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ABSTRACT 
This paper presents the lessons learned when a computational 
GOMS modeling tool was used to evaluate user interface 
concepts and team structure designs for a new class of 
military shipboard workstations. The lessons are both 
encouraging and cautionary: For example, computational 
GOMS models scaled well to a large and complex task 
involving teams of users. Interruptability and working 
memory constructs had to be added to conventional GOMS 
model concepts. However, two surprises emerged: First, the 
non-psychological aspects of the model construction were the 
practical bottleneck. Second, user testing data in this domain 
were difficult to collect and lacked definition, meaning that 
the model provided a better characterization of the design 
details than the user testing data. Included in these lessons are 
recommendations for future model applications and 
modeling methodology development.  

Categories & Subject Descriptors: H.5.2 [Information 
Interfaces and presentation]: User Interfaces — 
evaluation/methodology, theory and methods, GOMS 

General Terms: Design, Human Factors 

Keywords: human performance modeling 
 
INTRODUCTION 
GOMS models, introduced by Card, Moran, and Newell [5] 
are a way to characterize the procedural knowledge required 
to use a system. Explaining the acronym, to construct a 
GOMS model, one determines the user’s Goals, lists what 
Operators can be executed in the interface, discovers the 
Methods, which are sequences of operators that will 
accomplish the goals, and the Selection rules that pick out 
which method to use to accomplish a goal when more than 
one applies. When the model is elaborated down to the 
keystroke level of detail where the operator execution times 
can be estimated with standard approximations, GOMS 

models yield quantitative predictions of human performance 
times. When the methods are written in a standardized form 
such as NGOMSL (Natural GOMS Language) [7, 8], their 
length and similarity can be counted and used to predict 
relative learning times. Thus GOMS model predictions can 
be used to evaluate these procedural aspects of usability of a 
computer interface design early in the development process. 
While GOMS models are useful only for tasks that involve 
substantial amounts of routine procedure execution, they can 
often enable interface designers to start evaluating usability 
and making design iterations before the investment in 
prototype development. Furthermore, once the initial model 
is constructed, it is usually very easy to determine the effects 
of variations on the design. Prototype construction and 
empirical user testing can then begin with more confidence 
that the initial implemented design is likely to be basically 
good. As argued in a survey of model-based evaluation 
techniques [10], being able to do some of the design 
iterations quickly and cheaply makes it possible to do more 
iterations, which enables a better design outcome.  

As summarized by John and Kieras [5, 6], since the original 
Card et al. proposal, considerable progress has been made in 
developing this concept into several useful techniques, and 
connecting GOMS models with cognitive architectures, 
especially those in computational form such as ACT-R [1] 
and EPIC [11] (see [2] for an overview); such work is 
connecting the practically-oriented GOMS methodology with 
fundamental mechanisms of human cognition and 
performance. A step in this direction is GLEAN (GOMS 
Language Evaluation and ANalysis), a tool for constructing 
and running computational GOMS models; it has been under 
development for several years [14, 18], and is currently 
available for research purposes [9]. GLEAN provides an 
executable programming language for GOMS models, 
GOMSL (GOMS Language), that resembles a familiar 
programming language, making the models relatively easy 
for system developers or other non-specialists to construct. A 
sample of this notation appears later in this paper. The 
GOMSL program is interpreted and executed by a simplified 
computational cognitive architecture (Figure 1) that 
incorporates some basic facts and parameters about human 
performance in addition to the conventional GOMS 
keystroke-level model. The simulated human on the right-
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hand side of Figure 1 interacts with a simulated device on the 
left-hand side. Simplified perceptual processors translate 
simulated sensory input from the simulated device display to 
the cognitive processor, and the cognitive processor can 
command vocal and manual motor processors to produce 
simulated movements on the device’s inputs, such as 
simulated keystrokes or mouse movements. The device can 
then change the contents of the simulated display 
accordingly. 

This paper presents the lessons learned when GLEAN was 
used to evaluate interface and team structure designs for a 
new class of user interface that was being developed in a 
large-scale project for the U.S. Navy; see Osga, et al.[15] for 
a detailed presentation. Our modeling project was based on 
the work of that group, but was a separate, and much smaller-
scale, activity. The detailed results of our modeling work are 
presented elsewhere [16], and necessarily involve domain-
specific detail and applicability. The goal of this paper is 
present some of the general lessons that were learned from 
this experience. These lessons apply not just to GOMS 
modeling, but to other modeling approaches as well. The task 
domain, system design, modeling work, and specific results 
will thus be described in the context of the lessons learned, 
and only as much as necessary. 

It is important to be clear about two aspects of this work. 
First, we made use of the results of the design effort and its 
major usability study described in [15], but we were not 
responsible for either the design or the usability study. 
Second, the conclusions presented in this paper are the 
personal opinions of the authors, and should not be mistaken 
for the policy or views of any part of the U.S. Navy, U.S. 
Department of Defense, or U.S. government. 

BACKGROUND 
This work was sponsored by the ONR SC-21 Manning 
Affordability Initiative, a large project that sought to explore 
how modern computer technology could reduce the size of 
warship crews. The focus of this project was on the crews in 
the Combat Information Center (CIC), the place where the 
sensing and weapons systems of a warship are brought 
together and controlled. The hope was that more 
sophisticated computer systems could automate some of the 
functions being done by humans, and bring the information 
from multiple systems together to fewer operators, some of 
whom are the actual decision makers. The result should be 
not only fewer required crew members, but more effective 
and reliable information integration and decision-making.  

A major thrust of the Manning Affordability Initiative was 
the development of a workstation computer platform for use 
by CIC system operators, the Multi-Modal Watch Station 
(MMWS), and a new concept of how the CIC jobs associated 
with Air Defense Warfare (ADW) would be organized. A 
full description is provided by Osga and co-workers[15]; this 
group will be called the MMWS group in what follows. The 
MMWS group designed and evaluated the new system using 
conventional human factors and user testing techniques; a 
primary goal was to compare the new system with the current 
ADW systems in place in the Navy. Our project was a small-
scale appendage to the main project, and had a very limited 
goal: to determine whether and how GOMS models could 
contribute to the design of complex systems, and in 
particular, what would be needed to make GLEAN useful at 
this level. Because of the small scale of our effort, we did not 
attempt to analyze both the current and new systems; rather 
we focused on trying to analyze a set of basic design issues in 
the new system being developed by the MMWS group. 
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Figure 1. Architecture of the GLEAN system. 
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THE OPERATOR’S TASK 
The basic task of the CIC operator is to monitor a display, 
detect important events, and take certain actions. Each CIC 
team member normally has certain responsibilities; one is the 
team leader, and has an additional role of overall supervision. 
As discussed more below, defining the exact roles of the 
team members turned out to be a substantive problem both in 
the empirical data and the modeling work. 

In more detail, the workstation display consisted of a large 
radar-like display (the tactical situation display) on which 
aircraft and surface ships (conventionally referred to as 
tracks) are represented as icons whose position, color, shape, 
and additional details represent the location, course, and 
speed of a track, and its ID - whether it has been identified by 
the system as friendly, neutral, potentially hostile, or a 
commercial aircraft, or is unknown. One of the workstations 
also presents information about the various radar and radio 
emissions (termed ESM) that can be used to identify a track 
or characterize its activity.  

Depending on the team member’s role, the specific tasks are 
to verify the ID of new tracks or changed tracks, make 
reports over radio communication channels about tracks of 
interest, and issue queries and warnings to tracks that for 
example, are approaching too close for comfort to the 
warships in the group. As a general background task, the 
operator needs to monitor suspicious tracks; this repetitive 
activity (called hooking and looking) involves choosing a 
track for examination and then selecting (hooking) its icon on 
the display. This brings up a sub-display of detailed data on 
the track’s course, speed, altitude, and other characteristics, 
which the operator examines. The MMWS group proposed 
workstation designs with various levels of support for these 
activities, ranging from improved display representations to 
automated facilities. More details can be found in [15]. 

The MMWS group developed a single large task scenario 
that guided the design effort and was used in the user testing. 
We used a somewhat simplified form of this scenario in the 
modeling work, which spanned about 1.5 hours of real time, 
and involved a total of 70 tracks, most of which were 
simultaneously present on the simulated display. The 
scenario was a list of about 650 track events, corresponding 
to appearance, disappearance, and ESM events, and events 
for course, speed, and altitude changes. In the models, the 
state of the simulated display was updated every 1 sec of 
simulated time, and the GLEAN architecture itself executes 
on a grain size of 1 ms of simulated time. The GLEAN 
models themselves required only a few minutes to run the 
scenario. 

THE LESSONS 
The nine lessons presented below are gathered into four 
groups: design coverage, validation, practical concerns, and 
psychological theory. 

Design Coverage Lessons 

Lesson 1. GOMS models are useful in complex domains. 
 Our first modeling efforts focused on issues at the level of 
the single operator. The MMWS group had developed a body 
of subject-matter expert (SME) opinion on how the task 
should be conducted in order to follow the official rules of 
engagement. Basically, the GOMS models were simply 
programmed to carry out the stated tasks on the specified 
interface according to the SME prescriptions. To illustrate the 
GLEAN models, Figure 2 shows a sample of the GOMS 
methods from these models; due to the limited space, a full 
explanation is not possible, but it is hoped that the reader can 
get a impression of how the models were written. The first 
method describes how to select a track: first a mouse point, 
followed by a mouse button click, followed by waiting for 
the table of track data to appear. The terms <table> and 
<current_track> are working memory tags - named "slots" 
that hold the identity of the visual objects currently being 
examined.  

The second method in Figure 2 illustrates some of the 
decision-making methods. This method examines various 
visual features of the current track, such as whether it is 
inbound (IOB = YES) and decides what action to perform. 
This action is stored in a tag, <action>, for use by the calling 
method. The resulting models could predict observed single-
operator task execution times reasonably well, as would be 
expected from the considerable work in the literature on 
Method for goal: Hook Track 
Step 1. Point_to <current_track>. 
Step 2. Click B1. 
Step 3. Wait_for_visual_object_whose Label is  

"Track Data" and_store_under <table>. 
Step 4. Return_with_goal_accomplished. 

 
Method_for_goal: Review Track_profile 
Step look_back. Store NONE under <action>; 

Look_at <current_track>. 
Step check_com. Decide:  
 If Color of <current_track> is Purple,  

Then RGA. 
Step check_tripwires. Decide: 
 If O40 of <current_track> is YES,  

and IOB of <current_track> is YES, 
  Then Store WARN under <action>; RGA; 
 If O60 of <current_track> is YES, 
  Then Store QUERY under <action>; RGA; 
 If C75 of <current_track> is YES,  

and O60 of <current_track> is NO, 
  Then Store VID under <action>; RGA. 
Step check_asp. Decide: 
 If ASP of <current_track> is INT,  

and IOB of <current_track> is YES,  
and <RNG> is_less_than "180", 

  Then Store QUERY under <action>; RGA. 
Step check_IOB. Decide: 
  If IOB of <current_track> is YES,  

and <RNG> is_less_than "110", 
  Then Store QUERY under <action>; RGA. 
Step. Return_with_goal_accomplished. 
  

Figure 2. Sample GOMSL Methods. RGA is an abbreviation 
for Return_with_goal_accomplished. 
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validating GOMS models [5, 6]. The key measure is how 
soon certain critical actions would get done, given the large 
number of tracks on the display that had to be examined. In 
general, display designs that make the hook-and-look process 
more efficient will result in the important events being 
detected and acted upon sooner. 

Of more interest, these models made clear that some of the 
workstation designs did not support a key part of the 
operator’s task - remembering past actions taken on 
individual tracks. We were able to demonstrate how very 
simple facilities could alleviate a serious memory load 
problem. In another design exploration, we determined that a 
relatively simple piece of additional automated functionality 
to guide the operator to examine the highest-priority track 
would substantially improve performance beyond relying 
only on the manual selection process. That these analyses 
could be easily done suggests that other modeling approaches 
that work at least as well as GOMS will similarly scale to 
such complex procedural tasks. 

Lesson 2. Modeling a team can be done with a team of 
models. 
In this project we demonstrated a rather straightforward 
approach to analyzing team performance: if one can simulate 
an individual user acceptably well, then one can model a 
team of such users by setting up a model of each user and 
having the models interact with each other according to 
specified team procedures or team strategies. These are 
simply part of each individual’s methods. For example, the 
GOMS model for the ESM operator specifies that when the 
operator notices a new ESM event on the workstation 
display, the operator will announce it by speech over the 
intercom. The methods for another team member would 
specify that upon hearing this announcement, the track 
should be re-evaluated. Like GOMS in general, this team 
modeling approach would be expected to work well only in 
highly proceduralized tasks. 

Figure 3 shows the overall structure of a typical team model. 
There are four simulated humans, each performing a specific 
role; three of them are using the basic simulated 
workstations, while one is using a workstation that includes 
specialized displays for ESM information. The scenario 
events are generated by a master device which takes a 
scenario file as input, and broadcasts the corresponding event 
information to each simulated device, insuring that the track 
information is in synchrony, even though the devices will all 
be in different states as their simulated humans interact with 
them.  

The four simulated humans communicate with each other via 
speech over an intercom channel; a vocal output from one of 
the operators is broadcast to the other operators as auditory 
input. Each simulated human also communicates by speech 
with outsiders over radio channels through their simulated 
workstations. The key feature is that all of the team 
interaction takes place via speech interactions over the 

intercom, while the individual activities of team members 
take place in interaction with their individual workstations.  

With this basic framework, we explored different team 
designs in terms of whether and how the team members 
cooperated on the task. Different team organizations were 
simply represented in the individual GOMS methods that 
specified when announcements would be made over the 
intercom, and what actions would be taken in response. 
Different team procedures produced clear differences in 
predicted overall team performance. The relative ease of this 
team modeling approach suggests that it will be very useful; 
it should be applicable to other types of cognitive-
architectural models of human cognition and performance. 

Validation Lessons 

Lesson 3. Validating a model against data may be impractical. 
Research on GOMS and other modeling methodologies has 
usually tested the validity of the model by comparing its 
predictions to empirical data collected with actual human 
users in the same tasks and interface. In the case of GOMS 
and related methods, there is enough of a record of validation 
success to accept that the GOMS model methodology is 
basically valid [5, 6]. But a GOMS model is based on a task 
analysis that identifies the user’s goals and procedures, and 
can be wildly inaccurate if the task analysis is wrong. The 
usual way to identify such an error would be to compare the 
model’s predictions to empirical data.  

However, the whole rationale for modeling human 
performance is to reduce the amount of empirical data 
collection needed to arrive at a usable design; clearly if 
validating the model requires as much data collection as user 
testing, there is little point to doing modeling. We discovered 
that the situation was actually more serious: in this very 
complex task, it was actually impractical to collect enough 
data to credibly validate a model.  

We attempted to validate the team models against the user 
testing data collected by the MMWS group [15]. They 
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Figure 3. Structure of the team model. 
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compared the performance of real U.S. Navy CIC teams with 
the current system to the performance of similar teams who 
received some training on a prototype of the new system and 
performed the same, single scenario. The study was 
extremely difficult logistically, required a huge software 
development effort for the prototype system, and was quite 
expensive. The sample sizes were quite small, and there were 
few data points, little replication of conditions, and 
tremendous variability in the task strategies followed by the 
participants, both individually and at the team level.  

This is not meant as a criticism of the MMWS group; such 
limitations are to be expected in this sort of domain. In the 
best traditions of user testing, the MMWS group chose in 
favor of a limited amount of data that was very face-valid, 
rather than the larger amounts of data that could have been 
collected with inexperienced subjects in an unrealistically 
simplified task. Furthermore, despite the limitations, the 
study answered the basic question posed by the MMWS 
group: Their results supported the conclusion that the new 
system would allow the reduced CIC crew size; the teams 
using the new system with half as many people did as well or 
better on several measures than did the larger teams using the 
current system. See [15] for details.  

However, a scientifically-sound attempt to validate a model 
for the task would require larger sample sizes, multiple 
scenarios, and more experimental control over team 
procedures along with the same equipment and real test 
users. The huge expense of such an effort means that it could 
never be done. Rather than forgo either modeling or any 
attempt at model validation, it would be a better idea to focus 
on the most likely source of serious error in the model, which 
is the underlying task analysis and its representation in the 
model. 

That is, instead of comparing the model behavior to limited 
and costly empirical data, it might be more profitable to have 
SMEs criticize the behavior of the model in how it acts in 
specific situations; if the model performs the task incorrectly, 
it could then be determined whether the task analysis 
underlying the model is incorrect, or whether the model is an 
incorrect representation of the task analysis. The task analysis 
and model could then be corrected. Note that it is difficult to 
critique an abstractly-stated task analysis, but since the model 
is executable and will produce specific and concrete 
behaviors, this evaluation can be definite and precise. If the 
task analysis and its representation in the model appears to be 
correct, then the model predictions have some degree of 
limited validity, and can serve as useful guidance for the 
design. 

Lesson 4. The model might look wrong because the validation 
data are not right. 
In our attempt to validate our team model against the user 
testing data, two problems emerged that involved user or 
team strategies. First, while the model predicted several types 
of action timings quite well (within about 10%), the times for 
new track reports and queries were seriously mispredicted 

(33 - 46% error); the model performed these actions much 
earlier than the human teams. This was puzzling because the 
model simply followed the SME rules for when a new track 
should be reported or a query issued (see Figure 2). 
Apparently, the human teams were not doing the same thing 
as the SMEs said they should be. A deeper look at the data 
would be required to determine why. See [16] for more 
discussion. At first glance, the model appears to be seriously 
inaccurate at predicting this aspect of performance, but the 
real question is whether the SMEs were wrong, the teams 
were wrong, or the experiment was wrong in some way. 
Perhaps other test users would follow the SME rules, or other 
SMEs would have different rules.  

Second, the team interaction and communication did not 
follow any easily discernable pattern, nor were the teams 
required to follow any specified procedures. It is a U.S. Navy 
tradition that each team is allowed to organize itself and 
determine its own procedures. The task analysis underlying 
the design and the models did not specify the details of the 
team organization and procedure. Furthermore, trying to 
determine what strategy the human teams actually followed 
would have required a much larger sample of activity than 
was possible. 

The lesson is two-fold: (1) empirical data in which the 
humans behave inconsistently or differently from the expert 
task analysis cannot support a model based on the task 
analysis; but (2) unless one knows that such data truly 
represent how the system should and will be used, they also 
do not discredit the task analysis and the model based on it. 
In short, the difficulty of task analysis and data collection in 
these complex domains means that any simple concept of 
validation against data is unworkable; ambiguity could be the 
norm. 

Lesson 5. Model evaluation can be more definitive than user 
testing. 
In contrast to the uncertainties in the user testing data, our 
exploration in modeling different team organizations 
produced very clear conclusions. As described fully in [16], 
following the general logic suggested in [12], we first 
constructed models that bracketed the required performance. 
The first model made unrealistic assumptions that every team 
member noticed and acted upon all critical events and 
worked completely independently. This superhuman non-
team performed the task very well. A second model made 
more realistic assumptions about attention to events, but still 
lacked any cooperation. This model performed quite poorly - 
too many events were missed while the team members 
worked on their individual tasks. With the next models, we 
systematically attempted to find the amount and kind of 
cooperation that would result in fewer missed events. In the 
better models, if a simulated operator was not busy with a 
specific task, it would announce critical events to the rest of 
the team; other team members could hear this announcement 
and remember it long enough to act on it after completing a 
task in progress. The model teams that performed well thus 
define a good team strategy, and the evaluation of the 
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interface then becomes very clear: For each specified set of 
team organization and procedures, a particular interface 
design will result in a predicted level of performance.  

This experience suggests that in a complex task where user 
data are hard to collect and user strategies are hard to 
determine, it will be easier to evaluate the interface with 
modeling than with user testing. Of course, only a fool would 
skip user testing in the design of such a critical system, but 
our experience suggests that a model analysis may be the 
most practical way to arrive at detailed design decisions for 
complex team tasks; rather than guiding detailed design, user 
testing could be reserved for issues beyond the scope of 
modeling and ensuring that the final design is acceptable. 

Practicality Lessons 

Lesson 6. GOMS modeling is learnable and cheap. 
Despite previous studies [e.g. 4], there is a common belief 
that modeling is too labor-intensive for practical application, 
both in terms of the difficulty of learning the methodology 
and of applying it. However, the second author gets the credit 
for constructing all of the GOMS models in this project, 
starting from a background that did not include any prior 
work in cognitive modeling. While the present case involves 
only a single modeler, it adds to the accumulation of 
experience that modeling is indeed cost-effective (cf. [5, 6]). 
The costs of setting up the model initially can be high, but in 
surprising ways (see the next lesson). However, both the 
learning time and setup time are one-time expenses that can 
be amortized over the many subsequent evaluations that are 
easy and cheap.  

Lesson 7. Programming the simulated device is the actual 
practical bottleneck. 
In a full user-device simulation with GLEAN, the simulated 
user needs to interact with a simulated device that produces 
the inputs to the simulated user, and reacts to the outputs 
from the simulated user. Logically, it suffices for the 
simulated device to produce and react to abstract inputs and 
outputs. An actual GUI that a real user might interact with 
does not have to be implemented. Also, only those parts of 
the device that the simulated user will interact with need to 
be simulated.  

Despite these simplifications, programming the simulated 
device turned out to be a major bottleneck in building the 
models for two reasons. First, good programming design and 
technique is required to enable fast and reliable modifications 
to support design iteration; this requires a programmer with 
substantial experience, who can be hard to find. Second, the 
specialized domain of the project required “computational 
navigation” to generate track motions and compute values 
such as the range at the point of closest approach, and 
distances along great-circle routes. Odd as it may seem, the 
computer form of the required algorithms are not common 
knowledge even in the SME circles, and do not appear to be 
adequately documented in any readily available source. Thus 
considerable time was spent reinventing some of the 

functionality of the actual device. It is likely that similar 
programming problems will be present in any complex and 
specialized task domain.  

On the whole, it appears that constructing the simulated 
device is the actual bottleneck that limits how quickly a 
model for a complex task can be developed. An alternative is 
to couple the simulated user directly to the interface of an 
intact piece of software, as in St. Amant's ingenious work 
[17]. This approach appears promising, but it is not a 
panacea: in the design situations in which models will be 
most useful, the system under design does not yet exist, and 
so there is no existing piece of software to couple to! Clearly, 
more work is required to alleviate this bottleneck to make 
modeling easier. 

Psychological Lessons 

Lesson 8. The relevant psychology is incomplete. 
Several problems emerged concerning the psychological 
adequacy of the GLEAN cognitive architecture. While some 
of these can be addressed by upgrading the fidelity of the 
architecture to include mechanisms such as those in ACT-R 
[1] or EPIC [11], others reveal gaps in the science base that 
need to be filled. Two representative gaps will be briefly 
described. 

GLEAN assumes a rather simple form of working memory 
based on the EPIC tag store and simple versions of visual and 
auditory memory [13]. These seem to be adequate for 
interacting with most computer interfaces, but in the CIC 
tasks, operators appear to remember several tracks that they 
deem “suspicious” and will repeatedly check on them. Some 
operators will take notes to maintain this list, but often they 
rely on some form of working memory; this is probably not 
the usual verbal working memory because these tasks 
involve considerable speech activity, which is known to 
powerfully interfere with verbal working memory. Another 
use of working memory was remembering critical events, 
such as new track appearances, that occur while other tasks 
are being executed; it seems even less likely that these are 
stored in conventional verbal working memory. The problem 
is that these kinds of task-support working memory have not 
really been studied in cognitive psychology, making any 
attempt to define them in the architecture speculative at best. 
To complete the models, we devised ad-hoc methods for 
keeping suspicious tracks and changed tracks in a working 
memory. Clearly research is needed to arrive at 
psychologically valid models of task working memory. 

Another gap appeared with the speech communication. In 
addition to the intercom, each operator uses an external radio 
channel. The intercom is fed to one earphone, the radio to the 
other, and the microphone is switched to either intercom or 
radio as needed. While an operator can tell if somebody is 
speaking over the intercom, apparently there is no way to tell 
if another operator is speaking over their radio channel. This 
means that an operator might be speaking over the radio 
when a message intended for them arrives over the intercom. 
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Can one understand anything about speech input while one is 
talking? Again, this question does not appear to have been 
studied in the mainstream research literature, but related 
phenomena in the literature on attention and memory suggest 
that the answer might be neither obvious nor simple.  

These two examples illustrate how there are many 
phenomena, both subtle and simple, that have not been 
adequately researched in experimental psychology, but which 
play key roles in important tasks and thus need to be included 
in human performance models. Perhaps more focused 
psychology research will fill these gaps in the future. 

Lesson 9. GOMS needs interruptability. 
The most interesting inadequacy of GOMS and GLEAN 
appeared very early in the project. Many of the tracks in the 
scenario disappear from the display as they go out of radar 
range, along with any data or data windows associated with 
the track. If the methods are working on the disappearing 
track, they will hang or fail when they attempt to look at or 
point to objects that are no longer present. It does not help to 
repeatedly check for the presence of the object, because it can 
potentially disappear at any time. The solution was to add an 
interrupt rule capability: The GLEAN model can include a 
set of if-then rules that are applied before every step 
execution cycle; these rules can detect the absence of the 
object currently being worked upon, and then execute 
methods to clean up and restart the model. The same 
interrupt mechanism turned out to be essential to detect 
critical events that happen during normal task execution, 
such as the changed tracks or speech input events; the 
triggered interrupt rules execute methods to save the 
information or alter task execution. Once the interrupt 
methods complete, execution resumes with the interrupted 
methods. 

Figure 4 provides an example. The first if-then rule monitors 
for the appearance of a new track object (Blip), and executes 
a method to save the track in the above-mentioned working 
memory store for critical events. The second if-then rule 
watches for cases where the current track object disappears; 
the invoked interrupt method is also shown: it arranges for 
the disappearing track to be removed from the working 
memory list of suspicious tracks, and then aborts the current 
normal method execution and causes the model to restart 
with the top-level method. The cleanup will be completed 
and another track selected for examination. 

The original GOMS concept [3] was based on a simple 
hierarchical-sequential flow of control regime similar to 
procedure-call hierarchies in a traditional programming 
language. In order to be useful in this domain, GOMS 
models required a fundamental extension to include 
interruptability and a more complex flow of control regime. 
Only then could the event-driven and asynchronous character 
of the multimodal team task domain be represented 
realistically. Perhaps a cognitive architecture such as EPIC 
that has a highly flexible control regime could be applied 
instead, and we suspect that other architectures could do as 

well if extended to have similar capabilities. But using a 
more complex architecture by itself does not solve the 
problem: Practical work requires a modeling methodology 
whose ease of learning and use is at least as good as GOMS 
has been, so further extending the GOMS notation might 
remain a better solution than trying to adopt and simplify a 
powerful but complex architecture. 

CONCLUSION 
The lessons learned in this project inform not only GOMS 
modeling, but also other modeling approaches that might 
apply to large and complex systems involving teams of 
humans. The overall positive lesson is that such modeling 
can be done, and done within practical constraints, and so 
future work to develop and apply modeling methodology in 
these domains should be successful.  

The single most important negative lesson is the difficulty of 
validation of human performance models for complex team 
tasks. While we expected that models for such complex 
systems would be hard to validate for scientific and technical 
reasons, the surprising fact was that they are hard to validate 
for overwhelming practical logistical and economic reasons. 
Often overlooked is the fact that for the same reasons, 
enough iterative user testing to fully refine a design is likely 
to be similarly impractical. Neither issue alters the fact that 
such systems are critical to develop correctly and at 
reasonable cost.  

The challenge for future modeling work will be to understand 
how models can best be used in situations where we lack 
both the safety net of empirical model validation and also the 
old reliable standby of thorough user testing. Perhaps using 
the models as an aid to critically examining the task analysis 
will help solve the validation problem.  

Interrupt rules
 
If Exists <new_track>  

Type of <new_track> is Blip,  
Event_type of <new_track> is New,  
and <new_track> is_not <last_new_track>, 

 Then Accomplish_goal: Save New_track. 
 
If <current_track> is_not nil,  

<current_track> is_not absent,  
and Status of <current_track> is 

Disappearing,  
and <current_track> is_not 

<last_disappearing_track>, 
 Then Accomplish_goal: 

Prepare Disappearance_cleanup. 
 
Method_for_goal: Prepare Disappearance_cleanup 
Step. Decide:  
If <current_track> is <last_suspicious_track>,  

Then Store <current_track> under 
<remove_from_suspicious_list>. 

Step. Store <current_track> under  
<last_disappearing_track>. 

Step. Abort_and_restart. 

Figure 4. Sample interrupt rules. 
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