
What can Constraint Programming
contribute to an existing Optimisation

application?

Patrik Eveborn, Jonas Fager

Outline

■ Optimal Solutions AB

■ Home Care in Sweden

■ Laps Care

■ The optimisation engine in Laps

■ What can CP contribute to Laps

Optimization

Science

Networks

Logistics

Components

Financials

Production

Areas

Human Logistics
Field Service

Home Care

Application sectors

Home Care in Sweden

■ By law, the local authorities have to provide visiting
services to allow older people to continue living
independently at home

■ Wide range of services, from cleaning to medical
care

■ Sector employs 80,000 people, about 2% of
Sweden’s total workforce

■ Fast growing sector due to ageing population

Visit attributes
■ Type of visit:

– Cleaning, washing, medical,….
■ Time windows

– 45 minute visit between 8.30-9.45
– 1.5 hour visit between 13.00-15.00

■ Skills
– Medical, language, gender

■ Preferences
– Same staff member

■ Geographical location
– Own house, apartment or retirement home

Staff member attributes
■ Skills

■ Preferred geographical areas

■ Working hours

■ Target workload

■ Planned breaks (eg lunch)

■ Home base

■ Travel times between visits (by car, bike or foot)

Aims

■ Allocate maximum number of visits to staff

■ Maximize Customer Quality
– measured through continuity (short / long term)

■ Maximize Staff Quality
– measured through preferences for areas, even

workload etc.

■ Minimize travel time

Gantt-chart of visits and staff

Detailed plan showing time
windows

Map View

Laps Care – System overview

SQL-
server

Map
data

Optimisation
Engine

Visualisation /

Address matching

Storage of User data

Road network

Shortest
Path

Travel time
matrix

Users
GUI

Estimating travel times

A complete travel time matrix is required for all pairs of
customers for each transportation mode

Planning in Laps Care

Make an alternative solution?

Solution approach

■ Quick response times required by the clients

■ Experience with Branch & Price
– Too slow

■ Repeated Matching
– Vehicle routing problems

– Facility location problems

– Airline scheduling

Given a set of objects

Perfect matching

Matching with self matching

Matching problem





=
 otherwise,0

object with matched is object if ,1 ji
ij

aa
z

{ } Ijiz

I i,jzz

I jz

I izst

zdw

ij

jiij

Ii
ij

Ij
ij

Ii Jj
ijij

i

∈∈

∈=

∈=

∈=

=

∑

∑

∑ ∑

∈

∈

∈ ∈

, ,1,0

 ,

 ,1

 ,1

min

D:[22/22]

D:[17/17]

D:[12/12]

D:[7/7]

D:[5/5]

D:[5/5]

D:[8/8]

D:[5/5]

D:[5/5]

D:[5/5]

D:[5/5]

Experiences / Results
■ Quick solution times (within a couple of minutes)
■ Large savings in operational planning time

– Instead of all staff staying 30-45 minutes; only a few
minutes are required Æ 7% saving of total time

■ Travel times
– Savings are in the order of 20%

■ Quality
– Better combination of customer and staff member

preferences

■ Decreased sick leave

Modelling

CP provide a different way of
describing the world into a model.

Some features of commercial OR
development

■Limited resources

■Often incomplete problem description at start

■Impossible to know all constraints before
you’re done

Reality is the murder of a beautiful
theory by hard facts

In practice it is easy to use CP to express
different user demands of what is a good
solution.

For a user it is often easier to reason in
terms of CP than a pure mathematical
model.

What are our goals with using CP?

■Quick modeling
■Quick prototyping
■Cheap

Mozart-Oz to the rescue.

■Ideas can easily be tested.

■The ideas can be compared.

■Small fragments can be implemented in
C/C++/VB.

Not only CSP

■GUI is one of the most important areas.

■Guided help for manual changes. Hard to
visualize a solution to a complex problem.

■Need an integrated solver.

Max Guevara

■Prototype for prototyping.
■Focused for win32.

C dll ozf

Laps

Matching Problem, Again
■{Record.forAllInd MatchWith proc {$ SI S}

■ {Record.forAllInd MatchWith proc {$ QI Q}

■ S =: QI = Q =: SI

■ end}

■ {FD.element S MatchCost.SI Cost.SI}

■ end }

■ TotCost = {FD.sum Cost ’=:’}

■{FD.distinct MatchWith}

■{Record.forAllInd Pairs proc{$ I O}

■ {FD.element MatchWith.I WindowL TL.I}

■ {FD.element MatchWith.I WindowU TU.I}

■ T.I >=: TL.I

■ T.I =<: TU.I

■ T.I =: T.O

■ end }

■Root = sol(object:MatchWith taskstart:T cost:Cost totcost:TotCost)

■ {FD.distribute ff MatchWith}

