

Computational GOMS Modeling of a Complex Team Task:
Lessons Learned

ABSTRACT
This paper presents the lessons learned when a computational
GOMS modeling tool was used to evaluate user interface
concepts and team structure designs for a new class of
military shipboard workstations. The lessons are both
encouraging and cautionary: For example, computational
GOMS models scaled well to a large and complex task
involving teams of users. Interruptability and working
memory constructs had to be added to conventional GOMS
model concepts. However, two surprises emerged: First, the
non-psychological aspects of the model construction were the
practical bottleneck. Second, user testing data in this domain
were difficult to collect and lacked definition, meaning that
the model provided a better characterization of the design
details than the user testing data. Included in these lessons are
recommendations for future model applications and
modeling methodology development.

Categories & Subject Descriptors: H.5.2 [Information
Interfaces and presentation]: User Interfaces —
evaluation/methodology, theory and methods, GOMS

General Terms: Design, Human Factors

Keywords: human performance modeling

INTRODUCTION
GOMS models, introduced by Card, Moran, and Newell [5]
are a way to characterize the procedural knowledge required
to use a system. Explaining the acronym, to construct a
GOMS model, one determines the user’s Goals, lists what
Operators can be executed in the interface, discovers the
Methods, which are sequences of operators that will
accomplish the goals, and the Selection rules that pick out
which method to use to accomplish a goal when more than
one applies. When the model is elaborated down to the
keystroke level of detail where the operator execution times
can be estimated with standard approximations, GOMS

models yield quantitative predictions of human performance
times. When the methods are written in a standardized form
such as NGOMSL (Natural GOMS Language) [7, 8], their
length and similarity can be counted and used to predict
relative learning times. Thus GOMS model predictions can
be used to evaluate these procedural aspects of usability of a
computer interface design early in the development process.
While GOMS models are useful only for tasks that involve
substantial amounts of routine procedure execution, they can
often enable interface designers to start evaluating usability
and making design iterations before the investment in
prototype development. Furthermore, once the initial model
is constructed, it is usually very easy to determine the effects
of variations on the design. Prototype construction and
empirical user testing can then begin with more confidence
that the initial implemented design is likely to be basically
good. As argued in a survey of model-based evaluation
techniques [10], being able to do some of the design
iterations quickly and cheaply makes it possible to do more
iterations, which enables a better design outcome.

As summarized by John and Kieras [5, 6], since the original
Card et al. proposal, considerable progress has been made in
developing this concept into several useful techniques, and
connecting GOMS models with cognitive architectures,
especially those in computational form such as ACT-R [1]
and EPIC [11] (see [2] for an overview); such work is
connecting the practically-oriented GOMS methodology with
fundamental mechanisms of human cognition and
performance. A step in this direction is GLEAN (GOMS
Language Evaluation and ANalysis), a tool for constructing
and running computational GOMS models; it has been under
development for several years [14, 18], and is currently
available for research purposes [9]. GLEAN provides an
executable programming language for GOMS models,
GOMSL (GOMS Language), that resembles a familiar
programming language, making the models relatively easy
for system developers or other non-specialists to construct. A
sample of this notation appears later in this paper. The
GOMSL program is interpreted and executed by a simplified
computational cognitive architecture (Figure 1) that
incorporates some basic facts and parameters about human
performance in addition to the conventional GOMS
keystroke-level model. The simulated human on the right-

David E. Kieras
University of Michigan

Electrical Engineering & Computer Science
Department

Ann Arbor, MI 48109-2110
kieras@eecs.umich.edu

Thomas P. Santoro
Naval Submarine Medical Research Laboratory

Human Performance Department
SUBASE BOX 900, Groton, CT 06349

santoro@ nsmrl.navy.mil

n

o

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

ot made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
r republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004…$5.00.

 Volume 6, Number 1 97

hand side of Figure 1 interacts with a simulated device on the
left-hand side. Simplified perceptual processors translate
simulated sensory input from the simulated device display to
the cognitive processor, and the cognitive processor can
command vocal and manual motor processors to produce
simulated movements on the device’s inputs, such as
simulated keystrokes or mouse movements. The device can
then change the contents of the simulated display
accordingly.

This paper presents the lessons learned when GLEAN was
used to evaluate interface and team structure designs for a
new class of user interface that was being developed in a
large-scale project for the U.S. Navy; see Osga, et al.[15] for
a detailed presentation. Our modeling project was based on
the work of that group, but was a separate, and much smaller-
scale, activity. The detailed results of our modeling work are
presented elsewhere [16], and necessarily involve domain-
specific detail and applicability. The goal of this paper is
present some of the general lessons that were learned from
this experience. These lessons apply not just to GOMS
modeling, but to other modeling approaches as well. The task
domain, system design, modeling work, and specific results
will thus be described in the context of the lessons learned,
and only as much as necessary.

It is important to be clear about two aspects of this work.
First, we made use of the results of the design effort and its
major usability study described in [15], but we were not
responsible for either the design or the usability study.
Second, the conclusions presented in this paper are the
personal opinions of the authors, and should not be mistaken
for the policy or views of any part of the U.S. Navy, U.S.
Department of Defense, or U.S. government.

BACKGROUND
This work was sponsored by the ONR SC-21 Manning
Affordability Initiative, a large project that sought to explore
how modern computer technology could reduce the size of
warship crews. The focus of this project was on the crews in
the Combat Information Center (CIC), the place where the
sensing and weapons systems of a warship are brought
together and controlled. The hope was that more
sophisticated computer systems could automate some of the
functions being done by humans, and bring the information
from multiple systems together to fewer operators, some of
whom are the actual decision makers. The result should be
not only fewer required crew members, but more effective
and reliable information integration and decision-making.

A major thrust of the Manning Affordability Initiative was
the development of a workstation computer platform for use
by CIC system operators, the Multi-Modal Watch Station
(MMWS), and a new concept of how the CIC jobs associated
with Air Defense Warfare (ADW) would be organized. A
full description is provided by Osga and co-workers[15]; this
group will be called the MMWS group in what follows. The
MMWS group designed and evaluated the new system using
conventional human factors and user testing techniques; a
primary goal was to compare the new system with the current
ADW systems in place in the Navy. Our project was a small-
scale appendage to the main project, and had a very limited
goal: to determine whether and how GOMS models could
contribute to the design of complex systems, and in
particular, what would be needed to make GLEAN useful at
this level. Because of the small scale of our effort, we did not
attempt to analyze both the current and new systems; rather
we focused on trying to analyze a set of basic design issues in
the new system being developed by the MMWS group.

Device
Behavior

Simulation

Cognitive Processor

Vocal Motor
Processor

Visual
Input

Auditory
Input

Auditory
Processor

Visual
Processor

Manual
Motor

Processor

Simulated
Interaction
Devices

Working Memory

Object Store Tag Store

Task
Instance

Descriptions

Long-Term
Memory
Contents

GOMSL
Methods

Scenario
Events

Figure 1. Architecture of the GLEAN system.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

98

THE OPERATOR’S TASK
The basic task of the CIC operator is to monitor a display,
detect important events, and take certain actions. Each CIC
team member normally has certain responsibilities; one is the
team leader, and has an additional role of overall supervision.
As discussed more below, defining the exact roles of the
team members turned out to be a substantive problem both in
the empirical data and the modeling work.

In more detail, the workstation display consisted of a large
radar-like display (the tactical situation display) on which
aircraft and surface ships (conventionally referred to as
tracks) are represented as icons whose position, color, shape,
and additional details represent the location, course, and
speed of a track, and its ID - whether it has been identified by
the system as friendly, neutral, potentially hostile, or a
commercial aircraft, or is unknown. One of the workstations
also presents information about the various radar and radio
emissions (termed ESM) that can be used to identify a track
or characterize its activity.

Depending on the team member’s role, the specific tasks are
to verify the ID of new tracks or changed tracks, make
reports over radio communication channels about tracks of
interest, and issue queries and warnings to tracks that for
example, are approaching too close for comfort to the
warships in the group. As a general background task, the
operator needs to monitor suspicious tracks; this repetitive
activity (called hooking and looking) involves choosing a
track for examination and then selecting (hooking) its icon on
the display. This brings up a sub-display of detailed data on
the track’s course, speed, altitude, and other characteristics,
which the operator examines. The MMWS group proposed
workstation designs with various levels of support for these
activities, ranging from improved display representations to
automated facilities. More details can be found in [15].

The MMWS group developed a single large task scenario
that guided the design effort and was used in the user testing.
We used a somewhat simplified form of this scenario in the
modeling work, which spanned about 1.5 hours of real time,
and involved a total of 70 tracks, most of which were
simultaneously present on the simulated display. The
scenario was a list of about 650 track events, corresponding
to appearance, disappearance, and ESM events, and events
for course, speed, and altitude changes. In the models, the
state of the simulated display was updated every 1 sec of
simulated time, and the GLEAN architecture itself executes
on a grain size of 1 ms of simulated time. The GLEAN
models themselves required only a few minutes to run the
scenario.

THE LESSONS
The nine lessons presented below are gathered into four
groups: design coverage, validation, practical concerns, and
psychological theory.

Design Coverage Lessons

Lesson 1. GOMS models are useful in complex domains.
 Our first modeling efforts focused on issues at the level of
the single operator. The MMWS group had developed a body
of subject-matter expert (SME) opinion on how the task
should be conducted in order to follow the official rules of
engagement. Basically, the GOMS models were simply
programmed to carry out the stated tasks on the specified
interface according to the SME prescriptions. To illustrate the
GLEAN models, Figure 2 shows a sample of the GOMS
methods from these models; due to the limited space, a full
explanation is not possible, but it is hoped that the reader can
get a impression of how the models were written. The first
method describes how to select a track: first a mouse point,
followed by a mouse button click, followed by waiting for
the table of track data to appear. The terms <table> and
<current_track> are working memory tags - named "slots"
that hold the identity of the visual objects currently being
examined.

The second method in Figure 2 illustrates some of the
decision-making methods. This method examines various
visual features of the current track, such as whether it is
inbound (IOB = YES) and decides what action to perform.
This action is stored in a tag, <action>, for use by the calling
method. The resulting models could predict observed single-
operator task execution times reasonably well, as would be
expected from the considerable work in the literature on
Method for goal: Hook Track
Step 1. Point_to <current_track>.
Step 2. Click B1.
Step 3. Wait_for_visual_object_whose Label is

"Track Data" and_store_under <table>.
Step 4. Return_with_goal_accomplished.

Method_for_goal: Review Track_profile
Step look_back. Store NONE under <action>;

Look_at <current_track>.
Step check_com. Decide:
 If Color of <current_track> is Purple,

Then RGA.
Step check_tripwires. Decide:
 If O40 of <current_track> is YES,

and IOB of <current_track> is YES,
 Then Store WARN under <action>; RGA;
 If O60 of <current_track> is YES,
 Then Store QUERY under <action>; RGA;
 If C75 of <current_track> is YES,

and O60 of <current_track> is NO,
 Then Store VID under <action>; RGA.
Step check_asp. Decide:
 If ASP of <current_track> is INT,

and IOB of <current_track> is YES,
and <RNG> is_less_than "180",

 Then Store QUERY under <action>; RGA.
Step check_IOB. Decide:
 If IOB of <current_track> is YES,

and <RNG> is_less_than "110",
 Then Store QUERY under <action>; RGA.
Step. Return_with_goal_accomplished.

Figure 2. Sample GOMSL Methods. RGA is an abbreviation
for Return_with_goal_accomplished.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

99

validating GOMS models [5, 6]. The key measure is how
soon certain critical actions would get done, given the large
number of tracks on the display that had to be examined. In
general, display designs that make the hook-and-look process
more efficient will result in the important events being
detected and acted upon sooner.

Of more interest, these models made clear that some of the
workstation designs did not support a key part of the
operator’s task - remembering past actions taken on
individual tracks. We were able to demonstrate how very
simple facilities could alleviate a serious memory load
problem. In another design exploration, we determined that a
relatively simple piece of additional automated functionality
to guide the operator to examine the highest-priority track
would substantially improve performance beyond relying
only on the manual selection process. That these analyses
could be easily done suggests that other modeling approaches
that work at least as well as GOMS will similarly scale to
such complex procedural tasks.

Lesson 2. Modeling a team can be done with a team of
models.
In this project we demonstrated a rather straightforward
approach to analyzing team performance: if one can simulate
an individual user acceptably well, then one can model a
team of such users by setting up a model of each user and
having the models interact with each other according to
specified team procedures or team strategies. These are
simply part of each individual’s methods. For example, the
GOMS model for the ESM operator specifies that when the
operator notices a new ESM event on the workstation
display, the operator will announce it by speech over the
intercom. The methods for another team member would
specify that upon hearing this announcement, the track
should be re-evaluated. Like GOMS in general, this team
modeling approach would be expected to work well only in
highly proceduralized tasks.

Figure 3 shows the overall structure of a typical team model.
There are four simulated humans, each performing a specific
role; three of them are using the basic simulated
workstations, while one is using a workstation that includes
specialized displays for ESM information. The scenario
events are generated by a master device which takes a
scenario file as input, and broadcasts the corresponding event
information to each simulated device, insuring that the track
information is in synchrony, even though the devices will all
be in different states as their simulated humans interact with
them.

The four simulated humans communicate with each other via
speech over an intercom channel; a vocal output from one of
the operators is broadcast to the other operators as auditory
input. Each simulated human also communicates by speech
with outsiders over radio channels through their simulated
workstations. The key feature is that all of the team
interaction takes place via speech interactions over the

intercom, while the individual activities of team members
take place in interaction with their individual workstations.

With this basic framework, we explored different team
designs in terms of whether and how the team members
cooperated on the task. Different team organizations were
simply represented in the individual GOMS methods that
specified when announcements would be made over the
intercom, and what actions would be taken in response.
Different team procedures produced clear differences in
predicted overall team performance. The relative ease of this
team modeling approach suggests that it will be very useful;
it should be applicable to other types of cognitive-
architectural models of human cognition and performance.

Validation Lessons

Lesson 3. Validating a model against data may be impractical.
Research on GOMS and other modeling methodologies has
usually tested the validity of the model by comparing its
predictions to empirical data collected with actual human
users in the same tasks and interface. In the case of GOMS
and related methods, there is enough of a record of validation
success to accept that the GOMS model methodology is
basically valid [5, 6]. But a GOMS model is based on a task
analysis that identifies the user’s goals and procedures, and
can be wildly inaccurate if the task analysis is wrong. The
usual way to identify such an error would be to compare the
model’s predictions to empirical data.

However, the whole rationale for modeling human
performance is to reduce the amount of empirical data
collection needed to arrive at a usable design; clearly if
validating the model requires as much data collection as user
testing, there is little point to doing modeling. We discovered
that the situation was actually more serious: in this very
complex task, it was actually impractical to collect enough
data to credibly validate a model.

We attempted to validate the team models against the user
testing data collected by the MMWS group [15]. They

Master
Device Scenario

Events

AWC

WS

IQC1

WS

IQC2

ESM

TAO

WS

Humans

Devices

Intercom

Figure 3. Structure of the team model.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

100

compared the performance of real U.S. Navy CIC teams with
the current system to the performance of similar teams who
received some training on a prototype of the new system and
performed the same, single scenario. The study was
extremely difficult logistically, required a huge software
development effort for the prototype system, and was quite
expensive. The sample sizes were quite small, and there were
few data points, little replication of conditions, and
tremendous variability in the task strategies followed by the
participants, both individually and at the team level.

This is not meant as a criticism of the MMWS group; such
limitations are to be expected in this sort of domain. In the
best traditions of user testing, the MMWS group chose in
favor of a limited amount of data that was very face-valid,
rather than the larger amounts of data that could have been
collected with inexperienced subjects in an unrealistically
simplified task. Furthermore, despite the limitations, the
study answered the basic question posed by the MMWS
group: Their results supported the conclusion that the new
system would allow the reduced CIC crew size; the teams
using the new system with half as many people did as well or
better on several measures than did the larger teams using the
current system. See [15] for details.

However, a scientifically-sound attempt to validate a model
for the task would require larger sample sizes, multiple
scenarios, and more experimental control over team
procedures along with the same equipment and real test
users. The huge expense of such an effort means that it could
never be done. Rather than forgo either modeling or any
attempt at model validation, it would be a better idea to focus
on the most likely source of serious error in the model, which
is the underlying task analysis and its representation in the
model.

That is, instead of comparing the model behavior to limited
and costly empirical data, it might be more profitable to have
SMEs criticize the behavior of the model in how it acts in
specific situations; if the model performs the task incorrectly,
it could then be determined whether the task analysis
underlying the model is incorrect, or whether the model is an
incorrect representation of the task analysis. The task analysis
and model could then be corrected. Note that it is difficult to
critique an abstractly-stated task analysis, but since the model
is executable and will produce specific and concrete
behaviors, this evaluation can be definite and precise. If the
task analysis and its representation in the model appears to be
correct, then the model predictions have some degree of
limited validity, and can serve as useful guidance for the
design.

Lesson 4. The model might look wrong because the validation
data are not right.
In our attempt to validate our team model against the user
testing data, two problems emerged that involved user or
team strategies. First, while the model predicted several types
of action timings quite well (within about 10%), the times for
new track reports and queries were seriously mispredicted

(33 - 46% error); the model performed these actions much
earlier than the human teams. This was puzzling because the
model simply followed the SME rules for when a new track
should be reported or a query issued (see Figure 2).
Apparently, the human teams were not doing the same thing
as the SMEs said they should be. A deeper look at the data
would be required to determine why. See [16] for more
discussion. At first glance, the model appears to be seriously
inaccurate at predicting this aspect of performance, but the
real question is whether the SMEs were wrong, the teams
were wrong, or the experiment was wrong in some way.
Perhaps other test users would follow the SME rules, or other
SMEs would have different rules.

Second, the team interaction and communication did not
follow any easily discernable pattern, nor were the teams
required to follow any specified procedures. It is a U.S. Navy
tradition that each team is allowed to organize itself and
determine its own procedures. The task analysis underlying
the design and the models did not specify the details of the
team organization and procedure. Furthermore, trying to
determine what strategy the human teams actually followed
would have required a much larger sample of activity than
was possible.

The lesson is two-fold: (1) empirical data in which the
humans behave inconsistently or differently from the expert
task analysis cannot support a model based on the task
analysis; but (2) unless one knows that such data truly
represent how the system should and will be used, they also
do not discredit the task analysis and the model based on it.
In short, the difficulty of task analysis and data collection in
these complex domains means that any simple concept of
validation against data is unworkable; ambiguity could be the
norm.

Lesson 5. Model evaluation can be more definitive than user
testing.
In contrast to the uncertainties in the user testing data, our
exploration in modeling different team organizations
produced very clear conclusions. As described fully in [16],
following the general logic suggested in [12], we first
constructed models that bracketed the required performance.
The first model made unrealistic assumptions that every team
member noticed and acted upon all critical events and
worked completely independently. This superhuman non-
team performed the task very well. A second model made
more realistic assumptions about attention to events, but still
lacked any cooperation. This model performed quite poorly -
too many events were missed while the team members
worked on their individual tasks. With the next models, we
systematically attempted to find the amount and kind of
cooperation that would result in fewer missed events. In the
better models, if a simulated operator was not busy with a
specific task, it would announce critical events to the rest of
the team; other team members could hear this announcement
and remember it long enough to act on it after completing a
task in progress. The model teams that performed well thus
define a good team strategy, and the evaluation of the

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

101

interface then becomes very clear: For each specified set of
team organization and procedures, a particular interface
design will result in a predicted level of performance.

This experience suggests that in a complex task where user
data are hard to collect and user strategies are hard to
determine, it will be easier to evaluate the interface with
modeling than with user testing. Of course, only a fool would
skip user testing in the design of such a critical system, but
our experience suggests that a model analysis may be the
most practical way to arrive at detailed design decisions for
complex team tasks; rather than guiding detailed design, user
testing could be reserved for issues beyond the scope of
modeling and ensuring that the final design is acceptable.

Practicality Lessons

Lesson 6. GOMS modeling is learnable and cheap.
Despite previous studies [e.g. 4], there is a common belief
that modeling is too labor-intensive for practical application,
both in terms of the difficulty of learning the methodology
and of applying it. However, the second author gets the credit
for constructing all of the GOMS models in this project,
starting from a background that did not include any prior
work in cognitive modeling. While the present case involves
only a single modeler, it adds to the accumulation of
experience that modeling is indeed cost-effective (cf. [5, 6]).
The costs of setting up the model initially can be high, but in
surprising ways (see the next lesson). However, both the
learning time and setup time are one-time expenses that can
be amortized over the many subsequent evaluations that are
easy and cheap.

Lesson 7. Programming the simulated device is the actual
practical bottleneck.
In a full user-device simulation with GLEAN, the simulated
user needs to interact with a simulated device that produces
the inputs to the simulated user, and reacts to the outputs
from the simulated user. Logically, it suffices for the
simulated device to produce and react to abstract inputs and
outputs. An actual GUI that a real user might interact with
does not have to be implemented. Also, only those parts of
the device that the simulated user will interact with need to
be simulated.

Despite these simplifications, programming the simulated
device turned out to be a major bottleneck in building the
models for two reasons. First, good programming design and
technique is required to enable fast and reliable modifications
to support design iteration; this requires a programmer with
substantial experience, who can be hard to find. Second, the
specialized domain of the project required “computational
navigation” to generate track motions and compute values
such as the range at the point of closest approach, and
distances along great-circle routes. Odd as it may seem, the
computer form of the required algorithms are not common
knowledge even in the SME circles, and do not appear to be
adequately documented in any readily available source. Thus
considerable time was spent reinventing some of the

functionality of the actual device. It is likely that similar
programming problems will be present in any complex and
specialized task domain.

On the whole, it appears that constructing the simulated
device is the actual bottleneck that limits how quickly a
model for a complex task can be developed. An alternative is
to couple the simulated user directly to the interface of an
intact piece of software, as in St. Amant's ingenious work
[17]. This approach appears promising, but it is not a
panacea: in the design situations in which models will be
most useful, the system under design does not yet exist, and
so there is no existing piece of software to couple to! Clearly,
more work is required to alleviate this bottleneck to make
modeling easier.

Psychological Lessons

Lesson 8. The relevant psychology is incomplete.
Several problems emerged concerning the psychological
adequacy of the GLEAN cognitive architecture. While some
of these can be addressed by upgrading the fidelity of the
architecture to include mechanisms such as those in ACT-R
[1] or EPIC [11], others reveal gaps in the science base that
need to be filled. Two representative gaps will be briefly
described.

GLEAN assumes a rather simple form of working memory
based on the EPIC tag store and simple versions of visual and
auditory memory [13]. These seem to be adequate for
interacting with most computer interfaces, but in the CIC
tasks, operators appear to remember several tracks that they
deem “suspicious” and will repeatedly check on them. Some
operators will take notes to maintain this list, but often they
rely on some form of working memory; this is probably not
the usual verbal working memory because these tasks
involve considerable speech activity, which is known to
powerfully interfere with verbal working memory. Another
use of working memory was remembering critical events,
such as new track appearances, that occur while other tasks
are being executed; it seems even less likely that these are
stored in conventional verbal working memory. The problem
is that these kinds of task-support working memory have not
really been studied in cognitive psychology, making any
attempt to define them in the architecture speculative at best.
To complete the models, we devised ad-hoc methods for
keeping suspicious tracks and changed tracks in a working
memory. Clearly research is needed to arrive at
psychologically valid models of task working memory.

Another gap appeared with the speech communication. In
addition to the intercom, each operator uses an external radio
channel. The intercom is fed to one earphone, the radio to the
other, and the microphone is switched to either intercom or
radio as needed. While an operator can tell if somebody is
speaking over the intercom, apparently there is no way to tell
if another operator is speaking over their radio channel. This
means that an operator might be speaking over the radio
when a message intended for them arrives over the intercom.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

102

Can one understand anything about speech input while one is
talking? Again, this question does not appear to have been
studied in the mainstream research literature, but related
phenomena in the literature on attention and memory suggest
that the answer might be neither obvious nor simple.

These two examples illustrate how there are many
phenomena, both subtle and simple, that have not been
adequately researched in experimental psychology, but which
play key roles in important tasks and thus need to be included
in human performance models. Perhaps more focused
psychology research will fill these gaps in the future.

Lesson 9. GOMS needs interruptability.
The most interesting inadequacy of GOMS and GLEAN
appeared very early in the project. Many of the tracks in the
scenario disappear from the display as they go out of radar
range, along with any data or data windows associated with
the track. If the methods are working on the disappearing
track, they will hang or fail when they attempt to look at or
point to objects that are no longer present. It does not help to
repeatedly check for the presence of the object, because it can
potentially disappear at any time. The solution was to add an
interrupt rule capability: The GLEAN model can include a
set of if-then rules that are applied before every step
execution cycle; these rules can detect the absence of the
object currently being worked upon, and then execute
methods to clean up and restart the model. The same
interrupt mechanism turned out to be essential to detect
critical events that happen during normal task execution,
such as the changed tracks or speech input events; the
triggered interrupt rules execute methods to save the
information or alter task execution. Once the interrupt
methods complete, execution resumes with the interrupted
methods.

Figure 4 provides an example. The first if-then rule monitors
for the appearance of a new track object (Blip), and executes
a method to save the track in the above-mentioned working
memory store for critical events. The second if-then rule
watches for cases where the current track object disappears;
the invoked interrupt method is also shown: it arranges for
the disappearing track to be removed from the working
memory list of suspicious tracks, and then aborts the current
normal method execution and causes the model to restart
with the top-level method. The cleanup will be completed
and another track selected for examination.

The original GOMS concept [3] was based on a simple
hierarchical-sequential flow of control regime similar to
procedure-call hierarchies in a traditional programming
language. In order to be useful in this domain, GOMS
models required a fundamental extension to include
interruptability and a more complex flow of control regime.
Only then could the event-driven and asynchronous character
of the multimodal team task domain be represented
realistically. Perhaps a cognitive architecture such as EPIC
that has a highly flexible control regime could be applied
instead, and we suspect that other architectures could do as

well if extended to have similar capabilities. But using a
more complex architecture by itself does not solve the
problem: Practical work requires a modeling methodology
whose ease of learning and use is at least as good as GOMS
has been, so further extending the GOMS notation might
remain a better solution than trying to adopt and simplify a
powerful but complex architecture.

CONCLUSION
The lessons learned in this project inform not only GOMS
modeling, but also other modeling approaches that might
apply to large and complex systems involving teams of
humans. The overall positive lesson is that such modeling
can be done, and done within practical constraints, and so
future work to develop and apply modeling methodology in
these domains should be successful.

The single most important negative lesson is the difficulty of
validation of human performance models for complex team
tasks. While we expected that models for such complex
systems would be hard to validate for scientific and technical
reasons, the surprising fact was that they are hard to validate
for overwhelming practical logistical and economic reasons.
Often overlooked is the fact that for the same reasons,
enough iterative user testing to fully refine a design is likely
to be similarly impractical. Neither issue alters the fact that
such systems are critical to develop correctly and at
reasonable cost.

The challenge for future modeling work will be to understand
how models can best be used in situations where we lack
both the safety net of empirical model validation and also the
old reliable standby of thorough user testing. Perhaps using
the models as an aid to critically examining the task analysis
will help solve the validation problem.

Interrupt rules

If Exists <new_track>

Type of <new_track> is Blip,
Event_type of <new_track> is New,
and <new_track> is_not <last_new_track>,

 Then Accomplish_goal: Save New_track.

If <current_track> is_not nil,

<current_track> is_not absent,
and Status of <current_track> is

Disappearing,
and <current_track> is_not

<last_disappearing_track>,
 Then Accomplish_goal:

Prepare Disappearance_cleanup.

Method_for_goal: Prepare Disappearance_cleanup
Step. Decide:
If <current_track> is <last_suspicious_track>,

Then Store <current_track> under
<remove_from_suspicious_list>.

Step. Store <current_track> under
<last_disappearing_track>.

Step. Abort_and_restart.

Figure 4. Sample interrupt rules.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

103

ACKNOWLEDGEMENT AND DISCLAIMER
This work was conducted in support of the SC21 Manning
Affordability Initiative under the Naval Submarine Medical
Research Laboratory Work Unit 62233N-R3322-50214,
entitled "Human performance modeling of the MMWS Build
1 Watchstation." The opinions or assertions contained herein
are the private ones of the authors and are not to be construed
as official or reflecting the views of the Department of the
Navy, the Department of Defense, or the United States
Government.

REFERENCES
1. Anderson, J.R., & Lebiere, C. (1998). The atomic

components of thought. Mahwah, New Jersey: Lawrence
Erlbaum Associates.

2. Byrne, M.D. (2003). Cognitive architecture. In J. Jacko &
A. Sears (Eds), Human-Computer Interaction Handbook.
Mahwah, N.J.: Lawrence Erlbaum Associates.

3. Card, S., Moran, T. & Newell, A. (1983). The Psychology
of Human-Computer Interaction. Hillsdale, New Jersey:
Erlbaum.

4. Gong, R., & Kieras, D. (1994). A Validation of the
GOMS Model Methodology in the Development of a
Specialized, Commercial Software Application. In
Proceedings of CHI, 1994, Boston, MA, USA, April 24-
28, 1994). New York: ACM, pp. 351-357.

5. John, B.E., & Kieras, D.E. (1996). Using GOMS for user
interface design and evaluation: Which technique? ACM
Transactions on Computer-Human Interaction, 3, 287-
319

6. John, B.E., & Kieras, D.E. (1996). The GOMS family of
user interface analysis techniques: Comparison and
contrast. ACM Transactions on Computer-Human
Interaction, 3, 320-351.

7. Kieras, D.E. (1988). Towards a practical GOMS model
methodology for user interface design. In M. Helander
(Ed.), Handbook of Human-Computer Interaction (pp.
135-158). Amsterdam: North-Holland Elsevier.

8. Kieras, D.E. (1997). A Guide to GOMS model usability
evaluation using NGOMSL. In M. Helander, T.
Landauer, and P. Prabhu (Eds.), Handbook of human-
computer interaction. (Second Edition). Amsterdam:
North-Holland. 733-766.

9. Kieras, D.E. (1999). A Guide to GOMS Model Usability
Evaluation using GOMSL and GLEAN3. Document and
software available via anonymous ftp at
ftp://www.eecs.umich.edu/people/kieras

10. Kieras, D.E. Model-based evaluation (2003). In J. Jacko
& A. Sears (Eds.), The Human-Computer Interaction
Handbook. Mahwah, New Jersey: Lawrence Erlbaum
Associates. 1139-1151.

11. Kieras, D.E. & Meyer, D.E. (1997). An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction., 12, 391-438.

12. Kieras, D.E., & Meyer, D.E. (2000). The role of cognitive
task analysis in the application of predictive models of
human performance. In J. M. C. Schraagen, S. E.
Chipman, & V. L. Shalin (Eds.), Cognitive task analysis.
Mahwah, NJ: Lawrence Erlbaum, 2000.

13. Kieras, D.E., Meyer, D.E., Mueller, S., & Seymour, T.
(1999). Insights into working memory from the
perspective of the EPIC architecture for modeling skilled
perceptual-motor and cognitive human performance. In
A. Miyake and P. Shah (Eds.), Models of Working
Memory: Mechanisms of Active Maintenance and
Executive Control. New York: Cambridge University
Press. 183-223.

14. Kieras, D.E., Wood, S.D., Abotel, K., & Hornof, A.
(1995). GLEAN: A Computer-Based Tool for Rapid
GOMS Model Usability Evaluation of User Interface
Designs. In Proceeding of UIST, 1995, Pittsburgh, PA,
USA, November 14-17, 1995. New York: ACM. pp. 91-
100.

15. Osga, G., Van Orden K., Campbell, N., Kellmeyer, D.,
and Lulue D. Design and Evaluation of Warfighter Task
Support Methods in a Multi-Modal Watchstation. Space
& Naval Warfare Center, San Diego, Tech Report 1874,
2002.

16. Santoro, T.P., Kieras, D.E., and Pharmer, J. (in press).
Verification and validation of latency and workload
predictions for a team of humans by a team of GOMS
models. US Navy Journal of Underwater Acoustics,
Special Issue on Modeling and Simulation.

17. St. Amant, R., and Riedl, M.O. (2001). A
perception/action substrate for cognitive modeling in
HCI. International Journal of Human-Computer Studies,
55(1), 15-39.

18. Wood, S. (1993). Issues in the Implementation of a
GOMS-model design tool. Unpublished report,
University of Michigan.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

104

