
Problem H

Simplified λ-evaluations

source: lambda.*

Lambda calculus is the main theoretical core of functional languages. It is
based on evaluating λ-expressions.

A λ-expression is a string of characters consisting either of 1) a
single constant (for example t), or 2) a function definition written as
Lhvari.hbodyi, where L denotes λ, hvari is always some variable (for
example x) that can occur in the hbodyi, which is again some λ-expression,
or 3) an application of some h f unctioni (for example f) to an hargumenti
(for example x), in our case written as (f)x, both h f unctioni and
hargumenti are λ-expressions.

The occurences of variable hvar1i in an expression E are called bound,
if they are inside of the hbodyi of some sub-expression Lhvar1i.hbodyi of
E. Variable occurences that are not bound are called unbound.

Evaluation of λ-expression results in another λ-expression and is
performed using the following rules:

1. Constant is evaluated to itself,

2. Function definition evaluates to itself,

3. Function application (h f unctioni)hargumenti is evaluated as fol-
lows: first, the h f unctioni is evaluated to Lhvari.hbodyi or something
else. In the latter case, the hargumenti is evaluated, and the whole
function application evaluates to (hevaluated f unctioni)hevaluated argumenti.
If the h f unctioni evaluates to Lhvari.hbodyi, the hargumenti is not
evaluated, but all unbound occurences of variable hvari inside of the
expression hbodyi are directly replaced by (substituted with) the ar-
gument hargumenti. The result of the whole evaluation of function
application is then the evaluated hbodyi, after the substitution was
performed.

We limit the expressions to contain a single-character lowercase (a . . . z)
variables and constants only. Sometimes the evaluation never stops.
Your program should perform at most 1000 function applications when
evaluating any λ-expression. During all evaluation steps, the evaluated
λ-expression will not exceed 10000 characters.
Here are some examples of evaluation of simple λ-expressions (shown in
several steps, the text behind ; is a comment):

17

1.

(Lx.x)y ; x <- y

y

2.

((Lx.Ly.(x)y)Lz.z)Lq.q ; x <- Lz.z

(Ly.(Lz.z)y)Lq.q ; y <- Lq.q

(Lz.z)Lq.q ; z <- Lq.q

Lq.q

Note that the scope of the variable next to λ covers only the body of the
lambda expression, and the same variable can occur at other places of the
expression, for example:

3.

((Lx.x)(Ly.y)Lx.x)x

((Ly.y)Lx.x)x

(Lx.x)x

x

The body of the λ-expression can contain unbound variables - constants:

4.

(((Lx.Ly.q)Lz.t)r)u ; x <- Lz.t

((Ly.q)r)u ; y <- r

(q)u

Finally note that our evaluation is simplified as compared to the real λ-
calculus: when the argument is substituted for all unbound occurences
of some variable during function application, some of the variable
occurences in the argument that were previously unbound can become
bound... This is normally solved by renaming all the variables in the
argument before the function application, and keeping track of correct
substitutions. In this problem, you don’t need to take care of this.

5.

((Ly.Lx.y)x)w ; y <- x

(Lx.x)w

w

The Department of Programming Languages decided to implement a new
functional language. However, they first need a core engine that will
evaluate λ-expressions. Write a program that will read a set of expressions
from the input file and output their evaluations.

18

Input specifications

The input contains set of λ-expressions, one per line. Only the last line
contains the expression consisting of a single constant z. You can assume
that the input is correct.

Output specifications

The output should contain the result of evaluation of the expressions on
the input in the same order as they appear in the input including the last
line. If the expression leads to more than 1000 function applications, the
line should contain single word “unterminated”.

Sample input

Lq.q

((Lx.Ly.(x)y)Lz.z)Lq.q

(Lx.x)x

((((Lm.Ln.Lf.Lx.((m)f)((n)f)x)Lo.Lt.(o)t)Lu.Lv.(u)(u)v)a)b

(Lx.(x)x)Lx.(x)x

(q)(Lx.Lx.x)z

z

Output for sample input

Lq.q

Lq.q

x

(a)(a)(a)b

unterminated

(q)Lx.x

z

19

