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Abstract

The objective of this essay is to provide the beginning of a principled classification of
some of the ways space is intelligently used. Studics of planning have typically focused on
the temporal ordering of action, leaving as unaddressed, questions of where to lay down
instruments, ingredients, work-in-progress, and the like. But, in having a body, we are
spatially located creatures: we must always be facing some direction, have only certain
objects in view, be within reach of certain others. How we manage the spatial arrangement
of items around us, is not an afterthought; it is an integral part of the way we think, plan
and behave. The proposed classification has three main categories: spatial arrangements
that simplify choice; spatial arrangements that simplify perception; and spatial dynamics
that simplify internal computation, The data for such a classification is drawn from videos
of cooking, assembly and packing, everyday observations in supermarkets, workshops and
playrooms, and experimental studies of subjects playing Tetris, the computer game. This
study, therefore, focusses on interactive processes in the medium and short term: on how
agents set up their workplace for particular tasks, and how they continuously manage that
workplace.

1. Introduction

How do we use the space around us? Studies of planning have typically focused
on the temporal ordering of action, leaving questions of where to lay down
instruments, ingredients, work-in-progress, and the like, as concerns that can be
dealt with later. In having a body, we are spatially located creatures: we must
always be facing some direction, have only certain objects in view, be within
reach of certain others. How we manage the space around us, then, is not an
afterthought; it is an integral part of the way we think, plan and behave, a central
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clement in the way we shape the very world that constrains and guides our
behavior.

The view I shall present is that whether we are aware of it or not, we are
constantly organizing and re-organizing our workplace to enhance performance.
Space is a resource that must be managed, much like time, memory, and energy.
When we use space well we can often bring the time and memory demands of our
tasks down to workable levels. We can increase the reliability of exccution, and
the number of jobs we can handle at once. The techniques we use are not always
obvious, or universal. Some were taught to us, some naturally evolved as we
improved our performance through practice, some are inevitable consequences of
having the type of bodies, manipulators and sensors we have. In every case,
though, the reason space can be used to simplify our cognitive and physical tasks
is because of the way we are embedded in the world.

Here is a typical example of using space consciously to improve execution.
When preparing an claborate salad, one subject we videotaped, cut each
vegetable into thin slices and laid them out in tidy rows. There was a row of
tomatoes, of mushrooms, and of red peppers, each of different length. Our cook
then brought over a large elliptical platter—one she had never used before—
placed it beside the rows and began arranging the items along the circumference.
The obective, as was evident from observation and later questioning, was to lay
out on the platter all the cut items in a uniform and aesthetic manner. She did not
want to run out of tomatoes early, leaving a tomatoless region, or to close the ring
of vegetables before all ingredicnts, peppers, mushrooms, and tomatoes, were
used up.

The placement problem our cook faced was to apportion ingredients in a
uniform manner. This required either elaborate planning beforehand, recall of
similar case cxperience, or online tracking of the relative number of remaining
slices. Having never worked with an elliptical platter this size, our cook had no
ready case knowledge to call on. Nor was she eager to count items and measure
the circumference of the platter, a step she would perform if planning. Instead she
relied on tracking the remaining slices and her moment by moment adaptive
skills. To understand why lining up the ingredients in well ordered neatly
separated rows is clever, requires understanding a fact about human psy-
chophysics: estimation of length is easier and more reliable than estimation of
area or volume. By using length to encode number she created a cue or signal in
the world which she could accurately track. Laying out slices in lines allows more
precise judgement of the property relative number remaining than clustering the
slices into. groups, or piling them up into heaps. Hence, becausc of the way the
human perceptual system works, lining up the slices creates an obscrvable
property that facilitates execution.

The function of arrangement in this example is to encode, as explicitly as
possible (see [22]), a key piece of information about the problem state. It is easy
to analyze how it works. But, in general, how effectively information is encoded
in cnvironmental arrangements, depends on the memory, categories, and skills of
an agent. There is substantial literature on memory of chess positions that shows
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that a single glimpse is enough to allow an expert chess player to remember far
more of a game than is acquired by a novice player after many such glimpses [10].
This suggests that how an expert might store information in arrangements may
not be evident to novices. It also suggests that even though we often do not
realize that we are structuring our workplace to help us keep track of processes
and a host of other useful functions I shall talk about, we should not assume that
such cognitive or informational structuring is not taking place all the time.
Informational structuring is commonplace.

I doubt that this idea will encounter du,p opposition. Yet it has been rarely
explored by psychologists. For instance, in a typical psychological experiment
about memory, experimentalists set out to test a conjecture by systematically
altering properties of the stimulus and observing the effect on certain dimensions
of performance, such as how much, how reliably, how fast the stimulus material is
remembered in free recall tests, in cued recall tests, or in recognition tests. Such
tests are supposed to tell us something about how the agent organizes the stimulus
material internally. Thus, the reason the string KXTNJOXTARWOYE is less
memorable than the string IBMCIANBCDARPA is that it cannot be broken into
known strings. After a while, many subjects (depending on background) will
chunk IBMCIANBCDARPA into four more easily remembered strings IBM CIA
NBC DARPA. Agents project structure onto the world. But curiously, ex-
perimentalists rarely allow the subject to play with the stimulus itself to highlight
the chunks, as we note in scrabble. They do not set up cxperiments to determine
how agents choose to structure the stimulus.

The tendency to delay study of the cognitive/computational virtues of spatial
arrangement is not confined to psychology. Consider the following blocks world
problem so fondly studied in planning. A child is asked to build two towers out of
lettered blocks so that the first tower reads SPACE and the second reads
MATTERS, as shown in Fig. 1. The blocks are currently scattered around the
room. If we assume that standard Al blocks restrictions apply then only one block
can be moved at a time, and only if there is no block on top of it. How shall the
robot proceed? One method never discussed in the Al literature is to preprocess
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Fig. 1. In (a), a region of the floor is covered with blocks, some in small stacks, others just strewn
about. In (b), the blocks that spell out the goal towers SPACE MATTERS have been ordered.
Children often arrange blocks on the ground before stacking them, not simply because it is less
demanding physically than stacking blocks stably, but because it is easier to solve the problem when
one can readily see all the letters, and when one can order and re-order blocks without concern for
balancing them.
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the blocks so that they spell out the goal stacks SPACE MATTERS horizontally
on the ground.

Why might this be a good idea? Because it serves as a proof that there exists a
goal linearization that will work. If we can build SPACE MATTERS horizontally
we know we can build it vertically. We can guarantee construction. At first this
may not seem to be an advance over simply building the towers directly. The
benefits of informationally structuring the world do not appear to be worth the
effort. But if we factor in that the constraints on horizontal movement are weaker
than those on vertical stacking, we can see that to solve the problem on the
ground is to solve the problem in a more abstract space. On the ground, we can
pick up and move a block regardless of whether it is sandwiched between blocks.
And if we leave space between blocks we can insert a block without first shifting
the others around. Hence, we can save many steps by solving the problem on the
ground first, since if there is going to be external trial and error search in finding
the goal ordering, there are far fewer moves to make on the ground. It is easier to
solve the problem on the ground.

Such exploitation of the world to improve execution, or to simplify problem
solving, is typical of situated reasoning. In a host of studies [17,32, 43], it has
been repeatedly shown how human agents make use of resources in the situation
to help draw conclusions and solve problems rather than use abstract, symbolic
computations. People make mental tools of things in the environment. Lave [31]
emphasized the ubiquity of specialized “cnvironmental calculating devices”. For
instance, in a famous example (de la Rocha [13], cited by Greeno [17]), an
interviewer asked a subject who had recently cnrolled in the Weight Watchers diet
program, “How much cottage cheese would you have if you served three-fourths
of the day’s allotment, which is two-thirds of a cup?”” After the man muttered that
he had studied calculus in college, he measured two thirds of a cup of cottage
cheese, put it on the counter, shaped it into a circle, put a horizontal and a
vertical line through it, set aside one of the quadrants, and served the rest.
Instead of multiplying 3/4 X 2/3 = 1/2, he used objects available in the situation
to solve his problem.

Now space is always present, and the need to place objects somewhere is a
constant fact of life. This makes space an invaluable resource to exploit in order
to facilitate everyday problem solving and planning.

My goal in what follows is to provide the beginning of a principled classification
of some of the ways space is intelligently used. The data for such a classification is
drawn from videos of cooking,' assembly and packing, everyday observations in
supermarkets, workshops and playrooms, and experimental studics of subjects
playing Tetris, the computer game.

The remainder of the paper is divided into five parts. In the first, 1 introduce

! Among the videotapes of cooking I shall refer to is a valuable corpus gathered by Bernard Conein of
University of Paris. These tapes record the activities of Parisian cooks preparing apple tarts in their
home kitchens. This material has yet to be fully reported on and I thank Bernard for his permission to
mention it here,
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the general framework within which to think of intelligence and space. Our use of
space is not a special case of intelligent activity which somehow deviates from our
normal methods of interaction; the way to understand how we exploit spatial
resources is part of a more general approach to the study of intelligent activity. In
the next three parts, I present my classification organized into:

® spatial arrangements that simplify choice;

® spatial arrangements that simplify perception;

® spatial dynamics that simplify internal computation.
In the final part I draw some conclusions.

2. How to think about everyday activity

The approach I shall be endorsing falls squarely in the interactionist camp: to
understand human behavior, and to design robots that scale up to complex
dynamic environments, we must explore the interaction between agent and
environment. Humans, to a significant degree, shape and even create the
environment, which in turn, influences their behavior and development. We can
study this interactive process along different time scales. As Hammond et al. [18]
have done, we can study the way agents restore the environment to states which
they (the agents) have methods to deal with, thereby diminishing uncertainty,
reducing the number of contingencies that have to be built into programs, and
allowing streamlining of plans because agents can rely on things being as they
ought to be, more or less. The stabilizing processes Hammond discusses, are long
term stabilizations.

But, cqually, we can study interactive processes in the medium and short
term—as I shall be doing here. For instance, we can study how agents set up their
workplace for particular tasks, and how they continuously manage that work-
place. To take an example, an agent who knows he will be acting as a short order
cook may equip and maintain his kitchen with implements and standard resources
that are regularly required—i.e. long term structuring. But, on being given a
particular order, say a mushroom omelet, hash browns and whole wheat toast, the
cook must still prepare the workplace specifically for that task—laying out the
eggs, the cut mushrooms, and the requested number of pieces of bread. In setting
up the workplace for a particular task the cook arranges itcms so that the work
that has to be done in the high tempo phases of cooking is both simplified and
reduced. This readying of the workplace is a medium term structuring of the
environment.

Short term structurings arise when ingredients and implements are deployed
adaptively in the cognitively demanding phase. Once the task has entered the
main phase, we find that agents, particularly expert agents, constantly re-arrange
items to make it easy to:

(1) track the state of the task;

(2) figure out, remember, or notice the properties signaling what to do next;

(3) predict the effects of actions.
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To return to the diner, if several orders are being prepared, we have observed
short order cooks, clustering the materials for orders together, and leaving knives,
forks or other utensils near the ingredient to be used next, as if to mark their
place in their plan.

Throughout this paper, I shall be operating with several assumptions it is best
to make explicit. These have been instrumental in shaping the interpretations of
behavior I shall be offering.

(1) The agents we observe are experts, or near experts, at their tasks, despite

these tasks often being everyday tasks.

(2) Experts regularly find that enough information is available locally to make
choices without having to plan on-line, using conscious analytical processes.

(3) Experts help to ensure that they have enough information locally by
partially jigging or informationally structuring the environment as they go
along.

(4) The human environments of action we shall be examining, the equipment
and surfaces that comprise each workspace, are pre-structured in important
ways to help compensate for limitations in processing power and memory.

Of these four tenets, number (3)—ways of informational structuring—will be
my primary focus. It is worth elaborating numbers (2) and (4), as well, however,
to get a proper perspective on this approach to embodied everyday activity.
Readers who are impatient to see the classification of ways of using space
intelligently may skip to Section 3.

2.1. Experts don’t plan much

The hallmark of expertise, from a behavioral standpoint, is effectiveness and
robustness. The hallmark of expertise, from a theoretical standpoint, is sufficient
compiled knowledge to cope with normal contingencies without much on-line
planning. A major factor in this compilation is expert perception: having the right
perceptual categories, and knowing how to keep an eye on salient properties [10].
It is widely accepted that, for experts, there is tremendous local constraint on
what should be done next [9]. Practice has tuned the perceptual systems of
experts both to the microfeatures and cues that correlate with effective action
[3,6,22,23], and to the conditions when it is most helpful to attend to those cues.

Rasmussen [36, 37] and Reason [38] have elaborated this viewpoint in some
detail. On their account, once an expert has decided what his goals are—what to
cook for dinngr, for example—the majority of activity that follows will be under
what they call, skill-based and rule-based control (sec also [34, 38, 41]; cf. [1]).
These control structures, it is thought, are extremely responsive to current
environmental conditions.

In the case of skills, this responsiveness is automatic and unreflective. When we
make ourselves a cup of tea in our home kitchen, for example, we “auto-
matically” comply with the orientation of faucet, kettle, cups, the water pressure,
automatically retrieve the tea bag, milk, teapot, and so on. These actions are
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unreflective in the way habits are unreflective. That is, the actions are intentional,
but not the product of deliberation.

In the case of rules, this responsiveness is also largely unreflective and
automatic, triggered by perceived state information, but a rule has been invoked
because the agent is aware that something unanticipated has occurred, that
skill-based behaviors are beginning to drive things off course, and that corrective
measures need to be taken. Thus, the need for a rule-based rcsponse will be
triggered by onc of the attentional checks on behavior that are part of skill-based
activity. Once a disruption is noticed, the corrective action to be performed is
determined by a rule in one of the “problem-solving packets” an expert has. For
example, in the course of serving tea if we discover a dirty spoon, in normal
circumstances, we will unreflectively wipe it clean, or reach into the drawer for
another, or do whatever is obvious to put the process back on track. Even routine
activities in familiar environments constantly give rise to such simple problems.2
For most of these problems, it is suggested [36, 37] experts find sufficient cues in
the situation to trigger a known rule without halting the activity in order to
consciously and analytically take stock of the situation and recason or deliberate
about a solution.

Conscious analytical processing—deliberation, as I have been calling it—is
required when things begin to get too far out of control to rely on existing packets
of problem-solving rules to manage the process. Only then must the agent
consider non-local facts and goals, in order to formulatc a plan to bring things
back on track, or to find a new path to the goal. Accordingly, most expert activity
is non-deliberate and locally driven.

2.2. Experts fig their environment

There are two obvious techniques which experts can use to increase the
percentage of time they spend operating in skill and rule-based modes. The first is
to broaden the range of cases their skills and rules cover, thereby coping with
more diverse and uncertain environments. The second is to build into those skills
and rules an environmental dampening factor that tends to decrease the vari-
ability of the environment. This is the force of tenet (3)—experts partially jig the
environment as they go along. It is here that space becomes of paramount
importance. Let me elaborate.

A jig is a device for stabilizing a process: it is a mechanism for reducing the
degrees of freedom of a target object. A vice is a jig, a table top can scrve as a
jig, but so can a “pick” in basketball, or the slides on a cabinet drawer which
determine the direction of free movement, or compliance. Jigging is one way of
preparing or structuring the environment. The more completely prepared an
environment is, the easier it is to accomplish one’s task.

We can draw a logical distinction between physically jigging an environment

* Compare Agre’s notion of hassles in his Al lab working paper of the same name [2].
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and informationally jigging it; although in practice the two often go together. The
distinction is between planting information in the environment to reduce the
perceived degrees of freedom, and planting physical impediments or constraints in
the environment to reduce the physical degrees of freedom an agent actually has.
At the simplest level, the difference is between cues and constraints. In
informationally jigging an environment an agent will usually arrange items
(consciously or sometimes unconsciously) to draw attention, to cue cognitive
events or processes in himself or herself, or another agent. For instance, in
supermarkets, store managers succeed in biasing consumer choice by having large
displays of ‘specials’ at the head of isles, by putting up flashy signs, by expanding
the length of store shelf devoted to certain brands, and the like. These tricks alter
a shopper’s perceived choices, but do not actually restrict the range of physically
possible actions. In physically jigging an environment, however, an agent arranges
items (consciously or sometimes unconsciously) to physically constrain action.
Thus, sticking a door jam under a door serves to constrain the physical freedom
of an agent. If the agent can be counted on to notice the jam, then it can be relied
on to serve as a cue, an informational jig, but there arc many cases where the
phyﬂlcal constraint goes unnoticed, and so acts as a physical jig alone.

I shall be concerned primarily with ways of arranging items to informationally
jig the environment. As suggested, these include a variety of cueing techniques,
but are not confined to those. For instance, the set of actions perceived possible
may be reduced by hiding or partially occluding objects. Pull-down menus that
display only some of the options available in a situation, is one such example.
Another is found in the practice of dieters who keep certain foods in the pantry
and out of the fridge, to prevent snacking. Out of sight is out of mind. Here,
arrangements serve to constrain rather than cue perception.

Nonetheless, cueing is the key method of informationally structuring an
environment. Agents “‘seed” the environment with attention-getting objects or
structures. These can be harnessed to not only reduce perceived choice but to bias
the order in which actions are undertaken. When I put a roll of film by the
doorway, for example, I am using space to create a reminder’ to prevent me from
just marching out the door without remembering my earlier intention to get the
film developed today Reminders usually rely on attention-getting clements to
draw our notice.’ For instance, contextually unusual features, such as a surprising
color, or an unexpected sound or smell, will often prompt reflection; as will being
in just the right place at the time to be useful in a task. Such features work
because we have sufficient knowledge of our tasks and plans that when, in the

? Reminders are onc of the strategies agents have for improving prospective memory. “‘Prospective
memory includes remembering a plan of action (i.e. what to do) and also remembering to do it. In
most cases, the planned action has to be performed at a specified time, or within some time limits, so
prospcmve memory also involves remembering when to perform the act™ [12, p. 24].

* A different strategy for building reminders relies on “mentally linking the prospective task to another
routine event or activity, like scheduling prospective phone calls for coffee-break time, or linking
picking up the dry cleaning with going to work, so that one action cues another” [12, p. 28].
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course of activity, we notice these felicitous events, or surprises, we are reminded
of aspects of our tasks that must be performed. If successful, they capture our
attention at the right time and alert us to opportunities we might have missed, or
they reduce the likelihood of performing a so-called “double-capture slip”.” These
are slips arising from failure to notice a relevant choice, or a change in
circumstances, with the effect that a “frequently done activity suddenly takes
charge instead of (captures) the intended one” [35, p. 107].

Much of what I shall present in the following sections concerns ways of using
spatial arrangements to informationally jig or structure the environment, and
much of that focuses on ways of keeping attention properly directed. It is worth
noting how environments that are dedicated to certain tasks already incorporate
some of these ideas. This is the point of stressing tenet (4): that most task
environments are pre-structured.

2.3. Pre-structured environments

Let us say that an environment E, is well designed for a particular task T, and a
particular agent A endowed with skill S, and rules R, if, at every choice point, the
environment provides sufficient physical and informational resources to locally
determine A’s choices. On the one hand, this will require E to be rich in task
useful physical structures, for instance, E ought to have tools and surfaces which
make it simple to satisfy regularly recurring preconditions in T. Thus, for cooking,
where many tasks involve chopping, cutting, or slicing, we find kitchens equipped
with knives in convenient reach, and hard flat surfaces—two obvious precondi-
tions for most cutting-like actions. On the other hand, a well designed environ-
ment will also have to be rich in useful informational structures—cues and the
like—to make it simple to cope with the cognitive demands of the task.

For example, in most kitchens [4], there are also timers, thermometers, oven
lights and, of course, temperature settings to help us to see where in the process
we are, and what must be done next. These devices populate the world with
readily available task-relevant properties. Lids rattle when pressure builds up,
kettles whistle or turn off automatically.

* A double capture crror occurs when attention is drawn to something other than the choice at hand,
and consequently behavior is then captured by a strong habit. Some examples cited by Reason and
Mycielska [39] and Reason [38] are:

(a) “T intended to stop on the way to work to buy some shoes, but ‘woke up’ to find that I had
driven right past.”

(b) “I went into my room to change into something comfortable for the evening, and the next thing
I knew I was getting into my pyjama trousers, as if to go to bed.”

(c) “l decided to make pancakes for tea. Then I remembered we didn’t have any lemons, so I
decided not to bother. Five minutes later, I started getting together the ingredients for pancakes
having completely forgotten my change of mind.”

In (a) inattention caused the agent to miss a choice point permitting the habit currently active to
continue—strong-habit exclusion. Tn (b) inattention led to a missed choice point marking the branch
point of two habits (i.e. the ‘what to wear’ choice point). In (c) forgetfulness, or inattention to the
changed circumstances led the agent to revert to an earlier plan that had already been scrapped.
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The distinction we introduced before between a purely informational jig or
structure, and a purely physical structure, can be made more rigorous as follows.
An action that structures the environment in a purely informational way achieves
nothing that could not equally well be achieved by asking an oracle. This contrasts
with actions that structure the environment physically, which reduce the physical
complexity of a task by satisfying either preconditions or background conditions
of actions.

This is worth explaining. An oracle is a device that can answer in unit time any
instance of a particular decision problem. We might ask an oracle “‘what should I
do next, given my current situation and goals?” Or *“What are the likely effects of
performing this action in this context?”” Or even “What is the current state of the
environment?” If the question asked is well-posed, i.e. decidable, the oracle will
“instantly” return the correct answer. Oracles save computation. But they cannot
save physical execution. Oracles can’t slice or fry an egg; they never bring an
agent physically closer to its goals.

For instance, to return to our blocks world example earlier, imagine we are
dealing with blocks in which each block is lettered on one face only. As before,
the goal assigned to the planner is to build a stack in which the letters form two
sequences SPACE MATTERS, but, this time, the letters can be in any orienta-
tion. If not all the letters are visible, some of the blocks will have to be turned
over before the stack can be built so that we know we are building the towers with
the right ordering. These external epistemic actions® would not be necessary if we
had an oracle or a partner in a better position to tell us a block’s letter. The
interesting thing is that the action of re-orienting a block does not satisfy any
physical precondition of the goal.” The goal, as specified, allows the agent to place
blocks without concern for direction. Accordingly, such actions are pragmatically
superfluous. They are broadly equivalent® to placing an oracle in the environment
which is able to remind us where each block is as soon as we ask (look).

Self-adjusting data structures provide a more formal model of the benefits of
informational structuring. A data structure is self adjusting if each time an
element is inserted or deleted, the structure executes an adjustment routine which
performs simple changes to maintain certain “nice” properties. For example, in
many sorting problems where binary trees are used to store the elements, it is
possible that, due to some sequence of insertions and deletions the tree will
become thin and long. Although traversing such a tree in left hand traversal is a
linear time procedure, the process of deciding where to place the next element—
that is, constructing the tree—is quadratic. If, however, certain small local

®For an in-depth analysis of the notion of external epistemic actions see [25].

7 Unless, of course, the letter is printed on the top or bottom of a block, and the only way to expose
the letter is by unstacking all the blocks above it.

® One important difference between an oracle and an environment that is appropriately informational-
ly structured is that oracles provide answers in unit time whereas agents who must recover relevant
information from an informationally structured environment may take considerably longer. This
suggests that it is desirable to structure environments in ways that make relevant information most
explicit. See [22].
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changes are made to the tree whenever an operation is performed on it, we can
guarantec keeping the tree wide and short. By incorporating such a scheme into
the construction phase of our tree sorting algorithm we can improve performance,
yielding an O(N log N) algorithm’

Now the idea of making local changes in a data structure as we go along in
order to improve performance is very much like making small rearrangements to
the position of objects in our workspace to help us to find objects, to highlight
change, or to allow us to use more efficient or familiar techniques. Both cases,
self-adjusting data structures and reorganizing of the workspace, would be otiose
if we had an oracle to advise us on what we must do next, or on where a
particular element is to be found.

The implication is that rearrangements may be done just as much to make
objects convenient mentally as to make them convenient physically. Restructuring
often serves a cognitive function: to reduce the cost of visual search, to make it
easier to notice, identify and remember items, and, of course, to simplify one’s
representation of the task.

2.4. A word about complexity analysis

Although T have been arguing that the point of informationally structuring
space is to reduce the time and memory requirements of cognition, the actual
reduction in computation achieved by the various methods I shall discuss does
not, in general, lend itself to meaningful quantitative estimation.

For instance, from a classical information processing point of view, choice is the
outcome of a heuristic search of options represented in a problem space. The
problem space lays out decision points, feasible actions, and some fraction of the
consequences of taking choices, and the agent relies on various heuristic methods
to discover a goal path. The main ways to reduce the complexity of choice, then,
are to revise the problem space so as to:

(1) reduce the fan-out of actions represented as available (feasible) at decision

points—i.e. reduce the average branching factor;

(2) eliminate certain decision points—i.e. create a more abstract space with
fewer nodes;

(3) represent the task in a way that exposes previously unnoticed constraints—
i.e. add descriptions of state that lend themselves to better heuristic search,
or, as in the mutilated checkerboard, to analytic solution.

Other ways of reducing the complexity of choice are to:

(4) improve search knowledge through chunking, caching, and so on;

(5) speed up the creation of a problem space representation;

* Tarjan has made an effort to quantify the value of self adjusting data structures under the rubric of
amortized computation. His analysis relies on a cost-benefit evaluation: if the average expected
benefit of having a data structure with nice properties exceeds the average cost of putting it into that
form the self-adjusting algorithm is worth the effort. See especially [46].
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(6) speed up the actual low level computation of search and heuristic evalua-

tion.

Working within such a framework, it ought to be possible to determine, for any
given problem, what is the expected computational savings of an improvement in
one of these ways. Because there arc external counterparts to most of these ways
we would expect it possible to generate similar complexity analyses. 1t should not
matter whether the change in the agent’s computational task comes from
modifying the world to simplify choice, or modifying the internal representation
of the world to simplify choice. Yet, in practice, complexity analyses have limited
significance.

For instance, in Fig. 2(a) we see a graphical represcntation of the value of
having heuristics. Theoretically, an agent who modifies the description of state to
allow application of a heuristic powerful enough to single out a unique action at
each choice point, can reduce the complexity of search exponentially, from b" to
n, where n is the average depth to the goal node and b is the average branching
factor. The agent can just choose the best action at each choice point without
checking for downstream consequences. Yet how many agents actually search
through all the steps in a plan before choosing the first step?

The external counterpart to method 3—modifying the description of problem
state—is to add new “heuristic cues” to the workplace. For example, in the
salad-making case mentioned in the introduction, we might argue that lining up
the vegetables not only helped determine the value of the cue “relative number
remaining”, it altered the environment so that the heuristic based on it was now
usable. To realistically calculate the savings of such a cue, however, we would like
a cost-benefit analysis comparing the time lost by physically lining up the items,
versus the savings in improved layout performance. Empirical experiments can be

Fig. 2. n these three graphs we see different ways a problem space can be modified to reduce search.
In (a), the information available at each node (which is not visible in this picturc), has been
supplemented so that therc is enough explicit information available locally to choose, on heuristic
grounds, a unique preferred action at cach decision point. With the right heuristic cue a hard problem
can be made easy. In (b), the problem space has been sct up so that the agent does not even represent
some of the feasible actions. In (c), we see the effects of revising the problem space to completely
eliminate the need for certain decisions. (c) is an abstraction from (a), in this case it is a sub-graph of
(a). External counterparts to each of these methods exist. To cause (a) by external means we modify
the environment so that there are heuristic cues available (e.g. lining up the vegetables). To cause (b),
we alter the environment so that actions are no longer locally afforded by the situation. Hiding food in
the pantry is a trivial example. To cause (c), we change the setting so that it is impossible to reach
certain decision points. For instance, locking the door to the kitchen to completely eliminate the
choice of a midnight snack. In actual cases, we often find varying degrees of each of these effects
present at once.
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done. But these hardly count as formal results. They certainly will not tell us
much about the internal computation saved, since different agents who use
different methods will have tricks and shortcuts too, thereby frustrating appealing
to empirical findings for worst case results. What is interesting about the
examples, then, is not how much they reduce computation—for that we cannot
meaningfully estimate—but kow easily they reduce it.

3. Using space to simplify choice
3.1. Cues and constraints

Prima facie, choice is the product of search—visual search for the actions that
are currently available, and mental search of the desirability of those available
actions. Arrangements which reduce either type of search, simplify the computa-
tional burden of agents. In Fig. 2 there is a graph-theoretic portrait of three ways
search can be so reduced. Information via cues and constraints can be added to a
problem in order to:

(1) reduce the average fan-out of actions perceived as available at decision

points;

(2) eliminate the need for previously necessary decisions;

(3) add new heuristic properties to simplify ranking the desirability of actions.
We will discuss each in turn.

3.2. Reducing perceived actions

To see an action as available for choice is to notice that it is afforded by the
current situation. An affordance of a situation, crudely stated, is a way that a
situation lends itself to being used [15]. An empty container affords filling, an
active television affords viewing, and a hammer affords striking. Because of the
relational nature of affordances, we need to tie them to the action repertoire of an
agent. A television does not afford viewing to a blind person; a hammer does not
afford hitting to a creature without manipulators. A situation has an affordance
for a particular agent. Moreover, we can change the affordances of an object
merely by altering its context. A television does not afford viewing when encloscd
in a box; a cup does not afford filling in a liquidless environment. An affordance,
as we shall use the term then, is a dispositional property of a situation defined by
a set of objects organized in a set arrangement, relativized to the action repertoire
of a given agent. Agents perceive an affordance, when they register that one of
their possible actions is feasible in a situation.

Because an agent need not register all the actions feasible in a situation, the
action set which is perceived as feasible (the perceived action set) is sensitive to
properties of the situation, particularly arrangement. Two general ways of biasing
the perceived action set are by:

(1) hiding affordances—constraining what is seen as feasible;
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(2) highlighting affordances—cueing attention to what is feasible.
Clever placements do both, often at once.

Case 1: Production lines hide affordances

Production lines have been around since long before Henry Ford. Every time
we serially decompose a complex task by dividing the space in which it is
performed into functional stations where specific subtasks are performed, we
create a production line. Of course, Ford added the notion of pipe-lining. But the
principle is the same: by regionalizing subtasks we restrict the kind of actions an
agent will consider undertaking. Only certain inputs find their way into each
region, only certain tools are present, and so only certain actions arc afforded. We
may think of cach spatial region as creating a task context, or task frame in which
only certain skills and rules are appropriate. This has the effect of decreasing the
fan-out of perceived options and eliminates the need to memorize anything more
than the most abstract steps in a plan.

For example, in my kitchen at home, a task as simple as preparing a plain
garden salad, reveals a latent production line because I wash vegetables by the
sink and cut them on a chopping board. More precisely,

1 gather all the vegetables I intend to use, and place them beside the sink. As
each vegetable is washed I place it aside, separating it from thc unwashed
vegetables. When all are washed I transfer them to beside the cutting board,
where 1 keep my knives, and begin chopping each in the way T will need it.

When we examine this task we note two uses of space:

(1) by dividing the space by the sink into two, I segregate the vegetables by
their cleanliness—a limiting case (binary) of using space to simplify
classification. More on this in Section 4.

(2) by dividing the room into stations, where only ccrtain subtasks are
performed, I restrict the range of possible actions I consider at cach station
to a small subsct of the possible actions that can in principle be performed
on each ingredient.

The equipment and surfaces of a station effectively trigger an action frame or
task context in which only a fraction of all actions are considered. Once a context
of action has been triggered, the local affordances make clear what can and must
be done. If a tomato were viewed in isolation, a cook in search of a salad might
consider chopping it, washing it, placing it directly in a salad bowl or plate, or
even eating it on the spot. To perform most of these tasks the cook would have to
first find the relevant equipment—knives, sink, bowl, etc. Exactly which task the
cook would do would depend on where in the plan he was. The virtue of spatially
decomposing the task is that one need not consult a plan, except at the very
highest level, to know what to do. Each task context affords only certain
possibilities for action. You don’t think of washing vegetables when they are
sitting beside a knifc and a cutting board, unless their unwashed state stands out
and alerts you to a problem. Similarly, if an item is unwet and beside the sink, for
all intents and purposes, it carries a “‘wash me” label. A cook entering the room
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can read off what is to be done, for there is enough information available in the
set-up. The reason production line layouts are examples of hiding affordances
rather than highlighting affordances is that the context of action delimits the range
of immediately available actions to the ones that are “ready to go”. When a knife
and board are present, cutting actions are ready to go, and washing is not. (See
Fig. 3).

Case 2: Cueing blocked actions

Manufacturing production lines often prevent workers from moving around to
where tools are kept, create a set of dedicated workers. Actions are therefore not
merely out of mind, they arc out of bounds. In household kitchens, though, the
same person does many tasks; stations are not fixed and tools move around. This
means that although we have action frames, or task contexts, which have the
effect of dropping from our sight certain actions that are still available in
principle, we aren’t physically or socially unable to perform those out of context
actions. Such actions become impossiblc only when something in the environment
restricts the physical freedom of the agent. For instance, by putting a door jam
under a swing door one of the directions of opening can be blocked. One is free
to open the door, but not to open it in the blocked direction. That action is
physically unavailable. This practice of changing the task environment to
eliminate degrees of freedom we call blocking.

Blocking usually restricts affordances by changing the action context so that
certain preconditions are clobbered. This is seldom a permanent change—the
door jam can be removed. But often the change is meant to be noticed; it signals
the fact that a precondition has been intentionally clobbered. Some spatial
arrangements say “Don’t do X”. They cue a prohibition. Here is an example.
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Fig. 3. In this figure we sec a typical kitchen with its stations for chopping, using the burners, baking,
and cleaning up. In professional kitchens separate staff may operate these stations, but in household
kitchens, the same agent moves from station to station, often carrying tools along as he or shc moves.
The equipment and surfaces of a station effectively trigger an action frame or task context in which
only a fraction of all actions are “live” options. This reduces the complexity of choice by creating a
production line. A production line works successfully when a global task can be spatially decomposed
into subtasks where the output of cach subtask is a suitable input to the next subtask. This has the
effect of decreasing the fan-out of perceived options, and eliminates the need to memorize a plan.
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In physical plants, engineers regularly leave rags on hot handles or pipes to
prevent burns. By placing a functionally significant item in a functionally
significant place, the engineer creates a reminder or warning for himself and
others.

Here is a second example:

One hassle notorious to owners of garbage disposal units is that it is easy for
an implement, a knife or spoon, to slip into the machine’s belly without one’s
knowledge. The next time the device is turned on the piece is mangled. To
prevent this, a standard ploy is to cover the mouth with a plug, or failing
that, to throw refuse into the mouth of the unit before placing cutlery in the
same sink. The mouth is thereby blocked before implements can be
swallowed up.

As is obvious from the examples, the physical context has not been irreversibly
changed. An agent could undo a blocked precondition, in the same way that an
agent could take a knife out of the drawer to cut a tomato. But, the distinction
present is that a rag on a pipe, or a plug in a sink, are not just physical
impediments to action; in most cases, they arc intentional, meaningful cues. A
visible wedge, a clamp, a boot on a car, a club on the steering wheel, a blockade,
are further cascs where knowledge of how a device functions can be counted on to
make these physical impediments salient. In principle, any easy to notice
clobbered precondition can be harnessed to signify that a particular path is
obstructed, irregular, contaminated, or otherwise blocked. But the most reliable
will rely on “natural mappings” [35] and will themsclves satisfy the psychological
conditions of being good cues. Thus, the absence of a knife is a less good cue than
the presence of a pair of oven mits. That being said, a convention can be set up
whereby almost any arrangement can be called into service to signal prohibition.
For instance, a completely set table marks its being prepared for something
special: other activities that are regularly performed on tables, such as writing,
drinking tea, etc., are outlawed.

Case 3: Arrangements that draw attention to affordances

We have seen two ways of reducing an agent’s perceived option set by
structuring the workplace. The first eliminates actions from the perceived set by
reducing affordances so that certain actions are not perceived as locally available,
the second eliminates certain actions from consideration by prohibiting them-—by
creating cues. that carry the message don’t do that. Examples of arrangements
created to steal attention—to highlight affordances—are not as straightforward.
But they are prevalent.

We can distinguish two sorts:

(1) arrangements that highlight the obvious thing to do;

(2) arrangements that highlight opportunistic things to do.

The difference between the two turns on how habitual the action is that is cued.
For instance, at the check-out counter of supermarkets the person bagging
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grocerics operates in a strongly skill-driven manner. Owing to their accumulated
knowledge about the items that must be packed, and the space available for
buffering, baggers build up regular ways of solving their bin-packing problems.
Among their other tricks, they rely on arrangements in the buffer zone to help
call attention to obvious properties of the inventory.

In bagging groceries the simple rules of practice are to put large heavy items
at the bottom, more fragile items on the top, intermediate items go wherever
they will fit. The flow of goods being cashed through, however, seldom
matches the moment-by-moment requirements of packing. So the bagger is
forced to buffer goods. Better baggers begin to create side pockets of goods
in the buffer zone: thin fragile items, such as eggs or fresh pasta; items that
must remain upright, such as raspberries, or a slice of cake, or firm
cushioning items, such as magazines. Neither the choice of categories for
clustering nor the location of these pockets is arbitrary. From informal
obscrvation it is evident that certain classifications are standard and that
items in closer pockets are more likely to be used sooner.

Grocery packing is a complex interactive process in which control oscillates
between being internally goal directed—*I need an intermediate object now”—
and being feedback or data controlled—"“can’t I put this item in one of the bags
I've started already?”” By partitioning the space into identifiable clusters—*I need
a hecavy object—there’s a bunch by the register’—the agent reduces the
complexity of choice. This works in several ways. First, by creating equivalence
classes of items, heavy, intermediate, fragile, small, the bagger makes it easier to
spot a sought after type of item, and also easier to grab an item of that kind in a
hurry. Three small items clustered together make it easier both to remember and
to see where a small item is. Second, the urgency with which an item of a certain
kind need be packed correlates nicely with the size of its build-up in the buffer
zone. Because size is an attention-getting feature, the largest pile cries out for
early use. This has the salutary effect that the agent is less likely to forget items in
larger piles, and so, other things being equal, is more likely to use an item from
that pile next. Third, items nearer to the center of the workplace are more likely
to get noticed as vision sweeps over them in the normal course of packing. Hence,
other things equal, they too have a greater likelihood of being used. It is not
surprising that on questioning, baggers admit to often reserving that space for
items they intend to usc immediately after the next item. In each case, then,
placement of items serves to highlight particular features that are useful.
Clustering highlights the functional category of items; size highlights urgency; and
centrality highlights what is next to be used. Each highlighted feature helps to bias
choice.

The second class of attention-related biases relies on setting up the environment
to increase the chance of noticing regularly unnoticed possibilities—of seeding
opportunities (see Fig. 4). It is remarkably prevalent. Almost every activity
produces by-products and side effects, some of which can be re-used. For
instance, in repairing an old car the nuts and bolts removed when replacing a
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Fig. 4. A typical check-out scene in a supermarket reveals seeding the space around one with
attention-getting clusters of goods. Skilled baggers build buffer zones that collect as yet unpacked
items in functional groups such as fragile, heavy, keep upright. The groups of items that are nearby
arc likely to be used sooner than items more distant. The purpose of the groupings appears to be that
of enhancing the affordances of the items. Thus heavy items afford support, hard items afford
protection and so on. As baggers learn how to buffer and manage the space around the register better
they begin to pack faster and more effectively. Not only do they have what they need more at hand,
they can see what they have and so simplify choice.

worn out part are rarely thrown out immediately because they may prove useful
later in bolting the new part in place, or in other repairs. “Don’t throw out what
might be useful” is a conservative but rational policy. Yet there is a trade-off. The
more that is retained the more cluttered the space, with the result that the very
opportunities that might be found go unnoticed. How do agents manage task
detritus?

The principle behind clever by-product management is to leave around
whatever has a good chance of promoting opportunism. Opportunism is the
practice of taking advantage of opportunitics the environment provides in order
to fulfill a goal one did not originally set out to attain—the opportunistic goal lies
outside one’s current sub-goal context. Moreover, it is important that the cost to
attain the opportunistic goal is lower than normal—the context provides the agent
with a golden opportunity.'’

A simple example of cultivated opportunism is found in the practice of
carpenters:

** For example, T set out to go to the supermarket to buy dinner and note that the cleaners is nearby.
In stopping to pick up the cleaning, I am satisfying a goal that I did not originally intend. But the
environment provides me with an opportunity, which if noticed, can be exploited at less cost than
satisfying the goal from scratch. I can piggyback the opportunistic goal and save the cost of a second
trip.
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In the course of making a piece of furniture one periodically tidies up. But
not completely. Small pieces of wood are pushed into a corner or left about;
tools, screwdrivers and mallets are kept nearby. The rcason most often
reported is that “they come in handy”. Scraps of wood can serve to protect
surfaces from marring when clamped, hammered or put under pressure. They
can elevate a piece when being lacquered to prevent sticking. The list goes
on.

By wisely leaving around a certain clutter, an agent multiplies the chances of
getting something for nothing. But not just anywhere will do. The most successful
ways of seeding the cnvironment seem to require placing objects in positions
which have the greatest chance of displaying their affordances. This is not always
easy, for given the number of affordances an object has, it seems to require
knowing which affordances are going to be useful, when they are going to be
useful, and how to lay them about to call attention to just those affordances.
Thus, the problem of facilitating opportunism is to find a way of lcaving
equipment, intermediate products, and task detritus around the workplace to
highlight particular affordances.

If the agent has a system for placing objects—*I always keep the useful scraps
over there”—their affordance will be known. But equally, if clusters of objects,
organized by affordance, are built on the fly the agent also has a better chance of
noticing opportunities. A clear example shows up in flower arranging:

In flower arranging it is customary to leave around discarded by-products,
such as twigs and ferns, on the off-chance that they will prove useful in
striking on a felicitous design. Picces that scem most likely to be helpful are
kept closer. Spatial layout partitions by-products into categorics of possible
use.

In general, cueing attention to bias choice is a hit or miss affair. But, given a
clear understanding of what cues stand out, and how agents can encode
meaningful pointers out of them, we might hope to build systems for exploiting
cues to reduce task complexity.

3.3. Eliminating decisions

Let us say that a decision has been eliminated altogether if an agent has no
choices to make when at that state. A state may be at the meeting place of several
actions fanning in, or there may be only one previous state leading to it. In either
case, if a state has no fanout, we shall say that it no longer marks a decision point.
(See Fig. 5).

Good designers are forever looking for ways of contracting the number of
decisions users must make: not just in the number of actions they must consider at
any point but in the number of times they must make a decision at all. The fewer
degrees of freedom an agent has the simpler its task, providing of coursc that the
outcome is what the agent wants. Ultimate simplicity comes when there is only
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Fig. 5. The collapsed graph first shown in Fig. 2(c) shows us two types of eliminated dccision points.
In the first, at f, two paths that once were available have been eliminated so that the agent now has no
alternative to moving along the one path available. In the second type, at g, k, i, j ,k, the agent again
has no alternative, so in effect, behavior is determined from f onward.

c

one degree of freedom, or, more realistically, many degrees at the outset of a
task, but then after that nonc: the outcome is ballistically determined. It is forced.

Most examples of informationally forced choices are limiting cases of blocking,
narrowed action contexts, or attention stealing. Here is a different case that shows
how properties of our three-dimensional topology can be exploited to simplify a
problem, and so, in effect, do away with earlier choice points.

A familiar problem faced by tailors is to reliably measure and record on cloth
the given pattern they are to cut. The standard method is to first make a
paper mock-up then trace the image right through the paper onto the
material. In most cases the left pattern can be created simply by turning over
the right pattern.

The key technique in eliminating decisions shown hcre is to substitute
compliance for choice. Once the tailor has laid out the tracing paper, the rest is
ballistic. There is no need to make moment-by-moment decisions about where to
position the scissors: they are to follow the chalked line. Nor, for that matter, is it
necessary to explicitly calculate the mirror image paper mock-up. The simple flip
transform achieves that. By exploiting topological properties of the action space,
certain otherwise key decision steps in trouser construction have been designed
out of the process. The layout and cutout process are now so streamlined, and
constrained, that there is no real choice.
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3.4. Offloading heuristic properties

The third, and final way of using space to simplify choice is by creating
arrangements that serve as heuristic cues that indicate the desirability of actions.

Let us understand a heuristic property to be an easily computed property of a
local situation which allows us to rank the desirability of available actions. In
rational decision theory, heuristics (or case knowledge) are supposed to serve as a
plausibility filter, to be activated after a filter for availability has been applied
[14]. Heuristic information is supposed to explain how live options can be ranked
on the basis of local information. The distinction between this type of local
information and the type of local information available in cues that prohibit, draw
attention, or remind, is not hard and fast, but can be made by cxamining the
scope of the information. A heuristic cue, unlike a plug left in a drain, normally
applies to many choice points. For instance, in lining vegetables up into rows, our
salad maker created a heuristic cue that was meant to apply repeatedly to
decisions over the course of the task. It was a way of setting up the world to key
into the skills of the agent over the long haul. Accordingly, the set-up costs could
be amortized over the whole task. By contrast, in leaving a plug in the sink, or in
placing the next item to be bagged close by, the cost of sct-up must be paid off by
the savings in the next few actions.

Case 4: Encoding the temporal order of actions

One of the most obvious and compelling ways of using space—and judging by
conversation, the one most likely to leap to mind—is to lay down items for
assembly, in the order in which they are to be put together, touched, handed off,
or otherwise used. Space naturally encodes linear orders, and higher orders if the
agent has an encoding system in mind. The obvious virtue of encoding orderings
in the world is to offload memory. If 1 can arrange items to display the sequence
they are are to be used in, then I don’t have to remember that order, or figure it
out, or consult the manual, as long as I know how to read the information off the
local properties of the world.

Let us view an assembly problem as having two components: the selection
problem—which piece is the one to attach next; and the placement problem—
where and in what orientation should it be attached.

Here is an example of arranging pieces to simplify the selection problem:

Imagine repairing an alternator. One takes the device apart, checks each
piece, replaces the defective ones, cleans the old but usable picces, and
rc-assembles the lot. In an untrafficked workplace, it is easy to create a
geometrically simple spatial ordering that allows the property next position in
the arrangement to be read off trivially. For instance, if the items are laid out
in a straight line, interpretation of next is effortless. It is then trivial to decide
that the next piece in the line is the next piece to use. But in busier
workplaces and for harder assemblies, the orderings will often be more
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baroque: sub-assemblies may be segregated into groups but left unordered
within that, nuts and bolts may be put in small containers, larger pieces kept
nearby, and so on. Determining the next piece to use, in such cases, may not
be so simple.

Computationally, the advantage of having an ordering is obvious. In the extreme
case, we reduce a doubly exponential problem of deciding which picce to select
and where to place it, into an exponential problem. To scc this, suppose the
placement problem is regular: that at any moment there are two possible places a
piece can fit, front or back of the assembly. If the agent knows the right ordering,
and hence has a solution to the selection problem, then since there are two
possible placements for each piece in an arrangement, there are, in the worst
case, 2" possibilites to search through. If the agent must solve both the selection
and placement problems simultancously, then all n factorial permutations of
placements must be considered, generating O(22") possibilities to test. In the
felicitous case, where the assembly forces a unique placement, and there is only
one place a piece can fit at any moment, then given the right ordering the
assembly problem is constant time. By contrast, if the agent must find an
ordering, the problem is O(n’) even when the assembly forces a unique
placement, because at cach step the agent must try out the remaining pieces.

The trick in using space to encode placement order is obviously to have an
ordering that is easy to read off an arrangement. Intuitively, linear orderings are
just such an arrangement; they have a natural meaning for next. Moreover,
arranging parts linearly, has the added virtue that it is hard to misplace items. If
all parts are in a line, you know where to look. No surprise, then, that straight
line orders are commonplace. But there is a danger, too, in using linear orders:
the longer the line of pieces, the more likely the pieces are to be kicked out of
order. Consequently, for the sake of robustness, assemblies involving many parts
are better placed in a compact group. And indeed anecdotal reports suggest that
small groups are popular: bolts and nuts clustered together, sub-assemblics off to
a side. Furthermore, a simple linear order is not an expressive enough structure to
carry information of the form: build sub-assemblies one and two first, then
assemble those sub-assemblies, then assemble sub-assemblies three and four. (See
Fig. 6.)

As arrangements become more complex, however, they lose much of their
naturalness of interpretation, and depend more on an agent’s ability to remember
how things were laid out at set-up time. Memory for location is a current topic of
psychological inquiry. In an early discussion of this topic, Malone [33] provided
anecdotal evidence that subjects are surprisingly apt at locating documents in
their office space. This was thought to reveal hidden virtues in messy desks, for
the messier the desk, the more categories and cross-references one can achieve—
at least, in principle. In a more recent study of locational recall, though, Lansdale
[27, p. 1172] suggests that a subject’s ability to recall the location of an object—a
computer icon in an array—is disappointing in comparison to Malone’s anccdotal
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Fig. 6. In many assembly tasks it is necessary to complete sub-assemblies before all parts can be put
together. A simple trick some repair people use is to cluster sub-assemblies in groups, themselves
possibly strictly ordered, and to arrange the groups in ways that reflect the global order of assembly.
Here we sec a sub-assembly represented by a depression in a simple linear ordering.

evidence."" The reason the subjects themselves most often offered for their poor
performance—as revealed by their most frequent complaint during the experi-
ment—was that “different locations were arbitrary: there was no meaning to
them, and hence the encoding of locational information was an abstract process”
[27, p. 1174]. Further experiments which allowed subjects to exploit an encoding
strategy—a method of location assignment that made sense with respect to the
objects they were storing—showed that having a preexisting system was tremen-
dously helpful.

Now, if linear orders are insufficiently expressive, agents must rely on known
systems of arrangement, or on some design that makes sense relative to the
subject matter. For instance, in organizing icons in a MaclIntosh style environ-
ment, it would not be surprising if users arranged their icons for “‘peripheral”
equipment, such as hard and soft disks, printer, waste basket, fax machine,
remote terminal, around the physical periphery of the screen, and in a way that
would make sense if the screen were their office and the equipment distributed
around the walls. The semantics is clear here. Hence it is relatively easy to
remember where a given icon is to be found. But it is less easy to find a system
that conveys what piece to take next that does not rely on some perceptual cue,
such as next biggest, next in line. It is possible to make the system more complex
by incorporating a procedure of choice, such as, if one needs a hex bolt, then use
the one at the end of the hex bolt line, whereas if one needs a washer use the

' Whether this low success rate is due to subjects not having themselves determined the shape or size
of the matrix, or to the fact that subjects do not pick up locational information just by handling objects
is still unknown.
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biggest washer that is left. But at some point, as the visual search involved in
finding the next piece becomes more complex, the virtue of structuring items is
reduced.

Case 5: Encoding where to place it

In assembly tasks we distinguished the selection problem from the placement
problem. Arrangements that help solve the selection problem reduce the search
space by encoding the property next piece to use in an easy to read off manner.
Position in the spatial arrangement marks position in assembly sequence, so the
simple heuristic: use the next piece, is a reliable guide to action. The fact that
more expert agents can encode orderings in non-linear and not immediately
obvious arrangements proves only that they operate with sophisticated categorics,
not that they cannot determine next in a trivial way.

It would be attractive if a simple, or tractable, arrangement could be found that
solves both the selection and placement problems. For instance, one might try to
place the pieces on the floor in a manner that reveals where they go in the
growing assemblage, but in a way that also encodes next. Unfortunately there is
more information than can be encoded naturally’ in two dimensions.

Consider the case of assembling a desk:

In assembling a desk, standard practice is to arrange the key parts—the top,
the right and left sides, the important struts—beside each other on the floor
in a manner that reflects the way they will be put together. But temporal and
topological structure pull apart, because it is hard to sce how one can read
which part to use next from the layout. For instance, if therc is drilling to be
done, it may be done on each piece before any two are joined. If there are
intermediate steps which need be done before assembling the large pieces—
such as attaching physical connectors, sanding edges, and so forth—the
spatial display neither prohibits nor promotes that temporal ordering.

What should be apparent from this example is that as assemblages become
more complicated it becomes harder to read next off the arrangement. This is not
the same problem we discussed under non-linear orderings, above. The problem,
now, is that if we lay out pieces in a way which encodes information about
topological structure, we severely constrain the ways that remain for encoding
sequence. As mentioned, it helps to have a systematic method of arranging items
in mind beforehand. But, even so, the combinatorics are unbeatable. There is no
escaping the fact that complex topologies will evade description in 2D layouts,

" By natural, in this case, I mean that there is a non ad hoc arrangement that an agent can call on to
deal with the multi-dimensional problem of specifying when and where. Much of the problem lies in
specifying where. Given a device with a multi-dimensional topology, it is extremely difficult to specify
where an arbitrary part ought to be placed without using a general language with referential capacity
to identify the pieces it touches. Consider the limitations in identifying the connectivity of a large cube
made of smaller cubes. If the center cube touches cubes on all of its six sides there is no way of
analogically representing that connectivity in 2D excepi in terms of a graph structure with labeled
nodes.
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and no escaping that even with simple topologies there will be occasions when the
next piece to assemble lies on the other side of the floor, with no obvious spatial
reason for assuming it to be the next piece.

There are a few ways of viewing topological encodings. The most interesting, in
my opinion, sces them as the data set for a simple assemblage program. Observe
Fig. 7(a). Suppose an agent is told “fold each piece 90° and connect it with screws
to the pieces it touches”. The layout on the floor is the data to this program. If
the layout is properly set up, the three-dimensional connectivity will follow as a
consequence of applying the program. The agent needn’t review mentally the
results of applying the program, any more than he would in using a set of
compasses to draw a circle. If certain background conditions are correct—in the
case of the compasses, that the paper is flat, in the case of the desk, that the
layout folds correctly, then the algorithm will deliver the right answer given the
data.

Now analytically a data sct constitutes constraints on the output of a program.
If the program is simple and thc data set complex, the intelligence—the
constraint—lies primarily in the data. This is the key idea behind logic program-
ming. If, on the other hand, the data are simple and the program complex, the
intelligence lies primarily in the program. This is the key idea behind standard
procedural programming.

One technique expert assemblers learn is how to “logic program” with the
environment. They learn to put into the spatial arrangement enough information

(A4 B2) (D3 BI) (D2 Al) (E1 B3)
(E2A3) (C2B4) (C1 D4) (C3 E4)

a. b.

Fig. 7. In (a) we see a typical layout map for preparing the workspace to make assembly of a desk
easy. The agent is advised to lay the parts down on the floor before assembly begins. The physical
layout serves as input to a simple assembly program. By contrast, in (b) we see an alternative map that
labels edges explicitly and explicitly states connectivity. Figuring out how to lay the assembly on the
floor is itself a problem. So picces tend to be labeled and stored in a pile. This leads to more visual
scarch during assembly and more computation to ensure the right edges are connected. Not
surprisingly, informal reports indicate that instructions that rely on matching numbers and edges prove
to be harder in practice to follow.
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to use a simple procedure to complete the task. There is no reason this
arrangement may not be planned out beforehand. Indeed it often is. But the point
is that expert assemblers can multiply the speed of on-line assembly if they lay out
the parts well, as well as reduce the probability of error. (See Fig. 7.)

4. Spatial arrangements that simplify perception

In each of the examples just discussed the agent’s decision problem was made
combinatorially less complex by information that could be read off from the
environment. One way or another, the amount of internal search required for
choosing an action was reduced. A second fundamental way the problem of
choosing an action can be simplified is by re-organizing arrangements to facilitate
perception: to make it possible to notice properties or categories that were not
noticed before, to make it easier to find relevant items, to make it easier for the
visual system to track items.

Typically, in accounts of decision making, the cost of perception does not figure
significantly in the combinatorics of choice. The cost of determining whether a
perceptual operator applies to a world state or not, is assumed to have no effect
on the size of the subgraph that must be searched, because search size is a
function of the depth and breadth of a search, not how long it takes to identify a
state, or test an operator. Hence, perceptual costs are treated as, at worst,
contributing a constant increase in the complexity of a problem, they may
increase the cost of a search from b? to a(b?).

In absolute time, as opposed to asymptotic time, however, if there is a way to
more readily determine the action affordances at a choice point, or the ap-
plicability of a heuristic, the agent will have more time to make a choice. Any
change which makes recognition faster certainly simplifies the psychological
hardness of a problem.

4.1. Clustering to categorize

Perhaps the most obvious way of simplifying perception is to arrange objects in
space so that they form equivalence classes, or partitions, that reflect relevant
preconditions, or properties that are useful to track, notice, or exploit. For
instance, a standard precondition for washing a salad ingredient—a tomato—is
that it has not already been washed. Clean and dirty tomatoes can be hard to tell
apart. So one common ploy is to place washed tomatoes in one place, unwashed
tomatoes in another. By segregating the two groups we highlight their differences.
Examples of other objects already mentioned as being useful to classify include
the side groups in the buffer region of checkout counters, scraps of wood in
workshops, and playing cards which are usually ordered by suit and number in
bridge, and by scoring category in gin rummy.

The primary value of such external partitioning is that it makes it easier:

® to keep track of where things are;
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® to notice their relevant affordances.

Both factors are involved in recognizing the availability of actions and in
monitoring the current state. If I can’t find the garlic, I am not likely to think of
rubbing it on the salad bowl—I miss some available actions. And, if I can’t tell
whether the dishes are clean or dirty—i.e. I fail to monitor correctty—then I can’t
decide whether 1 should wash them.

Clustering helps solve these problems because it is harder to lose big things
than little ones, and harder to miss seeing what a whole group is good for. For
instance, memory for location, as was mentioned before, is regularly overesti-
mated. It is harder to remember where a pen is, than its color. But if the pen is in
the group of like colored objects, the sheer size of the colored group will simplify
the visual search problem. Color can be used as both a memory aid and a visual
cue.

A similar story holds for affordances. The fact that a group of hecavy glass
bottles is building up by the cash register highlights the fact that heavy items are
available. As merchandisers well know, one way to increase the chance of being
noticed is to occupy more space—make bigger displays. The same method is used
every day to simplify noticing affordances.

4.2. Other techniques for creating categories

Clustering is only one of the ways agents have of creating equivalence classes
on the fly. According to Gestalt theory other factors besides proximity which
determine whether we perceive a set of items as a group are such things as how
similar the items are (similarity), whether the items move together (common
fate), whether they fit into a smooth, continuous line (good continuation),
whether they can be seen as a closed form, and whether they stand out together
against a background (surroundedness). We have already seen examples of several
of these. Good continuation, for instance, is relied on by assemblers to distinguish
parts in their assembly plan from random parts in the workshop. Similarity is used
by baggers working in tight spaces where large heavy items, though clustered, are
directly beside small items.”> An example of surroundedness was supplied by one
reviewer of this paper. He mentioned that his father taught him to place the
various pieces of his dismantled bicycle, many of which were small, on a sheet of
newspaper. The newspaper served to mark out a region that was to be treated as
special; it demarcated a boundary within which items of a particular sort were to
be placed. Hence, it was easy to locate them, and they were less likely to be
kicked about.

The idea of creating a special region applies not only to cases where there is a
visible frame, a newspaper for instance, but to notional regions that an agent sets
aside. By creating such regions it is sometimes possible to achicve tasks which

3 . - . .
Bcecause common fate is a dynamic property we leave it for another time.
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might otherwise be impossible. An interesting example can be found, once again,
in the blocks world.

David Chapman [8] argued that it is possible to use a Pengi-like system to build
a nine-block tower—spelling FRUITCAKE—from an environment of 45 blocks
strewn about, provided that nine of those blocks already spell fruitcake and so can
serve as an example tower to copy. The technique his system uses requires having
snapshots of the entire environment, and moving markers around these snapshots
to make it possible to keep track of where the next useful block is, which blocks
must be removed to free that useful block, and so on. Using these markers as a
way of recording state information it is possible to rely on a simple compiled rule
system to copy the goal stack.

To scale this system up to cope with constructing arbitrary goal towers,
however, requires adding additional markers: one set to mark towers that have
been successfully built; and a second set to mark the goal towers already built. If
we did not have these extra markers, then there would be nothing to stop the
system from cannibalizing target towers for their parts, and nothing to stop the
system from repeatedly copying goal towers. See Fig. 8(a). Since there is
considerable cost in maintaining large numbers of markers this is an unattractive
solution. But, it is not the only solution. If we allow regionalizing the environ-
ment, and building knowledge of where those regions are into the system, we can
build arbitrary numbers of towers using just the original markers.

The trick is to divide the workplace into regions for storing the goal stacks, for
foraging for blocks, and for building the target stacks, and to create a known
ordering within those. Thus, region 1 will contain thc original goal stacks
organized in the order they are to be built; region 2 will contain the blocks
currently available for building towers, possibly organized alphabetically, but that
is not necessary; and region 3 will contain the new stacks currently being built. A
pengi-like system will now work successfully as long as we add three more rules.
As soon as the current goal stack is completed, move to the next stack on the
right in the goal stack region; if there is no goal stack to the right, announce
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Fig. 8. In (a), we sce a typical blocks world situation facing Blockhead, a Pengi-like tower copier. In
order to reliably copy the goal stack, shown on the right, Blockhead must rely on five visual markers
10 keep track of the stack to copy, the block to copy, the current spot in the stack being cleared, the
target block to be freed by clearing, as well as the stack being built. To copy more goal stacks would
require morc visual markers. In (b), we see the space regionalized into a goal stack region, a block
foraging region, and a target stack region. Stacks in the goal and target regions are ordered from left
to right. If Blockhead knows about these regions it can copy an arbitrary number of stacks without
relying on more visual markers.
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success. Build target stacks in the target stack region, starting from the left and
moving right. Search for blocks only in the resource region. As can be scen in Fig.
8(b), this is a simple way of preventing cannibalism, duplication, and failure to
halt. The point, to repeat, is that by creating external regions it is possible to keep
memory demands within psychologically realistic limits.

4.3. Symbolic marking

Yet another technique for categorizing, or identifying an object is to mark the
object with a cue that draws attention, or prods recall. For instance, when there is
a pair of hard to distinguish items we wish to differentiate, such as two wooden
spoons—one used for stirring a dark curry (currently cooking on the left front
burner), the other for stirring a brown sauce (currently on the right front
burner)—we may mark their difference by associating them with a known
distinguisher. For instance, we might keep them on the lids of their respective
saucepans (particularly if those are different in size), or we may place them beside
one of the key ingredients (e.g. the curry tin). Thesc arc cxamples of symbolic
positioning, or marking.

We have found marking to be an important resource for helping agents monitor
task statc. Here is another example.

In the videotapes Bernard Conein made of French householders preparing
apple tarts, we noticed that one cook, upon carefully measuring and cutting a
butter stick nearly in two, promptly lays her knife on the measured piece as if
to mark it as the piece to use. Both chunks of butter are similar in
appearance, so it would be easy to confuse the one with the other. But by
marking one piece with the knife, the cook has added extra information to
the environment that can help make clear what to do next. Admittedly, the
knife’s position on the butter can serve many functions: it keeps the freshly
used knife from dirtying the countertop, it keeps the knife itself from
becoming unsanitary, and it places the knife in an orientation that facilitates
grasping. But as well, it serves an informational function: it marks one half
stick of butter as being the measured half, and also marks the fact that the
measuring process itself has taken place.

Markers are a form of reminder. But with a twist. Whereas perfect reminders
both signal that something is to be remembered and encode what that something
is, markers really only serve the first function: they signal that there is something
here to notice or remember, but not what that is. For a marker to be effective it
must serve as an casy to use cuc for recall. The knife’s thoughtful positioning,
particularly if regularly so used, can provide the context for recall.

4.4. Clustering to sharpen perceptual acuity
So far we have considered how clustering and thoughtful placement can

highlight the category, or identity, of an item. By making more explicit the
category of an item, agents can more readily perceptually track the functionally
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important elements in their environment. Few tasks make this more evident than
solving jigsaw puzzles.

Veteran jigsaw puzzlers are often found grouping picces of similar shape or
color into distinct piles. Pieces with straight edges are regularly grouped
together, as arc corner pieces, blues, greens, and pieces with similar male
and female sockets. By sorting pieces that might otherwise be strewn about,
players drastically reduce the expected time needed to perceptually locate
appropriate pieces.

At first this may seem just another casc of clustering to produce equivalence
classes. But more is going on here. In solving a jigsaw puzzle the recurrent
problem is to identify, from among a large set of pieces, the single one which
correctly fits the target space. One of the properties of the game that makes it
hard is that both coarsc and fine discriminations are necessary. Coarse discrimina-
tions help with planning. “Cluster corner pieces! Look for parts of the sky!” But
fine discriminations are necessary to determine exactly which individual piece will
fit. Surprisingly, coarse grouping helps with noticing finc discriminations too.

The general strategy at work here is again a form of informational structuring.
It is easier for an agent to narrow the search to the correct piece within a coarse
group than to look for the piece from scratch. If the agent can create a
hierarchical classification, visual search can be reduced from O(N) to O(log N).
Hence coarse grouping is a usceful preprocessing technique.

Even more interestingly, a clever grouping can actually increase the fineness of
distinctions the agent is capable of noticing. I call this the vernier effect. Vernier
discrimination in visual perception refers to the eye’s ability to distinguish very
small displacements in the alignment of two objects or lines. This capacity to tell
whether two lines are lined up or displaced is harnessed in vernier scales (see Fig.
9). In classification, a similar effect occurs. When a jigsaw piecc is buried among a
variety of rather differently shaped pieces, subjects pick it out on the basis of
coarse differences. If it is buried among similar shaped pieces, subjects must pick
it out on the basis of fine differences. These fine differences are noticeable
precisely because we can lock in visually on subtle differences. Two objects that
are otherwise indistinguishable can often be distinguished if their images can be
superimposed. Proximity helps. So does quantity, for we thereby create a
reference class for comparison which highlights the kind of differences to note.
We change the resolution of our classification. (See Fig. 9.)

5. Saving internal computation

We have considered how spatial arrangements can reduce the amount of mental
search involved in choice, and also reduce the amount of visual computation
necessary to monitor current state, notice hints, and search for wanted items. A
third way an embodied agent can enlist the world is to pass off computation.
Familiar examples of such offloading show up in analog computations. When the
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Fig. 9. A vernier is an auxiliary scale that slides along the divisions of a graduated instrument to
indicate fractions of the divisions of the larger scale. It allows a user to make finer distinctions than
possible with one scale alone. The perceptual principle vernicrs rely on is called vernier discrimina-
tion, which is the capacity of the eye to note when two lines are not perfectly aligned.

tallest spaghetti noodle is singled out from its neighbors by striking the bundle on
a table, a sort computation is performed by using the material and spatial
properties of the world. An agent who encodes size or rank in noodle length, can
compute a fast sort by means of this physical process, as long as the result can be
decoded quickly. The method does not involve symbolic computation, or an
item-by-item comparison. It works by creating a visual cue that serves to make
the property in question explicit.

Such computational exploitations of the world are more common than usually
realized. When a tailor flips over a paper cutout, he is effectively computing a
description of the mirror image of the original shape. It is not evident that such
exploitation of the world qualifies as ‘“‘using space” intelligently. But I shall
include a discussion of some of the issues because the line between using the
world, and using the spatial properties of the world, is not an easy one to draw.

Let us turn now to an example that shows that the mental use of the world can
occur even at high speed.

5.1. High speed offloading

We have found in our laboratory studies of a fast-paced computer game, Tetris
(see Fig. 10), that players will physically manipulate forms to save themselves
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Fig. 10. In Tetris, pieces enter the board from the top and the player has to decide whether to move
them right, left or to rotate them. We have found that there is a burst of rotational activity in a region
about 800 ms to 1800 ms when the player is working out where to place the piece. External rotation
can be as fast as 150 ms, whereas internal rotation takes five to ten times as long. By externally
rotating pieces, players can save time in deciding where to place pieces.

mental effort [25]. They modify the cnvironment to cue recall, to speed up
identification, and to generate mental images faster than they could if unaided. In
short, they make changes to the world to save themselves costly and potentially
error-prone computations in the head.

The trick, in every case, is to modify visual input at exactly the right time to
supply information needed by other computations. This is a version of just in time
inventory control, only here, the inventory is informational. The effect is a highly
interactional computation, where the information for a step in the computation is
sometimes provided internally, and sometimes the information is provided
externaily. What binds the two together into a tightly coupled system is their
timing. See Fig. 11 for a sketch of the kind of process model this suggests.

To take one example from Tetris, we found that about 800 to 1800 ms after a
zoid cnters the screen, players display a burst of rotations. See Fig. 10 for an
explanation of Tetris. One hypothesis is that they rotate the piece rapidly to
generate the mental icons they need to try out candidate placements. To rotate a
zoid in the world takes far less time than to rotate its mental image. From our
own studies we have determined that mental rotation of tetrazoids takes between
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Fig. 11. In this figure internal processing components arc nudged forward in their own computations
by inputs caused by the agent’s actions. The difference between this and standard cascade models of
processing is that internal modules here can request motor output without much mediation, causing
changes in the external environment that are specifically targeted at improving their own performance.
From |25].

700 and 1500 ms; physical rotation can take place in 150 ms [25]. By shifting the
burden of imagery formation away from the mental rotation component, and
giving it, instead, to the faster working motor and perceptual systems, an agent
can save hundreds of milliseconds. This is what is meant by saying the agent uses
the world to save internal computation. External rotation solves the problem
“what would this zoid look like if rotated 90 degrees?”” Thus if there is a generate
and test process occurring in players when they are trying to decide where to
place a piece, a call to the motor system to physically rotate a piece can supply the
generator with exactly what it needs. Computational steps are not actually
climinated; they are offloaded from the agent to the world.

5.2. Externalizing representations and perspective flipping
In high speed interactions, the agent and environment can be so tightly coupled

that it may be plausible to view the two as forming a single computational system.
In that case, some clements of the computation arc outside the agent, some are
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inside, and the computation itself consists in the dynamic interaction between the
two. The general idea that the dynamic relations holding between an embodied
agent and its environment form a computational system has been advanced by Ed
Hutchins [19, 20] and Sylvia Scribner [43].

One fact about human cognition that lends itself to such interpretation is that
there are important psychological differences between external and internal
representations, suggesting that sometimes it is more desirable to operate with
external representations than internal ones, and vice versa. In [7] subjects were
asked to form mental images of classically ambiguous figures, such as the Necker
cube, the duck/rabbit. They had been shown several different ambiguous images,
and understood the relevant notion of ambiguity, although importantly, they were
naive to the test figures. Chambers and Reisberg found that none of the subjects
could discover any ambiguity in their images. Evidently, internal representations,
unlike their external counterparts, seem to come with their interpretation fixed.
An agent conjuring an image cannot separate the interpretation of the image from
the image itsclf. Reisberg [40] had this to say:

“After subjects had tried (and failed) to reconstrue their image, they were
asked to draw a picture from the image, and then attempt reconstrual of their
own drawing. In sharp contrast to the imagery data, 100% of the subjects
were able to reinterpret their own drawings. (These drawings were in fact
ambiguous, as a new group of subjects was able to find both construals in
them.) Once there was a stimulus on the scene (even a self-created one),
subjects could set aside the understanding they had in mind in creating the
stimulus, and interpret it anew. In imagery, the understanding is inherent in
the representation, so that there simply is no representation separate from
the understanding. With no freestanding icon to interpret, no reinterpretation
is possible. . . . As long as ideas are internally represented, they exist only via
a certain context of understanding, so that there can be neither doubt nor
ambiguity about what is intended.” [40, p. 8]

The implication is that if we want to discover important new elements in a
structure, particularly if this requires looking for novel interpretations, we are
better off depicting it cxternally, or consulting some pre-existing external
representation of it. The skills we have developed for dealing with the external
world go beyond those we have for dealing with the internal world. Hence, the
reason creative activity tends to make such extensive use of external representa-
tions may be because, in the discovery phase, one wants to note as many possible
extensions and variations to one’s ideas as possible. This is easier if the
representations are externalized.

Now, because computation regularly involves generate and test phases it is
possible that the most intelligent use of space is to try out conjectures. For
example, in the game of Scrabble, when we are searching for words, it is
customary to shuffle tiles around in the hope of triggering an association. We may
call activity of this sort, self cueing.

The principle of self cueing is a type of externalization that depends for its
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success on two factors: an internal module whose operations are, more or less,
encapsulated from interference by other modules, and a tight coupling between
internal and external processes. There would be no point fiddling with the outside
world to jog our memories if we could do the same internally just as fast. The
extra value flows from the way we associate items. We can get a fresh way of
looking at our Scrabble tiles, if we shuffle them. This approach crops up in a
range of self-help techniques. To solve an algebra problem we make explicit many
of the obvious transformations. To solve a geometry problem we often draw a
figure, or introduce constructions that alter the appearance of the structure. A
theory of how externalization improves cognition would certainly go beyond ways
of using spatial arrangements. But, we can be certain that in any such theory,
more than lip service will be paid to the role of spatial arrangement.

6. Conclusion

Throughout this paper, I have presented ways agents have of managing the
spatial arrangements of items in their workplace. To make it easier to stay in
control of activity, we rely on techniques which reduce the memory load of tasks,
the amount of internal computation necessary, or which simplify the visual search
and categorization that is inevitably involved in performance. Some of these
techniques we consciously apply, some we apply unwittingly. But all reflect our
tight coupling to the world. A coupling becomes tight, when timing becomes
important. In Tetris, for instance, zoids are rotated in the world to save mental
rotation. Timing is crucial. A few hundred milliseconds later, and a given rotation
will fail to carry useful information for a player. In bagging groceries, or in
cooking, we place items around us at particular moments. If well-timed, such
placements serve to remind us, to cue attention, to prevent us from considering
irrelevant alternatives. The virtue of such cues and constraints is that they
structure the information we take in as input. In fast-paced environments, this
informational structuring supplies hints and clues that advance computations that
are in progress. In slower-paced environments, such as Scrabble, jigsaw puzzle
playing, and shelving books, informational structuring also helps supply ideas,
hints and distinctions that facilitate problem solving. Even though slower-paced
tasks involve choices that span tens of seconds, it is still important to have the
right information at the right time. It is amazing how prevalent such phenomena
are in our everyday activities.

One theme which has been recurring, but which I have left largely unexamined,
is that many of our structuring actions serve to reduce the descriptive complexity
of our environments. This makes it easier to track the state of the environment.
The idea first surfaced in our discussion of the advantage of organizing lettered
blocks alphabetically, or into known chunks, such as morphemes. A planner who
first arranges blocks alphabetically reduces the need for visual search because he
or she is able to describe the state of the environment more compactly. The
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position of a block in an alphabetical list is known by heart, so it can be generated
without further knowledge of the particulars of the environment. The same
applics if we organize blocks into well-known units. Given an environment in
which the letters TEOEPPAPTTASSCERLAEP appear, we put a much smaller
strain on Working Memory if we manage the environment so that the stimulus we
see is chunked as in PET TAPE APPLE SOCRATES. Preprocessing the world
saves processing the representation of the world. Put another way, the greater our
understanding of the organization we maintain outside, the less we have to
memorize.

It is in this spirit of reducing the descriptive complexity of the environment,
that we can understand the virtue of creating critical cues, such as the relative
length cuc created by the cook who lined up the vegetables, described in the
introduction. When a cue is both easy to monitor, and it carries all the
information the agent need to know about the state of the ongoing process, it
reduces the processing required to track the current state of the environment. It
reduces the descriptive complexity of that state to a few bits.

Table 1 summarizes some of the examples discussed in the text. These cases
span only a fraction of the range of intelligent uses of space in everyday life, but I
believe they are representative.

Theorists in Al have dwelled on the intelligent use of time, hardly considering
space. Yet vision, our primary spatial sense, is one of humanity’s most powerful
capacities. It is little wonder that diagrams facilitate problem solving. Should we
not expect that much of our everyday competence might come from information-
ally structuring our workspace? I have tried to show what, in certain cascs, this
might mean, and why it is a reasonable idea to develop.

Table 1
Capacity improved ‘What has been reduced Mechanism
Recall Probability of an error in Reminders
prospective memory
Visual search Time complexity of search
Descriptive complexity of Use known orderings such as
environment chunks or alphabets
Probability of an error
Perceptual acuity ~ Granularity of perception Vernier effect
Micro-categorization
Reasoning Timce complexity of planning Cue next action through a known

ordering

Execution Probability of capture error Maximize cue separation
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