by showing that certain 
juxtapositions of features in conjunctive items can support 
effortless texture segregation but not rapid visual search or, con­
versely, rapid search but not texture segregation. This article 
develops a neurally based computational model of how context­
sensitive emergent units, including textural groupings, are in­
tegrated into the search process. 

Growing experimental evidence supports the view that the 
perceptual units that engage visual attention during search are 
emergent units that are the outcome of considerable preatten­
tive visual processing rather than merely the outputs of early 
filters (Bravo & Blake, 1990; Enns & Rensink, 1990; He & Na­
kayama, 1992; Humphreys, Quinlan, & Riddoch, 1989). These 
processes include the formation of 3-D emergent boundary seg­
mentations that combine information about scenic edges, tex­
ture, shading, and depth, and the filling-in of surface represen­
tations that combine information about surface brightness, 
color, depth, and form. A neurally based theory of how such 
emergent boundary and surface representations are formed in 
striate and extrastriate cortex is called FACADE theory because 
it suggests how representations that combine Form-And-Color­
And-DEpth information are generated within the visual cortex 
(Grossberg, 1987a, 1987b, 1994; Grossberg & Mingolla, 1985, 
1987; Grossberg, Mingolla, & Todorovic, 1989; Grossberg & 
Todorovic, 1988). Our model follows up the observation in 
Grossberg (1987a) that 3-D boundary segmentation and sur­
face representations are the inputs to an attentive visual object 
recognition system with which they reciprocally interact during 
visual search. The present algorithm uses FACADE-like bound­
ary and surface representations as its "front end" and suggests 
how spatial attention mechanisms in the parietal cortex and ob­
ject recognition categories in the inferotemporal cortex may de­
ploy attentional resources to reciprocally interact with 3-D 
boundary and surface representations in the prestriate visual 
cortex. These interactions can modulate and reorganize percep­
tual units after they are preattentively formed. We suggest, 
therefore, that mechanisms of preattentive boundary segmen­
tation and surface filling-in, including preattentive mechanisms 
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Figure 1. Search scenes: (a) The target (black Xl is distinguishable by 
a single feature (the form X). Response time is fast and does not vary 

\ with the number of distractor items. (b) The target is distinguishable 
only by the conjunction of two features (the form X and the color black). 

of figure-ground pop-out, help to define the perceptual units 
that attentive spatial and object recognition mechanisms can 
further modulate and reorganize during visual search. 

This interaction may be modeled as an attentively organized 
search that may be recursively applied to emergent groupings 
that may contain multiple items. For targets defined by a con­
junction of color and form (Figure I b), search could proceed as 
a two-step recursive process (Figure 3). Initially, a multi-item 
grouping defined by a single target feature, such as color, would 
be separated in parallel from the rest of the scene. Next, spatial 
registration of the other target feature within that multi-item 
candidate grouping would guide target search. For appropriate 
parameter ranges, this two-step recursive process would yield 
fast search times that within an item = object paradigm would 
be interpreted as evidence for simultaneous or parallel process­
ing of feature conjunctions. Our theory thereby seeks to explain 
how seemingly minor experimental manipulations, such as 
variations in item spacing, can differentially modulate identical 
underlying processes in a manner that makes those processes 
appear at times serial and at times parallel. 

Section 2. A Review of Psychophysical Studies and 
Models of Visual Search 

If search were to be conducted by retinotopic sets of special­
ized object detectors, a different detector for every ecological 
object in each possible visual position would be required. Given 
the many thousands of objects that one encounters daily, this 
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Figure 2. Whereas search items can be arbitrarily defined, camou­
flaged, and partially occluded, environmental objects automatically 
yield multi-item perceptual segmentations. 
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Figure 3. Illustration of search by recursive grouping: (a) Initiall y, a 
region of target color that includes many items is separated as a candi­
date region for target presence. (b) Next, this region is searched for target 
form. Thus, fast search times can be achieved without parallel process­
ing of feature conjunctions. 

arrangement would result in a paralyzing combinatorial explo­
sion (Tsotsos, 1990). It is fortunate that ecological objects can 
be distinguished on the basis of variation in a much smaller set 
of boundary and surface properties. There is now accumulating 
experimental evidence concerning how such properties are rep­
resented by the visual cortex in interactive, retinotopic neural 
maps (DeYoe & van Essen, 1988). Over the past several decades, 
much research concerning visual search has also been devoted 
to discovering how these visual representations interact with the 
attentive processes whereby they are detected and bound into 
visual objects. This section reviews and evaluates key data and 
hypotheses about how this process may occur. 

Parallel Search/or Stimulus Features 

Early psychophysical experiments using tachistoscope dis­
plays established that in a field of simple items (e.g. , oriented 
lines, CUf,ves, Xs, or Os, ofj arious colors) a disjunctive target, 
distinguished from distraetors by a single stimulus feature (e.g. , 
orientation or color), could be detected by parallel processing of 
the scene (Treisman & Gelade, 1980). That is, regardless of the 
number of distractors, a correct decision on whether the target 
is present in the scene can be made in approximately the same 
amount of time (Figure la). By contrast, it was found that a 
target distinguished only by a conjunction of certain features 
demands an effortful search for which detection time increases 
linearly with the number of distractors (Figure 1 b). With in­
creases in the number of distractors, the average amount of time 
needed to recognize the absence of a target increases at twice 
the rate as the average amount of time needed to recognize the 
presence of a target. This would occur if a serial search took 
place because, on average, the presence of a target is detected 
after investigation of about half of the items in the display, 
whereas certainty of absence requires investigation of all the 
items. 

These early results suggested that search could at times be . 
accomplished by parallel registration of elementary stimulus 
features. If parallel registration failed to discern the target, 
search could proceed by a serial process that links or binds fea­
ture conjunctions for recognition. This rule was embodied in 
the original version of a theory of visual search called Feature 
Integration Theory (Treisman & Gelade, 1980). This theory 
predicts serial search for conjunctive targets and paraliel search 
for disjunctive targets. 
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Parallel Conjunctive Search 

The paradigms used in early studies involved simple form­
color items. Later work showed that targets distinguishable by 
the conjunction of depth (binocular disparity) and color or 
depth and motion (Nakayama & Silverman, 1986) and even 
motion and color could be detected at a rate independent of the 
number of distractors. One hypothesis offered by Nakayama 
and Silverman was that when a particular depth plane can be 
segregated from the rest of a scene it can be quickly searched for 
the presence of another feature. These findings contradict the 
conclusion that fast search can only be conducted for features. 

The results of Wolfe et ai. (1989) directly challenged the in­
terpretation of early findings concerning parallel versus serial 
search. They reported that searches for form-color conjunctive 
targets can occur in parallel provided that feature salience is 
great enough. By using cathode ray tube (CRT) displays, they 
showed that whereas at low color contrasts a red vertical bar 
among red horizontals and green verticals cannot be found by 
parallel processing, an increase in item-item and item-back­
ground color contrasts in otherwise identical scenes can result 
in a seemingly parallel search. They in fact reported a contin­
uum of flat to steep slopes resulting from varying saliency fac­
tors (Wolfe et aI., 1989). This work led to the hypothesis that 
parallel conjunctive search is a normal capability that is hin­
dered by a low signal-to-noise ratio. 

Wolfe et aI.'s (1989) hypothesis is designed to address "a cu­
rious characteristic of the standard feature integration model 
[which] is that the model holds that the parallel and serial pro­
cesses are autonomous. The serial process cannot use informa­
tion collected by the parallel process" (Wolfe et aI., 1989, p. 
427). They suggested that if feature saliency is strong enough, 
parallel processes can distinguish regions of a scene worth 
searching and pass that information on to the serial search 
mechanism. In a conjunctive search, the intersection of 
multiple regions, each distinguished by a different target fea­
ture, could unambiguously specify the target as the item most 
worth searching. This model has been named Guided Search 
because it postulates that information from two or more retino­
topically registered feature dimensions is combined to guide 
item selection. This hypothesis is supported by data on search 
for triple conjunctive targets that differ from each distractor in 
two out of three features. Search times in these scenes increase 
more gradually with the number of distractors than search 
times in simple conjunctive scenes. 

Revising Feature Integration Theory 

In response to recent data and the Guided Search model, 
Treisman and Sato (1990) have proposed an updated feature 
integration hypothesis. Specifically, they have introduced a fea­
ture inhibition mechanism by which the simultaneous inhibi­
tion of all distractor features can yield fast conjunctive searches. 
This version of the theory is similar to Guided Search, except 
that inhibition of nontarget features rather than activation of 
target features is the mechanism by which item locations are 
rated. 

Both Guided Search and the revised Feature Integration the­
ories must account for the serial searches seen in the multitude 
of early experiments as the failure of the parallel conjunctive 

search mechanisms because of a low signal-to-noise ratio. How­
ever, the early physical stimuli that consisted of tachistoscopi­
cally displayed painted scene cards represent more ecologically 
realistic stimuli than do CRT displays. Phosphor displays emit 
rather than reflect light and therefore they do not support an 
unambiguous surface interpretation. Moreover, they can be 
used to generate scenes of bright saturated colors that exceed 
the surface color contrast ranges typically seen on reflecting en­
vironmental surfaces (Arend, 1991). It is possible that the in­
creases in stimulus saliency by the use of CRT displays may re­
sult in qualitative changes in the organization of the perceptual 
scene that are best explained by a theory concerned with how 
grouping processes organize a visual search. 

The possibility that feature integration could be augmented 
by grouping processes was noted by Treisman (1982, 1985). 
Treisman and Sato (1990) further discussed the possibility that 
conjunctive searches could be facilitated by the segregation of 
scenes into item groupings based on a single target feature. They 
suggested that these groups could then be treated as units, re­
ducing the number of investigations required to determine 
target presence. Subjects are often aware of global shapes com­
posed by items sharing a single feature. In Treisman and Sato's 
Experiment 1, subjects were, on some blocks of trials, asked to 
search for a target and, on some other blocks of trials using the 
same stimuli, asked to match the shape of multi-item regions 
formed by similarity on some featural dimension to luminance­
defined standards. A strong positive correlation (.92) was found 
between reaction time for same/different judgments on the 
shape-matching task and time for conjunctive search (Figure 4). 
The shape task is evidently mediated by grouping mechanisms. 
Treisman and Sato (1990) concluded that there must be "some 
shared factor determining the efficiency of segregation and 
global matching and the speed of search for a conjunctive 
target" (p. 464). They did not, however, specify how the segre­
gation of multi-item groupings might be quantified and integ­
rated into the original theory. Instead, they focused on the fea­
ture inhibition hypothesis, citing data that suggested additivity 
offeature effects. An explanation of these data as a consequence 

(b) 

Figure 4. Thin lines stand for red and thick for green; the target is a 
green line sloping down from left to right. In separate trials, Treisman 
and Sato (1990) asked subjects to determine match or mismatch of the 
shape defined by, for example, green items in (a) with a luminance ~e­
fined shape such as the L of (b). Subjects matched global shapes WIth 
errors of6% or less. They found a strong correlation (.92) between ease 
of segregation and global matching and the speed of conjunctive search 
and concluded that some shared factor determines the ease of segrega­
tion and conjunctive search. From "Conjunction Search Revisited" by 
A. Treisman and S. Sato, 1990, Journal of Experimental Psychology: 
Human Perception and Performance. 16. p. 463. Copyright 1990 by the 
American Psychological Association. Adapted by permission of the au­
thors. 
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rather than a contradiction of the interaction of grouping and 
search are addressed in a subsequent section of this article. 

Another theory that includes a provision for the effects of 
grouping on search is that of Bundesen (1990). The provisions 
are ancillary, however, rather than fundamental, to a theory that 
is primarily a computational analysis of constraints on filtering 
and categorization of item featural dimensions. Because the 
Bundesen (1990) model includes a provision that "groups [of 
items] compete for attention on a par with those individuals 
that make up the groups" (p. 536), and search efficiency is 
affected by group or item saliency, the theory can account for 
data such as those of Mordkoff, Yantis, and Egeth (1990), in 
which the minimal response time in conjunctive scenes with 
two targets is faster than of scenes with one target. Our theory's 
analysis of the Mordkoff et ai. (1990) data appears later in this 
article. Bundesen (1990) also assumed, however, that "by being 
embedded in a group, an individual suffers a general loss in eta 
values" (p. 536), where "1/(x,i) is the strength of the sensory ev­
idence that element x belong to category i" (p. 524). The as­
sumption is opposite in effect to what we argue is the conse­
quence of grouping of target and nontarget items. 

Duncan and Humphreys (1989) have presented a theory of 
visual search based on grouping that is much closer in spirit 
than the Bundesen (1990) model is to our own. Their theory 
includes an elegant analysis of how similarity and disimilarity 
of targets and nontargets affects response times in visual search. 
Perceptual grouping can speed up rejection of clusters of non­
targets by "spreading suppression," a process which is related 
to, though mechanistically and functionally distinct from, our 
own analysis of grouping effects. In addition, as with Bunde­
sen's theory, a key divergence of the Duncan and Humphreys 
model from our own concerns the treatment of groups contain­
ing both target and distractor items. Although they argue that 
"selection will be enhanced by . . . decreasing grouping be­
tween target and nontarget" (p. 450), our own approach admits 
for either facilitation or interference with efficient search 
through such groupings. Although similarity of targets and dis­
tractors across all feature dimensions can act to camouflage a 
target, a grouping of, for example, a single target with several 
distractors by their value on one featural dimension (e.g., color) 
may be immediately reorganized into two subgroups on an­
other, sufficiently salient dimension (e.g., orientation). One of 
the subgroups will then contain only distractors, which can 
thereby be rapidly rejected, and the other subgroup will contain 
only the singleton target. 

Multi-Item Grouping in Search 

Results of many recent experiments support the hypothesis 
that multi-item boundary and surface representations influence 
visual search. Humphreys et aI. (1989) used Ts among upside­
down Ts, and reported that search was greatly facilitated when 
the items were arranged to form a coherent global shape (Figure 
5). They concluded that when multiple items can be organized 
into a familiar shape they can be treated as a whole. Otherwise, 
each item must be investigated separately. In the authors' 
words, "visual search cannot be understood independently of 
the processes mediating grouping and segmentation. The pro­
cesses that we bring to bear in simple search tasks seem predi-

(a) (b) 

Figure 5. Organizing items into coherent shapes (e.g., a ring) speeds 
search. Finding an inverted T in scenes such as (a) is faster than in scenes 
such as (b), with equal numbers of items. From "Grouping Processes in 
Visual Search: Effects With Single- and Combined-Feature Targets" by 
G. W. Humphreys, P. T. Quinlan, and M. J. Riddoch, 1989, Journal of 
Experimental Psychology: General. 118. p. 261. Copyright 1989 by the 
American Psychological Association. Adapted by permission of the au­
thors. 

cated on more general visual processes which are crucial for 
object recognition" (Humphreys et aI., 1989, p. 278). 

Bravo and Blake (1990) dissociated items from features by 
demonstrating that search for orientation defined by a group of 
items yielded fast times that were largely independent of the 
number of oriented groups (Figure 6). This experiment makes 
clear that perceptual features may be more complex than exper­
imenter-defined items; indeed,features may be better viewed as 
outputs rather than inputs of segmentation processes. Bravo 
and Blake (1990) quoted Neisser (1967) as follows: "[T]he units 
of preattentive vision are not local features but objects pro­
duced by perceptual grouping" (Bravo & Blake, 1990, p. 522). 

Parallel Search for Surface Properties 

More recent research has suggested that parallel processing 
can accomplish search for more than just elementary stimulus 
features. Enns and Rensink (1990) reported that parallel search 
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Figure 6. Parallel searches can occur for features defined by multi­
item segmentations (i.e., diagonally oriented regions of vertical line seg­
ments). Bravo and Blake (1990) argued that perceptual groupings, not 
local features, are the units of preattentive vision. From "Preattentive 
Vision and Perceptual Groups" by M. Bravo and R. Blake, 1990, Per­
ception. 19. p. 517, Figure I a. Copyright 1990 by Pion Limited, Lon­
don. Adapted by permission. 
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(a) (b) 

Figllre 7. The perception of scene-based properties like direction-of­
lighting or surface color can guide search. In (a) the cube whose darkest 
face is on top " pops out," though the control in (b) does not. Search is 
efficiep.twnen items (polygons) can be organized into multi-item objects 
of alighted sct:ne. From " Influence of Scene-Based Properties on Visual 
Search" by 1. T. 'Enns and R. A. Rensink, 1990, Science, 247, p, 722. 
C;opyright 1990 by the American Association for the Advancement of 
Science. Adapted by permission. 

can be conducted on the basis of properties such as surface 
color. Using 3-D shapes for items, they demonstrated that fast 
search for surface properties can result from the perception of 
direction of scenic lighting (Figure 7). Ramachandran (1988) 
has shown that the emergent perceptual organization of depth 
(disparity) that may take seconds to develop can form the basis 
for fast search for targets of a particular depth . Even more in­
dicative of the importance of surface properties are recent stud­
ies indicating that shape from shading or shadows can form the 
basis for parallel search (Aks & Enns, 1992; Kleffner & Rama­
chandran, 1992). These new data suggest that parallel detection 
may operate at multiple levels of the perceptual hierarchy. Al­
though elementary stimulus features may support fast search, 
so can surface properties, such as surface color, shading, shad­
ows, or depth. 

He and Nakayama (1992) have shown how 3-D surface prop­
erties involved in figure-ground se~n can influence 

-se~h. In their experiments, search was f~r, Ls among backward 
( Ls. The items were displayed stereoscopica~nd given relative 
d~pth by comparison to adjacent squares of contrasting color. If 
the items were displayed to appear in front of the squares, then 
search was relatively fast. If, instead, the items were displayed to 
appear behind the squares so that they could indicate occluded 
squares rather than Ls, search was difficult (Figure 8). The per­
ception of an array of occluded squares was immediate and 
hard to ignore. This experiment demonstrates that 3-D surface 

(a) (b) 

Figllre 8, Surface organization affects search speed. The forward 
white L is found more readily in (a) than in (b), where forward and 
backward Ls look like occluded squares. From "Surface Features in Vi­
sual Search" by Z. 1. He and K. Nakayama, 1992, Nature, 359, p. 231 . 
Copyright 1992 Macmillan Magazines Limited. Adapted by permis­
sion. 

representations and figure-ground separation properties input 
to the search process and are at least partially buffered against 
top-down influence. It is clear that search does not occur across 
scenic locations independent of grouping. Nor can the specifi­
cation of arbitrary target items be expected to define the emer­
gent surface organization. He and Nakayama (1992) concluded 
that "visual search has little or no access to the processing level 
of feature extraction but must have as an input a higher level 
process of surface representation" (p. 231). 

In contrast, both the Feature Integration model with feature 
inhibition and the Guided Search model assume that somehow 
the mechanisms of search compute high target likelihood in the 
intersection of the sets of items that are similar to the target 
along single featural dimensions. For these models, a source of 
error and therefore of steep slopes in plotting response time as a 
function of number of distractors is the high evaluation of items 
in the union rather than the intersection of these sets. It may be 
that candidate groupings can be ordered by such calculations. 
However, the data reviewed here show that items are not always 
separated before search. In fact, it is often when items easily 
form multi-item groupings that search is easiest. 

Parallel Recognition 

Revised Feature Integration Theory (Treisman & Sato, 1990) 
and Guided Search and Guided Search 2.0 (Wolfe, in press; 
Wolfe, et aI. , 1989) explain search as the result of the interaction 
of parallel and serial mechanisms. In both models, conjunctive 
recognition can only operate on retinotopic input from the fea­
ture and property arrays at single-item locations. Thus, al­
though the models differ in their parallel mechanisms, they 
share the property that the problem of binding together infor­
mation from multiple featural dimensions is solved by a serial 
mechanism. 

Another line of research has pursued the hypothesis that un­
der restricted conditions binding can be accomplished for 
multiple items at the same time. Several researchers have pro­
posed that all visual searches are parallel but that there is a lim­
ited parallel processing capacity that is easily exceeded in scenes 
with many items. Pashler (1987) has proposed that parallel 
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Figure 9, The fastest search times for sparse scenes containing two 
targets (e.g., bold X) in (a) are faster than for scenes with a single target, 
as in (b), violating.any model postulating a serial search among items. 
This suggests that multi-item grouping controls recursive search. From 
" Dividing Attention Between Color and Shape: Evidence of Coactiva­
tion" by 1. T. Mordkoffand S. Yantis, 1J993, Perception and Psychophys· 
ics, 53, p. 361. Copyright 1993 by the Psychonomic Society, Inc. 
Adapted by permission, 
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binding of form and color has a maximum capacity of eight 
items. 

This observation finds support in recent research showing 
that in six-element displays of colored Xs, Os, and Is, the fa~t 
response to scenes including multipk: targ!$ (e.-g., two reid XS 
instead of one) is faster than the fastest response to scenes in­
cluding single targets (Figure 9; Mordkoff et aI., 1990). Tnese 
data are a striking contradiction of the serial binding hypothe­
sis, which predicts that the fastest responses to scenes should 
not vary with the number of targets. That is, whereas a serial 
search among items would yield a greater number offast search 
times for double-target scenes, as opposed to single-item scenes, 
the fastest search times for each scene type would be expected 
to be equivalent because the fastest possible response would cor­
respond to felicitously choosing a target item first, regardless of 
whether one or two targets appeared. The results suggest, in­
stead, that multiple items are evaluated simultaneously and that 
greater evidence for target presence is combined across items, 
supporting faster recognition. 

Further support for the simultaneous evaluation of multiple 
items comes from recent data on monkey visual search (Che­
lazzi, Miller, Duncan, & Desimone, 1993). Monkeys were pre­
sented with scenes including a randomly located target shape 
and up to four distractor shapes. They were rewarded for fo­
veating the target shape. During the task, inferotemporal (IT) 
cells that had previously been found to respond selectively to the 
target or to the distractor shapes were continuously monitored. 
Initially, IT cells responsive to both target and distractor shapes 
fired as if a multi-item group was being attended. Just before a 
saccade to the target item, the firing rate for the IT cells selec­
tively responsive to the distractor shape decreased to the base­
line level. These data are inconsistent with theories that require 
serial deployment of attention across items. Instead, they sug­
gest that search occurs by a recursive narrowing of attention 
within multi-item groups. 

In other research, conjunctive searches have been found to be 
easier in scenes of well-separated items than in scenes in which 
items are clumped together (Cohen & Ivry, 1991). These au­
thors hypothesized that coarse location binding can occur in 
parallel across a scene. However, as we show quantitatively, the 
distance between scenic items can be an important factor in­
fluencing the spatial segregation of item groups for reasons 
other than resolution. This occurs, for example, when segmen­
tation processes generate qualitatively different groupings, or 
different numbers of groups, as item spacing is varied. 

Section 3. What Are the Perceptual Units of Search? 

We claim that multi-item boundary and surface groupings 
not only influence visual search but are, in fact, the perceptual 
representations on which the search process is based. In certain 
experimental paradigms, single experimenter-defined items 
may be the only functional "groups." More generally, however, 
the identification of a grouping that includes multiple items 
speeds search by reducing the total number of candidate visual 
regions (N) that have to be serially investigated. Factors that 
influence boundary and surface grouping-such as featural 
contrasts, item spacing, and spatial arrangement-alter N, 
yielding variations in search time. 

Our argument has until now emphasized the usefulness of the 

multi-item grouping hypothesis in giving unified explanation 
to a wide range of psychophysical search data. However, this 
hypothesis is also compatible with key functional demands that 
constrained the evolution and development ofthe visual system. 
Even without the benefit of a priori knowledge, the visual sys­
tem must be able to segment ecological objects whose detection 
and recognition is necessary for survival. Segmentation mecha­
nisms must therefore be equipped to deal with the environmen­
tal objects and scenic conditions that are typically encountered 
(Figure 2). Mottled surface coloration, natural animal camou­
flage, and partial object occlusion are all obstacles to the per­
ception of ecological objects because they result in featural dis­
continuities that do not signal object boundaries. Successful 
segmentation demands mechanisms that can group similar fea­
tural regions that are spatially separated and segregate whole 
areas including these regions. In experimental scenes, these 
same mechanisms may encourage the segmentation of regions 
that group together what the experimenter considers to be dis­
tinct items. Individual items may, in fact, often be treated as 
textures or surface groupings by a system that has evolved to 
understand naturally occurring scenes. 

Ifit is indeed true that bottom-up mechanisms drive the for­
mation of these emergent perceptual units, then limits must ex­
ist on the capacity of semantic or even visual definitions of 
target items to exert top-down influence over preattentive 
grouping mechanisms. The ability of bottom-up processing to 
accurately distinguish ecological objects depends on a certain 
amount of autonomy or resistance to top-down interference. 
Otherwise, expectations would routinely result in perceptual il­
lusions (Kanizsa & Luccio, 1987). We do not mean by these 
remarks to deny that perceptual grouping can be guided by top­
down processes (Grossberg & Mingolla, 1985; Yantis, 1992) but 
only to point out that some groupings emerge from the struc­
ture of scenic input without the help of top-down influences. 

Section 4. Attentive Interactions of Boundary and 
Surface Representations With Object 

and Spatial Representations 

Our model of visual search, specified computationally in Sec­
tion 5 and simulated to quantitatively explain search data in 
Section 6, is based on three types of neural network models that 
have been undergoing development for some time: models of 
3-D visual boundary and surface representation; models of at­
tentive category learning, recognition, priming, and memory 
search; and models of attentive spatial representation. Our 
search model shows how properties of these boundary, surface, 
object, and spatial processes can be incorporated into a compu­
tational algorithm that is capable of providing a unified quanti­
tative explanation of many experiments about visual search. 
The search model is specified algorithmically, rather than neu­
rally, because it has not yet been possible to define a neural ar­
chitecture that combines all these elements and their interac­
tions, which in vivo are spread across visual cortex, temporal 
cortex, and parietal cortex, in interaction with frontal cortex, 
among other structures. Our computational model describes 
the types of interactions among boundary, surface, object, and 
spatial representations that are capable of explaining many 
search data. The model hereby imposes additional design con­
straints on the ongoing development ofthe model neural archi-
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tecture. The predictive success of the model also provides addi­
tional evidence that 3-D boundary and surface representations 
that interact reciprocally with mutually interacting object and 
spatial representations are sufficient to explain search data. In 
this sense, visual search phenomena are reduced to an explora­
tion of how these four types of representations interact. 

Our proposal that 3-D boundary and surface representations, 
possibly multi-element ones, are the inputs to the visual search 
process has its theoretical basis in the FACADE theory of pre at­
tentive 3-D vision, whose mechanisms model how visual inputs 
to the eyes are transformed, by the time they reach extrastriate 
visual cortex, into emergent boundary segmentations and sur­
face representations that are capable of achieving figure­
ground separation of scenic data (Grossberg, 1987a, 1987b, 
1992, 1994; Grossberg & Mingolla, 1985, 1987; Grossberg & 
Todorovic, 1988). This conclusion is supported not only by a 
large number of perceptual experiments, many of them per­
formed after the corresponding FACADE predictions were pub­
lished, but also from a theoretical analysis of how such repre­
sentations, taken together, overcome various computational un­
certainties that could otherwise undermine the perceptual 
process. 

Within FACADE theory, a Static Boundary Contour System 
(BCS) models how the parvocellular cortical processing stream 
(LGN-Interblob-Interstripe-V 4) generates 3-D emergent 
boundary segmentations from combinations of edge, texture, 
shading, and stereo image data (Figure 10). A Feature Contour 
System (FCS) models how the parvocellular cortical processing 
stream (LGN-Blob-Thin Stripe-V 4) discounts the illuminant 
and fills-in surface properties of brightness, color, depth, and 
form within the boundary segmentations that are defined by 
the BCS. In our conception of visual search, the entire FACADE 
model forms the front end to the attentive search processes that 
are engaged during the visual object recognition process. In par­
ticular, the grouping properties that we have described so far in 
this article are among those that have been analyzed in the var­
ious articles on FACADE theory. Likewise, the object recogni­
tion and spatial localization properties that are used in our al­
gorithmic search model have previously been derived from neu­
ral models of these processes. Throughout this article, we often 
use the term grouping to denote either a multi-element BCS 
boundary segmentation or an FCS surface representation and 
reserve the latter, more specialized words for expressly BCS or 
FCS processes, respectively. 

The structure of FACADE preattentive boundary and surface 
representations clarifies how perceptual units are defined and 
manipulated during attentive visual research of static scenes. 
For example, properties of BCS-generated, emergent, multi­
item boundary segmentations help us to understand how the 
global shapes studied by Humphreys et al. (1989) facilitate 
search. Properties of the FCS surface representations clarify 
how 3-D surface shape can influence search in the Enns and 
Rensink (1990) study. These FCS surface representations sepa­
rate different combinations of color and depth into distinct 
slabs, or filling-in domains (Grossberg, 1987b, 1994). Such a 
slab organization helps to explain how unique conjunctions of 
color and depth are rapidly searched in the Nakayama and Sil­
verman (1986) study. The boundary and surface representa­
tions are, moreover, organized to facilitate figure-ground sepa­
ration and recognition of occluding and occluded objects 

LGN Magno 

Retina 

Figure 10. Schematic diagram of anatomical connections and neuro­
nal selectivities of early visual areas in the macaque monkey. LGN = 

lateral geniculate nucleus (parvocellularand magnocellular divisions). 
Divisions of visual areas V I and V2: blob = cytochrome oxidase blob 
regions; interblob = cytochrome oxidase-poor regions surrounding the 
blobs; 4B = lamina 4B; thin = thin (narrow) cytochrome oxidase strips; 
interstripe = cytochrome oxidase strips; V3 = visual area 3; V 4 = visual 
area(s) 4; MT = middle temporal area. Areas V2, V3, V 4, and MT have 
connections to other areas not explicitly represented here. Area V3 may 
also receive projections from V2 interstripes or thin stripes. Heavy lines 
indicate robust primary connections, and thin lines indicate weaker, 
more variable connections. Dotted lines represent observed connec­
tions that require additional verification. Icons: rainbow = tuned and/ 
or opponent wavelength selectivity (incidence at least 40%); angle sym­
bol = orientation selectivity (incidence at least 20%); spectacles = bin­
ocular disparity selectivity and/or strong binocular interactions (V2; in­
cidence at least 20%); arrow = direction of motion selectivity (incidence 
at least 20%). From «Concurrent Processing Streams in Monkey Visual 
Cortex" by E. A. DeYoe and D. van\Essen, 1988, Trends in Neurosci­
ence, II. p. 223. Copyright 1988 by Elsevier Trends Journals. Adapted 
by permission. 

(Grossberg, 1994), thereby helping to explain results of He and 
Nakayama (1992). 

As noted earlier, two types of attentive processes are hypoth­
esized to interact with preattentive boundary and surface rep­
resentations during visual search of a static scene (Figure 11). 
One process explicates concepts of object attention (Duncan, 
1984), and the other process explicates concepts of spatial at­
tention (Posner, 1980). In neurobiological terms, these pro­
cesses model part of the "What" cortical processing stream for 
object learning, categorization, and recognition, and the 
"Where" cortical processing stream for spatial localization and 
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Figure 11. The reciprocal interactions of the Object Recognition Sys­
tem (ORS) with the Boundary Contour System (BCS) and the Feature 
Contour System (FCS) are supplemented by reciprocal interactions 
with an attentive Spatial Map. These object-based and spatial-based in­
teractions are used to coordinate attentive object recognition, spatial 
orientation, and visual search. Expressed somewhat more technically, 
the Static BCS and FCS (which models aspects of the parvocellular cor­
tical processing streams) interact reciprocally with the ORS (which 
models aspects of inferotemporal cortex) for purposes of attentive vi­
sual object recognition. The FCS and a Motion BCS (which models 
aspects of the magnocellular cortical processing stream) interact recip­
rocally with a Multiplexed Spatial Map (which models aspects of pari­
etal cortex) for purposes of attentive spatial localization and orientation. 
Both systems interact together to define spatially invariant ORS recog­
nition categories and to control visual search.Ff{)~ "3-D Vision and 
Figure-Ground Separation by Visual Cortex" by S~ Grossberg, 1994, 
Perception and Psychophysics, 55, p. 58. Copyright by the Psychonomic 
Society, Inc. Reprinted by permission. 

orientation (Goodale & Milner, 1992; Mishkin, Ungerleider, & 
Macko, 1983; Ungerleider & Mishkin, 1982). 

Our visual search model incorporates properties of a visual 
object recognition system (ORS) that models aspects ofneuro­
biological data showing how the inferotemporal cortex interacts 
with visual cortex, hippocampal formation, and pulvinar for 
purposes of attentive object search, learning, categorization, 
and recognition (Desimone, 1991, 1992; Desimone, Schein, 
Moran, & Ungerleider, 1985; Desimone & Ungerleider, 1989; 
Gochin, 1990; Gochin, Miller, Gross, & Gerstein, 1991; Har­
ries & Perrett, 1991; Miller, Li, & Desimone, 1991; Mishkin & 
Appenzeller, 1987; Perrett, Mishkin, & Chitty, 1987; Spitzer, 
Desimone, & Moran, 1988). The Object Recognition System 
model is an Adaptive Resonance Theory (ART) network (Car­
penter & Grossberg, 1991; Grossberg, 1980, 1987c). Recent 
neurophysiological experiments on object recognition in mon­
keys suggest that neurons in the inferotemporal cortex exhibit 
properties that are consistent with ART mechanisms. See Car­
penter and Grossberg (1993) for a review. For our purposes, we 
use the facts that an ART recognition category can be used to 
read out a top-down expectation that primes consistent combi­
nations of BCS boundary and FCS surface properties. Such a 
prime can be used to focus attention on expected cue combina­
tions and to regulate a search for consistent or inconsistent con­
junctive properties. A good enough match leads to a state of 
resonant attention, binding, learning, and recognition. A mis­
match leads to a reset event that can further propel the search. 
The coarseness of the search can be regulated by a parameter 
called vigilance that computes how good a match is needed be­
fore search terminates. 

A precursor of the present use of ART properties to explain 
visual search data is found in Grossberg (1978, Section 61). 

There an analysis is given of how automatic processing and con­
trolled processing data from the visual search experiments of 
Schneider and Shiffrin (1976) may be explained by using ART 
mechanisms. Schneider and Shiffrin had identified automatic 
processing as a parallel search process and controlled process­
ing as a serial search process. Grossberg (1978) described how 
both types of data may be explained by recursive operation of 
the same parallel matching and memory search mechanisms 
that are invoked herein. It is also suggested how the recognition 
categories and primed expectations that are learned in the 
Schneider and Shiffrin (1976) varied mapping (VM) and con­
sistent mapping (CM) conditions differ. In particular, the CM 
condition enables the subject to learn visual chunks that control 
parallel· matching against all memory set items, much as hap­
pens in the multi-item groupings discussed herein. Our search 
model augments these ART matching and search mechanisms 
with computationally precise properties of interacting bound­
aries, surfaces, and spatial maps. 

Why are both object and spatial representations needed? At 
the risk of oversimplification, we can briefly hypothesize that 
object representations are relatively insensitive to variations in 
such variable object properties as their retinal position. A seri­
ous combinatorial explosion would occur if the brain needed to 
learn a separate representation for each object at every retinal 
position. In contrast, spatial maps do represent object positions. 
The interactions that link object and spatial representations are 
designed to enable desired objects to be recognized through spa­
tially invariant recognition codes and to be spatially localized 
and engaged during behavior through spatial maps. 

Our conception of how spatial maps work arose from models 
of Carpenter, Grossberg, and Lesher (1992, 1993) and 
Grossberg and Kuperstein (1986, 1989), which analyze aspects 
of neurobiological data about how the parietal cortex interacts 
with the visual cortex for purposes of spatial localization and 
orientation (Anderson, Essick, & Siegel, 1985; Fischer & Breit­
meyer, 1987; Maylor & Hockey, 1985; Mountcastle, Anderson, 
& Motter, 1981; Rizzolati, Riggio, Dascola, & Umita, 1987; 
Wurtz, Goldberg, & Robinson, 1982). FACADE theory pro­
poses that the BCS and FCS each interact reciprocally with the 
ORS to bind boundary properties (e.g., texture segregation) and 
surface properties (e.g., surface color and form) into categorical 
object representations. The FCS also interacts reciprocally with 
a Multiplexed Spatial Map to determine the spatial locations of 
particular combinations of surface properties (Figure II). 
These "What" and "Where" processes are also envisaged to in­
teract reciprocally with one another. Grossberg ( 1994) discusses 
these interactions in greater detail, including how 3-D bound­
ary and surface representations are formed by using preatten­
tive mechanisms, how they may interact with attentive object 
and spatial processes, and how search for moving targets may be 
controlled. This analysis incorporates modeling results about 
motion detection and segmentation by the magnocellular corti­
cal processing stream (Grossberg & Mingolla, 1993; Grossberg 
& Rudd, 1989, 1992) and about the visual and attentive control 
of saccadic eye movements (Grossberg & Kuperstein, 1986, 
1989). 

A recapitulation of all these results herein would take us too 
far afield. The main purpose ofthis brief summary is to empha­
size that the representations and operations of our search model 
were not invented to explain the search data discussed herein. 
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They were introduced to explain entirely different types of data. 
The search model hereby shows how to link search data, 
through the corresponding neural models, to the underlying 
processes of visual perception, object recognition, and spatial 
orientation that they reflect. For the remainder of this article, 
we describe our visual search model in computational terms 
and show how it can be used to quantitatively simulate data 
about visual search of static images. These computational rules 
are consistent with the neural model outlined earlier for visual, 
object, and spatial processing by visual, temporal, and parietal 
cortex. The rules thus have a plausible interpretation in terms 
ofa large body of perceptual and neural data other than that on 
visual search that we simulated here. 

Section 5. The SOS Algorithm: Spatial 
and Object Search 

Although conceived as a heterarchy of neural networks with 
continuous and asynchronous dynamics, our algorithmic real­
ization of visual search can be summarized as a four-step pro­
cess (Figure 12). In Step 1, preattentive processing of the visual 
scene results in retinotopic registration of stimulus features. In 
Step 2, these retinotopic featural arrays support boundary seg­
mentation and surface formation, which group the scene into 
separate candidate regions. During searches for known targets, 
a top-down priming signal can influence the organization of the 
search regions. This grouping step has been assumed by others 
to immediately and correctly define scenic objects, which in 
laboratory stimuli are individual target or distractor items. In 
Step 3, a candidate region is selected for further analysis. In a 
directed search, this step could be influenced by either bottom­
up salience or top-down priming of target features selected by 
an ORS. For example, a salient emergent boundary segmenta­
tion in the BCS, as in the Humphreys et al. (1989) study, might 
bias BCS-ORS-FCS interactions; or a color prime, as in the 
Egeth, Virzi, and Garbart (1984) study, might amplify activa­
tion of a particular color-depth slab and thereby bias FCS-

STEP 2,3: Spatial grouping 
and selection .. ----.. 

I 
I 
I 
I 
I 
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STEP 4: Object recognition 

category 
features 

.f­
: NO MATCH? t 

priming 

STEP 1: Retinotopic feature/property coding 

t INPUT (SCENE) 

FiRlire 12. A visual search architecture. The scene is analyzed in par­
allel through the retinotopic registration of boundary segmentations 
and surface slabs. Candidate target regions are separated for recognition 
by the interaction of spatial grouping and object recognition processes. 

ORS-BCS interactions. Finally in Step 4, feature groupings 
within the selected candidate region must be compared with the 
stored target representation, which is assumed to be a categori­
cal representation (or representations) within the ORS. A mis­
match between all these feature groupings and the stored target 
representation causes a return to Step 3 for reset of the old re­
gion and selection of a new candidate region. A partial mis­
match between the features in a multi-item candidate region 
and the stored target features may trigger a more vigilant search 
within the candidate region . This would cause a return to Step 
2 to further segment the candidate region into subregions on the 
basis of a new featural dimension. If this recursive process does 
not yield a target match, then the entire candidate region is dis­
carded and a new one processed. Search terminates when a 
match is found. 

Within this system, each step need only be partially com­
pleted for the next step to begin. That is, partial activation of 
one neural layer, which is not itself yet at equilibrium, may 
suffice to initiate processing at successive layers. In a response 
time minimization task, a speed-accuracy trade-off would de­
termine the optimal confidence level at which each step would 
be complete enough for the next step to take place. The correct 
prediction of average search time or response time (RT) for a 
given scene requires the determination of a duration for each 
step and an algorithmic computation of time needed for scene 
grouping and search. 

For many scenes, there may be no sharp distinction between 
segmentation, surface selection, and definition of a candidate 
region for search. In the computer simulations described later, 
processing times for these steps are lumped into a constant du­
ration, which is added to search time for each candidate region 
that is chosen for recognition. 

Our simulations instantiate three segmentation heuristics: 
I. Boundary and sUlface units influence grouping. Conflict­

ing groupings that are supported by separate featural dimen­
sions are resolved in favor of a grouping supported by a single 
multiplexed featural dimension, for example, color or a pre­
scribed color-depth combination. Grouping is biased to occur 
between items sharing the target feature value along that single 
dimension, much as a whole color-depth slab in the FCS can be 
primed. 

2. Spatial context influences grouping. In simulations, this 
complex factor is simplified into the rule that featurally similar 
items can be grouped into the same candidate region if they 
can be connected by uninterrupted spatial paths whose width 
corresponds roughly to the diameter of items. This simplifica­
tion of the spatial influences on grouping proves sufficient to 
account for a considerable amount of important search data. In 
general, we conceive this grouping as being performed by the 
full multiscale interactions of the BCS and FCS of FACADE 
theory, despite our simplifications. 

3. Featural contrast influences grouping. In simulations, the 
probability that item groupings can become candidate regions 
is a function of stimulus saliency. For example, color saturation 
could bias a particular FCS color-depth slab, a particular BCS 
boundary segmentation, or both. High saliency may also allow 
textural elements or search items to perceptually pop into 
different perceived depth planes regardless of spatial arrange­
ment, in a manner that is modeled in Grossberg (1994). Group­
ings that might otherwise be disallowed, because the path be-
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(a) (b) 

Figure 13, (a) The equations for the lines connecting all the items 
sharing target color are computed and stored. (b) If a distractor item of 
nontarget color is within a path of approximately item width that con­
nects two target-color items, then that connection is disallowed and the 
grouping line is removed. 

tween items that are alike on a single dimension (e.g., color = 
red) is interrupted by an item of different value on that featural 
dimension (e.g., color = blue) might nevertheless occur as, for 
example, when the contrast of red-to-background is much 
higher than the contrast of blue-to-background (see Figure 13). 

To predict the mean search or RT for scenes of a given num­
ber of items requires that a duration be assigned to each of the 
four steps as well as the algorithmic computation of search time 
for any given display based on the principles stated earlier. The 
mean search time of the algorithm for target-present conjunc­
tive scenes can be approximated by the target-present search 
equation: 

RT = R + (N + I) X (S + M). (I) 

RT for target-absent scenes is given by the target-absent search 
equation: 

RT = R + N X 2 X (S + M). (2) 

In Equations 1 and 2, R is the duration necessary to complete 
Step 1 (retinotopic feature registration), S is the duration nec­
essary to separate a candidate region by Steps 2 and 3 (segmen­
tation and selection), M is the duration necessary to match the 
candidate region with the target representation in Step 4, and N 
is the mean number of candidate regions into which the scenes 
containing a certain number of items, pseudo-randomly distrib­
uted, are initially segmented. Each multi-item candidate region 
must be recursively searched, resulting in a recursion factor of 
2 in each equation for conjunctive scenes. More generally, this 
factor of2 could take on some other value, as for triple-conjunc­
tion searches. Evaluation of this factor is not, however, as simple 
as counting the number of display dimensions (e.g., color, ori­
entation, and motion) that are varied in a scene, as not all com­
binations of values on all dimensions may be included in a given 
scene construction. In Equation 1, this factor is cancelled be­
cause in target-present scenes only about half (N + 1)/2 of the 
candidate regions (N), on average, have to be evaluated before 
the target is found. Note that these equations yield only an ap­
proximation of search time for a given display because in our 
algorithm a candidate region including a single item need not 
be recursively searched or recognized. Thus, search times would 
be expected to be slightly shorter than the equations suggest. 
However, the simplified equations serve well to fit the data 
curves considered in the next sections. 

Section 6. Simulation of Psychophysical Search Data 

In this section, the SOS algorithm is used to determine RTs 
for a number of psychophysical search scenes. The model is ca­
pable of quantitatively simulating the search data reviewed ear­
lier as well as additional findings using a single choice of the 
parameters R, S, M, and an algorithmic solution to N. Such an 
algorithmic solution for N on each display trial is not ad hoc 
because our theory proposes that the candidate regions that 
form the units of visual search are flexibly determined "on the 
fly" by the brain and vary for each scene even within the same 
display paradigm. 

Simulation Methods 

To compare the performance of the algorithm to experimen­
tal data, we simulated both the experimental scenes and the al­
gorithm. Simulation of the experiments required a program to 
convert information in the methods section of an experimental 
report into a sequence of scene representations suitable for use 
as input to the simulated algorithm. Visual search experiments 
typically involve the random placement of various numbers of 
items across predefined potential scene locations. Whenever re­
strictions on the placement of items were specified in published 
reports, these were simulated. 

Our implementation of a display simulator produced and 
stored x- and y-coordinates for each item contained in a trial as 
well as the value of each item along each feature dimension. In 
addition, the size of each item was recovered from the experi­
ment description. For some of the experimental reports simu­
lated, scene and item size were specified in subtended retinal 
angle and viewing distance. In this case, Cartesian coordinates 
and dimensions were recovered to allow comparison across ex­
periments. The size of each item was approximated by recover­
ing an item radius corresponding to the item width given in 
the experimental reports. This approximation sufficed because 
items were typically nearly square. Thus, although the form of 
each item was stored, the size of all experimental items was 
modeled as if they were circular. Finally, an ordinal value for 
the degree of featural contrast in the scene was entered by the 
programmer on the basis of reported color saturation. For all 
of the simulation points plotted in this section, 50 trials were 
simulated to recover average search times. 

The SOS search algorithm was also simulated. For conve­
nience, only form-color experiments were modeled, and color 
was always assumed to be the feature initially used for grouping. 
Altering these assumptions, for example, by grouping initially 
on form does not materially alter the results of our simulations. 
For each trial, the program outlined here was executed. Each 
scene was first segmented into a set of item groupings according 
to the following procedure: 

1. The equations of the finite length lines connecting each 
item of target color to each other item of target color were com­
puted and stored (Figure 13a). This step implements the notion 
that a target color can act as a prime for grouping. 

2. Next, the distances between the centers of each of the 
items of distractor color and these lines were computed. If any 
item of nontarget color was between two items of target color 
and within a fixed proportion (P) of item radius away from the 
line grouping those items, then that line was deleted from the 
list of item grouping lines (Figure 13b). 
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Figllre 14. Step I: The scene is analyzed through the retinotopic reg­
istration of boundary segmentations and surface slabs. 

3, A percentage of these lines (C) inversely proportional to 
a nominal measure of the feat ural saliency, in this case color 
contrast were also deleted at random from the line list 

4, The remaining set of lines was then used to create lists 
specifying item groups; that is, if a line connecting two items 
remained, those items were stored in the same item group, 

This four-step segmentation procedure results in a set of N 
item groupings. It generates groupings of boundaries and colors 
that are consistent with how BCS/FCS representations would 
set up groupings for interaction with spatial and object mecha­
nisms during search but does so by using far less computational 
time than would be required to run a full BCS/FCS simulation. 
Thus, this segmentation procedure should not be viewed as 
different from, but rather as merely cruder than, a full BCSI 
FCS implementation, After segmentation, the computation of 
search time proceeds as follows. An example is illustrated in 
Figures 14-18, 

5. A constant duration (R) was added to the RT for the trial. 
This duration accounts for the time taken to register features 
(Figure 14). 

6. An item group was selected at random from the list of 
unchecked groups, Note that this selection criterion could be 
replaced by one based on some measure of which group was 
currently winning a competition for selection without signifi­
cantly distorting the reported results, Segmentation and selec­
tion time S was added to the RT for the triaL Parameter S ac­
counts for the time needed to select a group of items from the 
background on the basis of a single feature (Figures 15 and 16), 

7. The chosen group was compared with the target represen­
tation; that is, for each feat ural dimension, the target features 
were matched against the group features, The match time M 
was added to the RT for the trial. It accounts for the time needed 
to determine degree and nature of similarity between group and 
target representation (Figure 17). 

8, The group was then recursively searched for target form 
(Figure 18). For example, if the entire group did not match the 
target on both dimensions but did match it on one dimension 
(e,g" color), then subgroups were formed and searched, Pa'ram­
eter S was again added to the RT for the trial. If this recursive 
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Figure 15. Step 2: The scene is segmented on the basis of a single fea­
ture dimension through processes of grouping and segregation. 

segmentation yielded the target, parameter M was added to the 
RT for the trial and search was terminated, Otherwise, if seg­
mentation yielded a nontarget form, M was added to the RT the 
trial, the group was marked as checked, and the search returned 
to Step 6. 

Parameters 

The parameter values S, M, R, the proportion of item radius 
used to model spatial influences on grouping (P), and the per­
centage of groupings disallowed as an inverse function of fea­
ture saliency (C) were selected to fit the data, This process of 
curve fitting was carried out in stages designed to explain an 
ever increasing set of data, For this reason it is discussed with 
reference to each piece of experimental data so as to best repre­
sent the actual procedure that was followed. Although parame­
ter values were adjusted during development of the algorithm, 

Choice 

Form-based array Color-based array 

Selection 

Figure 16. Step 3: A single candidate region is chosen across all fea­
ture maps for parallel conjunctive recognition. 
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Figure 17. Step 4: The features within the candidate region are com­
pared with the target representation through a limited capacity parallel 
process. 

in the end all the data were modeled by a single set of parameter 
values. 

Section 7. Simulation of Form-Color 
Conjunctive Search 

Treisman and Gelade (1980) conducted tachistoscope studies 
indicating serial conjunctive search. Wolfe et al. (1989) repeated 
this investigation in experiments using high-contrast scenes on 
a CRT and found fast conjunctive searches that could be ex­
plained by a parallel search process. The data from these fast 
form-color conjunctive searches may be quantitatively simu­
lated by a two-step process. Initially, high color contrast sup­
ports grouping of target colored items into separate candidate 
regions or perceptual surfaces. These multi-item candidate 
groupings are then searched for the target form. Because there 
are fewer item groups than individual items, search times de­
crease. This process is essentially a recursive application of the 
original Feature Integration mechanisms with the exception 
that individual items would not necessarily become candidate 
groupings. 

Both the Treisman and Gelade (1980) and the Wolfe et al. 
(1989) results are quantitatively simulated by the model. The 
scenes used to test the algorithm were generated by using the 
experimental description given in Experiment 7 of Wolfe et al. 
(1989). The viewing field was a square of length corresponding 

Segregation and Grouping Choice and Selection 

Figure J 8. Step 4a: If distractor features within the candidate region 
are too numerous to allow unambiguous determination of target pres­
ence, then the region is recursively segmented on the basis of the other 
target feature. 

to 11.3° at a distance of 100 cm. Item dimensions corresponded 
to 0.8Y square at this same distance and were randomly ar­
ranged in a slightly irregular 6 X 6 array. Color saturation was 
reduced, and the background color was changed to white to em­
ulate the tachistoscope setup and reduce saliency. 

Wolfe et al.'s (1989) data consist of essentially linear curves 
of varying slope. To model these data, factors determining both 
intercept or offset of the data lines and their slopes needed to be 
specified. The constant duration that offsets search among any 
number of distractors was captured by R, which includes the 
time to register retinotopic feature arrays as well as the time 
needed to generate a motor response. With P = 1.0, varying 
the percentage of groupings permitted as a function of stimulus 
saliency, in this case color contrast (C), resulted in different 
numbers of item groupings (N). The rate at which N increases 
with the number of items defines a slope that decreases with 
decreasing C. This property allows the data to be fit. The data 
lines were extrapolated to find an approximate y-intercept of R 
= 540 ms. Next, the target-present data slopes for both the high­
contrast and the low-contrast data were fit. The data indicate a 
high-contrast slope of 6.1 ms/item and a low-contrast slope of 
10.8 ms;item. Thus, the low-contrast slope is approximately 
1.66 times steeper. When all the spatially allowable groupings 
were permitted in the high-contrast case (C = 0%) and only 30% 
of the spatially allowable groupings were permitted in the low­
contrast case (C = 70%), then the ratio of the N slopes was found 
to be approximately 1.66. This ratio was checked by compiling 
average N values for various numbers of distractors. Table I 
shows N averaged over 50 trials for each number of scenic items. 

Choice of parameter values for P and C fixed the ratio be­
tween slopes. The actual slopes of the data curves remai ned to 
be determined. By Equation I, this requires setting a value for 
the sum (S + M). In this case, 70 ms proved to model the data 
well. In all, this experiment constrai ned the parameters so that 
R = 470, C = 70% in the low-contrast case, C = 0% in the high­
contrast case, and (S + j\1) = 70 ms. Parameters Sand M were 
not individually constrained. It was found that the spatial path 
width parameter could be varied from P = 1.0 to P = 1.5 with 
little effect on the number of spatially allowable groupings (N). 

Figure 19 shows the close match between simulation and ex­
perimental data. The target-absent slopes are just a result of 
doubling the target-present slopes, as in Equation 2. It should be 
noted that this simulation of data on fast form-color conjunc­
tive scenes is consistent with recent neurophysiological data on 

Table I 
Number o{Candidate Groupings (N) Foundfor Scenes q{ 
Wo(fe. Cave, and Franzel (1989) 

N 

High contrast 
Low contrast 

4 

1.14 
1.14 

8 

1.26 
1.95 

Number of items 

12 

2.14 
2.6 

16 

2.74 
3.36 

24 

4.66 
5.8 

Now. P(path width proportion) = 1-1.5; C (low-contrast) = 70%, and 
only 30% of the spatially allowable groupings were permitted; C (high­
contrast) = 0%, and all spatially allowable groupings were permitted. A 
comparison of N values for the low- and high-contrast cases shows a 
relative slope ratio of approxi mately 1.66. See text for details. 
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Figure 19. Increasing stimulus saliency yields faster conjunctive search. (a) From "Guided Search: An 
Alternative to the Feature Integration Model for Visual Search" by J. M. Wolfe. K. R. Cave, and S. L 
Franzel, 1989, Journal (~r £xperimelllal Psychology: Hliman Perception and Per/in' mance, 15, p. 426. Copy­
right 1989 by the American Psychological Association. Adapted by permission of the authors. (b) Model 
simulation. 

man key visual search (Chellazi et aI. , 1993). It can also be ap­
plied to data on fast conjunctive search in depth-motion and 
depth-color scenes. 

Section 8. Color-Color Conjunctive Search 

The data on color-color conjunctive search are also consis­
tent with the model. It has been found that most scenes includ­
ing color-color conjunctive items demand serial investigation 
(Wolfe & Friedman-Hill , 1992). In these scenes, segregation by 
color would tend to yield regions whose boundaries split right 
through pairings of squares that form items (Figure 20a). These 
regions could not be recursively searched because they would 
not contain full items. The grouping based on the first color 

(a) (b) 

Figure 20. (a) Segmentation ofa candidate region defined by a single 
target color yields a multi-half-item grouping that cannot be recursively 
searched for the other target color, thereby explai ning steep search 
slopes. (b) Segmentation ofa candidate region defined by a single target 
color yields a multi-item grouping that can be recursively searched, 
thereby explaining shallow search slopes. 

would not lead to partial activation of the regions that include 
the second color. The spatial focus of attention would thus miss 
the conjunctive feature. Various exceptions to this finding sup­
port this hypothesis. In scenes of disk-annulus color-color 
items where the annulus is significantly larger than the disk, 
search times can be independent of the number of distractors 
(Wolfe & Friedman-Hill, 1992). In this case, the extent of target 
annulus color may be strong enough to support segregation of a 
multi-item candidate segmentation that does include the target 
disk colors, which can then be searched for target disk color 
(Figure 20b). This result has also been replicated by using 
houses with different wall and window colors. Although these 
data on color-color conjunctive search pose a serious problem 
for models like Guided Search and Feature Integration, they 
are consistent with the SOS model and illustrate yet again the 
importance of multi -item grouping in visual search. 

(a) (b) 

Figure 21. (a) In clumped scenes, the spatial grouping of items is 
difficult, and the scene is segmented into many candidate regions. (b) In 
spread-out scenes, spatial grouping is faci litated, and the scene can be 
segmented into very few candidate regions. 
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Section 9. Simulation of Clumped Versus Spread-Out 
Conjunctive Search 

In the SOS model, multi-item groupings are formed only by 
items that can be connected by uninterrupted paths propor­
tional to item width. In clumped scenes, the spatial segregation 
of multi-item target-color groups is hindered because it is less 
likely that there exists an unobstructed path between target-col­
ored items. In spread-out scenes, there is a higher probability of 
clear paths and segregation is easier (Figure 21). This observa­
tion is capable of explaining data of Cohen and Ivry (1991) 
showing that conjunctive searches are faster in spread-out 
scenes. 

Cohen and Ivry (1991, Experiment 3) found that in scenes in 
which conjunctive items are clumped together, search is slow 
and appears to proceed by serial processing, whereas in spread­
out scenes search is much faster. The stimuli were presented on 
a MultiSync SD color monitor using yellow and blue XS and Os. 
The items were displayed on two imaginary circles approxi­
mately 2.8° and 4.1 r from the screen center. The character 
height of .46° was used to recover item radius. In the clumped 
condition, items were organized into groups separated by ap­
proximately .69°. In the spread-out condition, two adjacent let­
ters were at least 1.37° apart. To reduce grouping effects, we 
restricted the runs of identical colors or letters along either circle 
to be 3 or less. 

Cohen and I vry (1991) reported target-present slopes of 18.2 
ms/item and 5.2 ms/item, respectively, for the clumped and 
spread-out conditions. This results in a clump/spread-out slope 
ratio of 3.5. Because they made no attempt to lower the CRT 
color contrasts in the scene, the experiment was considered 
high-contrast, and all the spatially allowable groupings were 
permitted in our simulation of their data (C = 0%). Despite the 
constraint on color runs, item groupings within and between 
the circles often occurred with P = I.D-. When P was increased 
to 1.5, the ratio between the clumped and spread-out slopes be­
came 3.2. The simulation data used to check this slope ratio 
are reported in Table 2. Again, all N values were the result of 
averaging over 50 trials. As in the simulation of the Wolfe et al. 
(1989) data, R was set equal to 470 ms and (S + M) was set 
equal to 70 ms. Figure 22 shows the close match between simu­
lation and experimental data. 

Increasing P beyond 1.5 altered N for the scenes used by 
Wolfe et al. (1989). Parameters P and C are not, however, brittle 
parameters because variations about their best values result in 

Table 2 
Number a/Candidate Groupings (N) Found/or the 
Scenes a/Cohen and Ivry (1991) 

N 

Spread out 
Clumped 

4 

1.60 
1.16 

8 

1.08 
2.90 

Number of items 

12 

1.58 
3.70 

16 

1.94 
5.00 

24 

2.60 
7.70 

Note. P (path width proportion) = 1.5; C (high-contrast) = 0%, and 
all spatially allowable groupings permitted. A comparison of N values 
for the low- and high-contrast cases shows a relative slope ratio of ap­
proximately 3.2. See text for details. 

performance that degrades gradually and falls within the range 
of search slopes seen across different subjects. To illustrate this 
property, consider the limiting conditions as both P and C are 
increased. Grouping tends to disappear, and N approaches the 
number of items. The result is serial search among items as ini­
tially reported by Treisman and Gelade (1980). If P and Care 
reduced, grouping increases and N approaches one for all num­
bers of items. At this limit, the search slopes are flat. 

Section 10. Simulation of Multi-Target and Single­
Target Conjunctive Search 

Minimal RT in conjunctive searches of scenes with two 
targets is faster than those with one target. Mordkoff et al. (1990, 
Experiment 3) reported results for six-item scenes. They used 
scenes viewed at a distance of 45 cm in which all items were 
located on a circle of radius 1.5 cm. Items were 1.1 cm tall and 
0.7 cm wide. Each scene contained two Xs, two Os, aI)d two Is, 
two colored red, two green, and two blu.e. Their result is signifi­
cant because it violates the prediction of any model that hy­
pothesizes a serial search among items. 

This conclusion follows when one considers the following se­
rial search scenario. The observer is confronted with six items 
and chooses one from the scene by some means, for example, 
randomly among all items, according to target likelihood com­
puted by using evidence from all feature dimensions. This 0p­

eration can be accomplished no faster than some time t. In a 
double-target scene, this fastest search time t would be more 
likely even if the means of item choice is random selection. 
However, the duration t would not be expected to vary as a func­
tion of the number of targets in the scene. Thus, the Mordkoff 
et al. (1990) data violate serial item search models. 

These data can, however, be explained by a model that is 
based on segmentation and search among multi-item group­
ings. In scenes containing few items, separation of a target-color, 
multi-item grouping that contains one target would include a 
relatively high target-to-distractor feature ratio. In multi-target 
scenes, the target-to-distractor feature ratio within the multi­
item grouping would be even higher (Figure 23). Within a real­
time neural theory of object recognition such as ART, match 
time is faster when the input includes more evidence for target 
presence. See Grossberg and Stone (1986) for an analysis of data 
from lexical decision experiments where this is also true. Future 
research may help compare the predictions of this approach to 
multi-target tasks with those of hybrid race and coactivation 
models (Mordkoff & Yantis, 1993). 

The match duration M can thus depend on the experimental 
display. For segmentations of few items that include the target, 
suppose that M is a decreasing function of the evidence for 
target presence within a multi-item grouping. In particular, M 
results from a limited capacity parallel process that selectively 
amplifies scenic data that match a prime while suppressing data 
that mismatch the prime. Such a matching process is an emer­
gent property of suitably defined, competitive neural networks 
(Carpenter & Grossberg, 1991; Grossberg, 1980; Grossberg & 
Stone, 1986). Given system noise, the match time for a grouping 
of one target and one distractor has a mean of shorter duration 
than for a grouping of two targets. 

The Mordkoff et al. ( 1990) data are given as cumulative prob­
ability distribution functions. To model these data, it is neces-
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Figure 22. Spreading out items yields faster conjunctive search. (a) From "Density Effects in Conj.unction­
Search: Evidence for a Coarse Location Mechanism of Feature Integration" by A. Cohen and R. B. Ivry, 
1991, Journal o/Experimental Psychology: Human Perception and Performance, J 7, p. 898 . Copyright 1991 
by the American Psychological Association. Adapted by permission of the authors. (b) Model simulation. 

sary to model RT as the result of a noisy or probabilistic system. 
RT, even for identical scenes, can be represented as a Gaussian 
distribution centered on some most likely mean. Ifwe can show 
that the mean M for target-to-distractor ratio of 1: 1 is 20 ms 
longer than the mean M for a target-to-distractor ratio of 2:0, 
then the data can be modeled. 

In this simulation, P remained at 1.5 and it was assumed that 
the scenes were high-contrast, so all spatially allowable group­
ings were permitted (C = 0%). The time constant R clearly had 
to be changed because our previous choice:: of R (470 ms) ex­
ceeded the search times for these scenes. A possible justification 
for reducing R from the value used to model the Wolfe et al. 
(1989) and the Cohen and Ivry (1991) data is that the Mordkoff 
et al. (1990) scene size was relatively small and the items were 

o 
o 

(a) (b) 

Figure 23. (a) A single-target scene yields a multi-item candidate re­
gion including one target and one distractor. This region includes some 
featural evidence for target presence and some contradictory evidence. 
(b) A double-target scene yields a multi-target candidate region in which 
evidence for target presence is doubly reinforced. 

relatively large, thereby facilitating activation of the retinotopic 
feature arrays. The Gaussian distributions for the functions 
offset by R are given in Figure 24. They were integrated to derive 
the cumulative distribution functions used to generate the 
curves in Figure 25. 

Note that the same effect could be the result of shorter seg­
mentation time in double-target scenes. Although this possibil­
ity cannot be ruled out, variable recognition time as a function 
of evidence seems more likely at this time. These data do not 
serve to further constrain S or M or even their sum. To fix ideas, 
one permissible allotment of parameter values, which will be 
further motivated in the next section, is, as follows: R = 300 ms 
for this scene, S = 40 ms for all the scenes, M( I : 1) = 40 ms, 
M(2:0) = 20 ms, and M = 30 ms for low target-to-distractor 
ratio segmentations that are recursively investigated. 

Section 11. Simulation of Feature Additivity Effects 

Treisman and Sato (1990) found a strong correlation between 
ease of single-feature segregation and conjunctive search, 
thereby suggesting a role for multi-item grouping in search. 
However, they treated grouping as a special case or strategy and 
did not specify how segregation might be quantified and inte­
grated into their theory. Instead, they focused on the feature 
inhibition hypothesis because of a piece of evidence that they 
took to argue against multi-item grouping and for simultaneous 
processing of multiple features. 

This evidence is referred to as the additivity affeatures effect. 
A comparison of conjunctive search slopes indicates that each 
feature makes additive and independent contributions to slopes. 
As a result, the difference between a color-orientation target 
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search slope and a motion-orientation slope is the same as the 
difference between a color-size slope and a motion-size slope. 
This result only argues against multi-item grouping, however; if 
it is assumed that each candidate grouping is evaluated on the 
basis of a single feature. If search proceeded by separation of a 
group of items from the scene that shares one feature, and then 
separation of an item from that multi-item group is based on 
the other target feature, additivity would be expected. 
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The additivity of feature effects observed by Treisman and 
Sato (1990) can be simulated by the SOS model if parameter S 
is made into a function of feature dimension. In fact, their data 
constrain the relative values of the sum (S + M) for various 
combinations of feature dimensions. It is not clear from the 
data whether S or M is a function of the feature dimension. To 
fit the data, either S or M could have been made a function of 
feature dimension. If M were made a function of feature dimen-
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Figure 25. The probability functions shown in Figure 24 can be integrated to fit the Mordkoff, Yantis, and 
Egeth (1990) data. (a) From "Detecting Conjunctions of Color and Form ~ J. T. Mordkoff, S. 
Yantis, and H. E. Egeth, 1990, Perception and Psychophysics, 5, p. 165. Copyright 1990 by the Psychonomic 
Society, Inc. Adapted by permission. (b) Model simulation. CDF = Cumulative distrjbution function. 
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Table 3 
Comparison of Experimental Data ofTreisman and Sato (1990) on the Additivity 
of Features Effect and the Model Simulation 

Color Size Motion 

Feature Actual Predicted Actual Predicted Actual Predicted 

Size 14.4 14.1 
Motion 21.7 22.5 21.4 20.6 
Orientation 29.5 29.0 27.5 28.0 36.4 36.5 

Note. Values represent reaction time divided by number of items, expressed in milliseconds. 

sion, however, changes in the parameter choices for the Mord­
koff et al. (1990) simulation would have to be made. Our simu­
lations accordingly used the following S(feature) values. The av­
erage of S(color) and S(orientation) was chosen to be 38 ms to 
make this simulation consistent with the previous simulations. 
In addition, S(color) = 10 ms, S(orientation) = 66 ms, S(mo­
tion) = 40 ms, and S(size) = 6 ms. 

Parameter R was not relevant to this experiment because only 
slopes are compared. The previously defined values of match 
time M = 30 ms were used. The averages of values N (the num­
ber of candidate regions) for the Treisman and Sato (1990) ex­
periment were computed as a function of the number of items 
and were generated for scenes with a scene size of 11.0· square, 
an item size of .8· square, and an intermediate level of feature 
saliency (C = 50%) and were as follows: N = I, for 4 items; N = 

2.2, for 9 items; and N = 4.5, for 16 items. As in Tables I and 2, 
50 trials were averaged for each number of items. The scene, 
item size, and saliency settings are compatible with Experiment 
2 in Treisman and Sato (1990). 

Table 3 compares the mean search rates (the average of 2 
times the target-present slope and the target-absent slope) for 
conjunctive targets obtained by Treisman and Sato (1990) and 
those predicted by the model. As shown, the model is an excel­
lent predictor of the additivity of feature effects. This is a sig­
nificant result considering that Treisman and Sato argued 
against what they called the "segregation hypothesis" on the 
basis of the additivity offeatures effect. Because of the potential 
for recursive search in different dimensions in our theory, reac­
tion times can show the effects of more than one dimension de­
spite initial grouping on a single dimension. 

The additivity of features effects can thus be explained by a 
model that operates by grouping multiple items that are distin­
guished by a single target feature, such as color or, more gener­
ally, a single multiplexed feature combination, such as color­
depth, on an FCS surface representation. The data that Treis­
man and Sato (1990) were forced to treat as special cases can 
thereby be explained in a unified way. The model in a similar 
manner handles the data of Egeth et al. (1984), who found that 
search times for conjunctive targets wherein three items share 
target color are the same regardless of the number of distractors, 
as well as the Triesman and Sato (1990) finding that ease of 
segregation by a single feature dimension and search times were 
well correlated. 

Section 12. Triple Conjunctive Search 

Wolfe et al. (1989) reported search data for triple conjunctive 
targets that shared only one feature with each distractor. The 

slopes for size-color-orientation, triple conjunctive searches 
were 20% of the slopes for color-orientation, simple conjunctive 
searches. These data on the relative ease of triple conjunctive 
searches may, at first glance, seem to challenge the hypothesis 
that search is organized by item groupings that are distin­
guished by a single target feature. However, even in well-con­
trolled experiments, such a search would predict faster triple 
conjunctive search for several reasons. First, the use of three 
versus two feature dimensions increases the likelihood that 
items can be grouped on the basis of a single feature dimension. 
Provided that any feature dimension could be used for initial 
grouping and that the spatial distribution of features is not con­
trolled, the odds that spatially grouping of certain features oc­
curs is higher in triple conjunctive scenes than in conjunctive 
scenes. Second, the requirement that the target shares only one 
feature with any distractor means that in any display, at least 
one target feature must be present in less than half of the items. 
Fewer items sharing one of the target features tends to decrease 
the number of groupings in that feature dimension. 

These factors enable our model to account for the Wolfe et al. 
(1989) data. As Table 3 shows, size-color search slopes are less 
than half as steep as color-orientation search slopes. Because 
the triple conjunctive targets share only one feature, they could 
be found by simple size-color searches. Moreover, as discussed, 
the one shared feature restriction means that in any scene with 
an equitable feature distribution, each target feature will be 
present in only about one-third of the items. For example, in a 
16-item, target-present scene, the most equitable distribution of 
target features among distractors yields a scene with 6 items 
sharing each target feature. Thus, on average, each target fea­
ture would be present in only two-thirds as many items as in 
a simple conjunctive search. Therefore, simply accounting for 
differences in search difficulty and the fact that the model need, 
at most, investigate all the items or item groupings defined by a 
single feature, the triple conjunctive slopes would be expected 
to be one-third as steep as the simple conjunctive slopes. 

In addition, the visual system may not handle size indepen­
dently of other features. Considerable evidence suggests that the 
visual cortex forms multiple boundary segmentations, each 
corresponding to a different range of relative depths from the 
observer (Grossberg, 1994). These segmentations realize a size­
disparity correlation that tends to, at least partially, enable 
different segmentations to preferentially process different sizes. 
This boundary selectivity is passed along to mUltiple surface 
representations, whose filling-in of surface brightness, color, 
depth, and form is organized by the corresponding boundary 
segmentation. For this reason, items of different size may be 
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automatically separated into different boundary segmentations 
and thus onto different surface representations, each of which 
implicitly represent a size-color conjunction. This type of sep­
aration, which is tied to data about the neural representations 
of visual percepts, provides an alternative to the unlikely possi­
bility that a separate feature map encodes size, and indeed every 
searchable feature, independently of all other features. 

Triple conjunctive search data are perhaps the strongest evi­
dence for item selection based on the combined evidence from 
multiple featural dimensions. We hypothesize that such dimen­
sions are the ones that are multiplexed on separate boundary 
and surface representations. In particular, spatially coincident 
discontinuities in multiple featural dimensions could yield 
more salient boundary segmentations. In this case, shorter seg­
mentation and selection times for targets distinguished by two 
features would be expected. In fact, additive segmentation 
effects are indicated by recent work done by Rivest and Cava­
nagh (1991). They found that spatially coincident boundaries 
in multiple featural dimensions cooperated to define stronger 
and sharper contours than those defined by a single featural di­
mension. In a triple conjunctive search, two features may com­
bine to speed object segmentation because these featural di­
mensions represent the same boundary or surface. In natural 
scenes in which environmental objects are typically distin­
guished from their backgrounds on the basis of several features, 
this facilitation effect would be advantageous without threaten­
ing the veridical perception of the objects. 

Section 13. Conclusion 

Much of the psychophysical data about search can be ex­
plained and quantitatively simulated by using a neural theory 
that suggests how spatial maps in the parietal cortex and object 
recognition categories in the inferotemporal cortex interact at­
tentively with other brain regions to search representations in 
the visual cortex. These visual representations are parsed into 
multiple boundary segmentations and surface filling-in do­
mains that enable the organization of groupings that may con­
tain multiple items. 

Previously, neural network models have been developed to 
analyze how the functional organization of each of these brain 
regions may give rise to emergent properties that match proper­
ties of behavioral data. These include models of 3-D boundary 
segmentation and surface representation by striate and extras­
triate visual cortex (Grossberg, 1987b, 1994; Grossberg & Min­
golla, 1985, 1987, 1993; Grossberg & Rudd, 1992; Grossberg & 
Todorovic, 1988); models of attentive category learning, prim­
ing, search, and recognition by inferotemporal cortex, hippo­
campal formation, and pulvinar (Carpenter & Grossberg, 1993; 
Grossberg, 1987c); models of attentive spatial localization and 
orientation by the parietal cortex and its projections (Carpenter 
et ai., 1992; Greve, Grossberg, Guenther, & Bullock, 1993; 
Grossberg, Guenther, Bullock, & Greve, 1993; Grossberg & 
Kuperstein, 1989); and models of temporal storage and recall 
of sequences of events, such as targets, in working memory by 
the frontal cortex (Boardman & Bullock, 1991; Bradski, Car­
penter, & Grossberg, 1992). Unlike artificial neural network 
models such as back propagation, these biological neural net­
works incorporate neurobiologically plausible mechanisms and 
are capable of acting autonomously in real time. 

Although it is not yet possible to synthesize all of these neural 
models into a unified neural architecture that is capable of 
searching a scene, we have here presented a search algorithm 
that incorporates many properties of these neural models. By 
using a fixed set of parameters, we have used this algorithm to 
quantitatively simulate many fundamental search data. The al­
gorithmic SOS model also makes testable predictions that are 
currently under empirical investigation. Thus, whereas all the 
neural mechanisms of these cortical regions are not yet known, 
our model provides new constraints on how they need to work 
together to explain properties of visual search. 
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