
Ontology	engineering	
-	The	basic	process	

What	is	an	Ontology?	
•  We consider computational ontologies
•  In this sense an ontology is an artifact that can be used as

a part of a software system
•  A model of something – whether the real world or some

imaginary world it is never an exact reproduction of it
•  In other words it is:

–  a descriptive specification of a set of contextual
assumptions about a domain of interest

•  While it is usually not:
–  a prescriptive specification of the inner structure of

‘true reality’

Why	develop	an	ontology?	
•  To develop a shared common understanding of the structure and meaning of

information
–  among people
–  among software agents
–  between people and software

•  To enable standardisation and/or reuse of domain knowledge
–  to avoid “re-inventing the wheel”
–  to introduce standards to allow interoperability

•  To make domain assumptions explicit
–  easier to change domain assumptions
–  easier to understand and update legacy data

•  To separate domain knowledge from operational knowledge (i.e. separate data from
operations in a system)

–  re-use domain and operational knowledge separately (e.g., configuration based on
constraints)

What	is	Ontology	Engineering?	
•  Ontologies are artifacts

–  Have a structure (linguistic and logical)

–  Their function is to “encode” a description of the world (actual, possible,
counterfactual, impossible, desired, etc.) for some purpose

•  Ontologies must match both domain and task
–  Allow the description of the entities (“domain”) and their attributes and relations, e.g.

cars and their characteristics

–  Serve a purpose (“task”), e.g. finding cars that match some customer criteria

•  Ontologies have a lifecycle
–  Created, evaluated, fixed, and exploited just like any artifact, e.g., like software

–  Their lifecycle has some special characteristics regarding:

•  Data, processes, argumentation, design patterns...

Two	main	kinds	of	ontologies	
•  Coverage-oriented ontologies

–  They cover the terminology/metadata/textual corpora/
folksonomies ... that fit a specific domain

•  Task-oriented ontologies
–  They are able to give a structure to a knowledge base that can be

used to answer competency questions and do reasoning

•  Currently on the Web
–  a mass of heterogeneous data and ontologies, either expressed or

portable to RDF (DB lifting, rdf-ized sources, etc.)
–  with generally low quality in some quality dimension/aspect

5	

What	is	needed	for	designing	ontologies	
•  Resources (“raw” material) - from domain experts

–  Reengineering is key
–  Thesauri2ABox, Lexicon2TBox, Tags2ABox, etc.
–  Texts, interview transcripts etc.

•  Formal languages, e.g. RDF(S) and OWL
•  Solutions (target configurations for the raw material)

–  Design patterns
–  Reusable/standard ontologies

•  Methods (production from raw material)
–  Collaboration workflows
–  Search, evaluation, selection, reengineering procedures, pattern matching and composition

•  Tools
–  Ontology engineering tools (TopBraid Composer, Protégé 4 and 5, WebProtége ...)
–  Management and versioning (github, w3id, Ontoology, ...)
–  API:s and frameworks for using and applying ontologies (Jena, OWL API, various triple

stores...)

The	overall	process	
•  Project scoping and initialisation

–  Figure out what to do, when, how and why and
with what resources

•  Project realisation
–  Elicit requirements, formalise the ontology,

evaluate and test
•  Deployment and maintenance

–  Apply the ontology to your data, and/or in your
software system, maintain the ontology over time

7	

The	overall	process	
•  Project scoping and initialisation

–  Figure out what to do, when, how and why and
with what resources

•  Project realisation
–  Elicit requirements, formalise the

ontology, evaluate and test
•  Deployment and maintenance

–  Apply the ontology to your data, and/or in your
software system, maintain the ontology over time

8	

Requirements	engineering	

9	

What	are	“requirements”?	
•  Viewing an ontology as a black box…

what should that box provide?
•  Functional requirements

–  Query results?
–  Inferences?
–  Error checking?
–  …

•  Non-functional requirements
–  Coverage
–  Efficiency
–  Documentation
–  Changeability – extendibility
–  …

Internal structure,
and content

Overall structure, acceptance
è Guidelines and rules for
development

Non-functional	Requirements	
•  Coverage

–  How important is the coverage of the domain? How will the ontology
be updated?

•  Efficiency
–  What OWL profile to use?
–  Reasoning off-line or online?
–  Query optimization, e.g. not requiring inferences

•  Documentation
–  Labels and comments?
–  Naming conventions

•  Changeability – extendibility
–  Should future extensions be prepared for?
–  Alignment to online ontologies, standards?

11	

Competency	Questions	(CQs)	
•  What do we want to ask the knowledge base?

–  Typical questions/queries

•  Can be used as requirements and as the basis for unit tests

•  Example
–  Example fact to be represented:

“Anders works at SAAB training systems”
–  Generalised knowledge, 'instance-free sentence':

“People work at companies”
–  Potential competency questions:

•  For what company does a certain person work?
•  What persons work at a certain company?

Competency	Questions	(cont.)	
•  Requirements of an ontology = competency questions + additional

constraints/restrictions and reasoning requirements
–  Additional restrictions (axioms) to be defined on the model,

usually restrictions over data
–  Reasoning requirements specify the facts that have to be

inferred before they can be retrieved through a query, i.e. they
are not explicitly stored in the KB

•  Example constraints/restrictions
–  Each flower shop sell at least 2 kinds of flowers.
–  Every flower shop sells some roses.

•  Example reasoning requirement
–  The class of “Popular flowers” is the flowers that have been sold

more than twice the past week

Trade-off:	Software	vs.	Ontology	
•  What functionality is going to be put into the software and what is going to

be part of the ontology?
–  An OWL reasoner is nothing more than general-purpose code for

processing data – why not use specific code in our system instead?
•  Ontology pro:s

–  The ontology makes assumptions explicit
•  Ontologies can be published and shared together with the data

–  The ontology can be changed at runtime without changing the code (or
with minimal changes)

–  The reasoning procedures are sound and well-defined, and they are
reused for all inferences

•  Software pro:s
–  More efficient?

14	

Hands-on:	CQs	

15	

