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Abstract—Modern automotive software components are often
first developed by different suppliers and then integrated un-
der limited resources by a manufacturer. The integration of
software components under various resource configurations is
prone to timing errors because 1) the components are resource-
independently designed by the supplier; 2) the components are
viewed by the manufacturer as black boxes during the integration
stage, so that imposing resource constraints/requirements on their
behavior is a challenge. This paper introduces an engineering
awareness environment for the analysis of automotive systems
with respect to two perspectives: 1) Time-aware design models
which correspond to the supplier perspective; 2) Resource-aware
design models imposed by the manufacturer during integration.
To this end, first, we propose two timed behavioral models: a
time-constrained model (TcM) and a resource-constrained model
(RcM) that are extended from a functional model (FM). A timing
analysis of applications can hence be conducted incrementally
by adopting the separation of concerns principle coming from
the Model-Driven Architectures (MDA). Second, given a basic
application component description of AUTOSAR with timing
properties, we specify how to define the behavior of the basic
components as process terms using a process algebra, ACSR-
VP, in order to exploit the description capability of the language
for both timing aspects and resource-constrained aspects of a
system. As a result, a timed behavioral model of a system can be
seamlessly refined by various resource configurations and both
platform-independent and platform-dependent timing properties
of real-time systems can be analyzed in a consistent and efficient
manner.

Index Terms—Formal specification, Timing analysis, Auto-
motive software architectures, Timing extensions, AUTOSAR,
Process algebra.

I. INTRODUCTION

NOWADAYS, safety standards and regulations for automo-
tive systems, such as ISO 26262 [9] and IEC 61508 [15],

demand the development of software/hardware components of
electrics/electronics systems according to specific and well
defined safety integrity levels. For safety-critical or safety-
related components, a rigorous development process and for-
mal analysis methods are required and/or recommended so
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that the developed system can comply with the required safety
integrity degree.

Traditionally, an automotive system is developed in such a
way that many components in the system are independently
designed and implemented by different suppliers and then
integrated by a manufacturer. Hence, it is indispensable to
ensure not only consistency of interfacing and interacting of
software components but also timeliness of the components.
For this reason, standardized software architecture (SA), such
as AUTOSAR [1] and AADL [5], has been extended with
timing attributes to capture and analyze the time-constrained
behavior of software systems. In particular, real-time prop-
erties of integrated components are easily violated when the
components are integrated due to limited resources and the
non-consideration of the deployment platform when designing
the components by a supplier. In fact, because of commercial
purposes a manufacturer would not disclose the detailed de-
scription of the deployment platform to the supplier.

Timing properties of concern to supplier and manufacturer
can be different. The supplier is more concerned about a
function-related timing property while the manufacturer is
more concerned about platform-oriented property including
the function-related timing property. The supplier is less
concerned about the limitation of resources of an operating
platform, such as CPU, memory, and network. From the
perspective of manufacturer, a configuration that requires less
resource is a better one, and thus manufacturers direct more
efforts toward integrating as many components as possible into
limited resources to reduce the system development cost. That
may lead the execution of applications to delay and deviate
from the desired time bound due to a priority relation in using
shared resources. Therefore, there is a need of a model that can
capture both perspectives of the supplier and the manufacturer
as well as an analysis technique that can analyze a system
model with respect to both perspectives.

The separation of concerns in Model-Driven Architecture
(MDA) [4] is an essential principle that enables applications to
be designed independently from a specific platform. It requires
each domain-specific application to individually devise its
modeling and analysis techniques appropriate for its domain.
However, the separation of concerns principle for the analysis
of timing properties has not drawn much attention yet.

Many approaches to timing analysis for software architec-
tures with timing extensions, such as [10], [19], have focused
on a timed behavior of components that is not concerned about
platform constraints. Moreover, they do not present a formal
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Fig. 1. Our approach to timing analysis for AUTOSAR

way to refine a platform-independent timed behavior model
of applications with platform-imposed resource constraints for
platform-concerned analysis. This leads to derive an efficient
way of parameterizing a real-time application with resource
constraints such that the timing design of software architec-
tures can be evaluated under varying resource constraints.

This paper presents a process algebraic approach for a
formal timing analysis of a software architecture (SA) design
for automotive systems adopting the separation of concerns
principle, according to the concerns of both supplier and man-
ufacturer. Also, it provides an efficient way of parameterizing
a timing design of AUTOSAR SA with resource constraints
by exploiting the primitive of process algebra for resource
constraints. In particular, we exploit the specification capa-
bility of a process algebra language, ACSR-VP [31], which
encodes a resource configuration upon timing specifications
of a system. Fig. 1 depicts our timing analysis approach that
exploits a formal specification and verification techniques. As
shown in Fig 1, a time-constrained behavior model is obtained
by extending a functional model with real-time constraints,
and a resource-constrained model is obtained by extending
the time-constrained behavior model with resources constraints
imposed by a given platform and these models are consistently
and systematically transformed from one to another. The
two behavioral models will be analyzed against the specified
timing requirements using formal analysis tools. In our case,
we use the VERSA tool which is a powerful reachability
analysis tool for the specifications given in terms of ACSR-VP.

In this paper, first, we formally define a timing analysis
framework for AUTOSAR software architecture (SA), where
the structure and properties of individual models are presented
together with a timed behavior model that can be refined by
embedding the resource constraints. In this framework, a time-
constrained model (TcM) and a resource-constrained model
(RcM) are distinguished so that timing requirements to be
implemented by suppliers can be designed and implemented
independently from a specific platform. The formal definition
of individual AUTOSAR SA description primitives for compo-
nents, interfaces and ports adheres closely to the AUTOSAR
requirements. Second, the individual description elements are
defined by process terms of ACSR-VP and given in the form of
macro templates such that a behavior model of an AUTOSAR
SA is systemically modeled by instantiating the corresponding
templates.

Mainly, the contribution of this paper includes:
• A timing analysis framework for AUTOSAR software

architecture models,
• Formal specification of AUTOSAR SA description ele-

ments using process terms of process algebra,
• Two formal models for timing analysis oriented to sup-

pliers and manufactures, respectively.
For our framework, we use ACSR-VP [17], a process

algebra language for real-time systems, and VERSA [6], a
tool of ACSR-VP. ACSR-VP is practical to describe both a
timed behavior of systems and a resource-constrained behavior
of timed systems. In particular, it supports the concept of
a priority relation of current processes for shared resources,
thus it is more effective to refine a timed behavior of a
system with platform-given resource constraints than other
formalisms. However, our methodology can be realized by any
formalism that supports the concept of timed behavior and the
means that can implement the concept of a priority relation.

This paper illustrates our approach by conducting a case
study, where an air system of engine control units in the
AUTOSAR software architecture with timing extensions is
specified and analyzed with respect to both timing require-
ments and resource constraints.

Section II presents the necessary background of our work. In
Section III, we formally define our timing analysis framework,
where individual modeling elements are characterized by
functionality, time and resources. In Section IV, we define
the individual AUTOSAR SA descriptive elements by a pro-
cess algebra and present them with macro process templates.
Also, we present a way of developing two behavior models,
TcM and RcM, for AUTOSAR SA models by composing the
process templates. Section V is a case study where a software
component of an engine control system designed according
to the AUTOSAR standard, extended with time constraints, is
checked against the well-known timing property, end-to-end
delay. In Section VI, we discuss the related work. Finally,
Section VII concludes this paper.

II. BACKGROUND

This section presents the necessary background of our work:
the AUTOSAR standard, the syntax and semantics of the
ACSR-VP process algebra.

A. AUTOSAR: An Automotive Software Architecture

AUTOSAR [1] is a layered architectural description for auto-
motive software systems developed jointly by manufacturers,
suppliers, and tool developers. The motivation behind the
introduction of such an architectural description is the decou-
pling of the functionality from the supporting hardware and
software services. Besides, AUTOSAR provides a uniform way
of integrating functional modules from multiple suppliers. It
is an open standard for automotive Electrics/Electronics (E/E)
architectures that will represent an infrastructure on which
software application can be constructed with the assistance of a
standardized SA, interfaces between components, development
methodology, and software developing tools.
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Fig. 2 depicts the development methodology adopted by
AUTOSAR: VFB (Virtual Functional Bus) views the system
as a composition of three primary description elements: com-
ponents, various standardized ports, and interfaces [8]. It
focuses on the application functionalities (SW Component
Descriptions) to be implemented. A VFB design can be
extended with the timing information in case of real-time
features, while ignoring the resource constraints because the
target platform is not considered at that stage.

The AUTOSAR templates provide the means, such as
runnables, to describe the timing properties of a system’s
dynamics, which are determined by the consumption of com-
putation, communication, and other hardware resources [7].
Given resource descriptions, such as ECU (Electronic Control
Unit), and various system constraints, each component in a
VFB design is mapped to a specific ECU and connected
by a network. Each component of the VFB includes one or
more runnables with the assistance of the standardized and
non-standardized basic software. At this stage, the system’s
functionalities are designed in accordance with resource and
system constraints and will be implemented to satisfy func-
tional and non-functional requirements including the timing
requirements.
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Fig. 3. Component model of AUTOSAR with timing extensions [21]

Fig. 3 shows a basic component of AUTOSAR SA and its
connecting interface that are extended with timing information.
Basically, the AUTOSAR SA standard models consist of com-
ponents, interfaces, and ports. A component has well-defined
ports, through which it communicates with other components.
The component behavior is given in terms of “runnable entity
(runnable)" describing its dynamics.

A port-interface (interface) associates a component with
other components. It defines the contract that must be fulfilled
by the port providing or requiring an interface. AUTOSAR pro-
vides six interface types, however in this paper we limit ourself
to two types only: “Client-Server" and “Sender-Receiver." The
Client-Server conveys the operations that can be invoked by
components, whereas the Sender-Receiver interface supports
the data communication.

A port of components is an interaction point that is used to
read/write data and receive/send signals from/to components
and the system environment. A port of a component is either a
“PPort" or an “RPort", which is one of six different types, such
as “Sender-Receiver, “Client-Server", “Parameter", etc. The
ports must be compatible with the corresponding interfaces.
A runnable entity (runnable) is defined by a sequence of
instructions (operations) that can be triggered by the Run-Time
Environment. For this reason, runnables are exploited for VFB
timing extension [8].

The AUTOSAR requirements on timing extensions [7] re-
quire the means to describe timing properties and constraints
by means of event chains. A timing property to be specified
includes the time consumed for computation, communications,
and use of the hardware resources.

We adopt a conventional timing extension for a component
of AUTOSAR SA [21] where individual runnables of compo-
nents are refined with real-time attributes, i.e. an execution
time, a period, and a deadline, and the interfaces are also
extended with a worst-case response time. In Fig. 3, the
runnable (Runable1) is constrained to three timing properties
(Period, WCET, Deadline). The interface (Interface) is con-
strained only by the worst-case response time (WCRT) because
it is activable whenever the associated component performs
an action on the underlying port and stays operational until
the third part component accepts the delivered data/event. The
runnable associated with a component can be constrained with
a deadline.

B. ACSR-VP and VERSA

Algebra of Communicating Shared Resources with Value
Passing (ACSR-VP) [31] is a formal specification language for
real-time systems in which data values can be passed between
communicating processes. ACSR-VP extends ACSR [22] with
a dynamic priority and a value-passing mechanism as follows:
1) priorities can be evaluated through expressions associated
to the individual processes, and 2) an instantaneous event is
associated with a value expression to denote a communication
time for the value. For example,{(cpu, y+1)} is a timed action
with resource cpu and priority (y + 1). For value passing,
(l, 3)?x is an event action requesting for the event l at priority
3. When the event l occurs, the process stores the received data
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in variable x. Similarly, (l, y)!5 is an output event l sending
value 5 with priority y.

1) Syntax of ACSR-VP: The syntax of the ACSR-VP alge-
bra P is as shown in Table I.

TABLE I
SYNTAX OF ACSR-VP

P ::= NIL | A : P | e.P | be→ P | P1 + P2 | P1||P2

| | P4ta(Q,R, S) | [P ]I | P\F
| P\\I | rexX.P | C(−→x )

e ::= (τ, ve) | (l?, ve) | (l!, ve) | (l?−→x , ve)
| (l!−→ve1, ve)

A ::= {S}
S ::= ε | (r, ve), S

We use x for value variables, ve and ve1 for value expres-
sions, and be for boolean expressions. The vectors of variables
expressions are denoted by −→x and −→ve, respectively. Also, we
use l to denote an event, and r for a resource. F and I are
used for a set of events and a set of resources, respectively.
NIL represents a deadlock process, i.e. the process cannot

make any progress. A : P and e.P are, respectively, action
and event prefix terms of the process P . A conditional process
term be→ P is introduced to incorporate conditions on value
variables. P can execute if the Boolean expression be is eval-
uated to be true. P1+P2 represents a non-deterministic choice
between P1 and P2. P1‖P2 denotes the parallel composition of
P1 and P2. The Scope operator 4 imposes certain constraints
on a process. So that for term P4ta(Q,R, S), the process P is
required to fire the event a before the time quantum t expires.
If the event a is triggered by the process P successfully before
the time t, it proceeds to the process Q. Otherwise, it is
taken over by the process R. The process S in the above
expression is an interrupting process so that the process P can
be interrupted at any time by the execution of the process S.
The Close operator [P ]I denotes that the process P exclusively
uses all the resources in I . The Restriction operator P\F
deprives process P to execute events in F. However, the τ
event caused by the event in F is still allowed, so that only the
communication between two processes using complementing
events in F is allowed. P \\ I describes the behavior of P
whereby the resources having identities in I are concealed.
The Recursive operator rexX.P denotes a recursive process
that repeats the behavior of P . A process constant C(−→x ) is
associated with a process definition of the form C(−→x )

def
= P

where the process P executes exploiting the values passed
by the vector of variables −→x . We also use (∅k : P ) as a
shorthand for the process (∅ : ... : ∅ : P ) that repeats ∅ k
times, representing an idling of a process for k time units.

2) The Operational Semantics of ACSR-VP: The semantics
of ACSR-VP is defined in two steps. First, a unprioritized
transition system P

α→ P ′ is defined. Second, the transition
system is refined by P α→π P

′ with priority information where
preempted actions are eliminated [17]. The transition rules
in Table II represent unprioritized operational semantics of
ACSR-VP. The rules are identical to the transition rule of

ACSR [17]. Rule ParC2 states that two parallel processes
P and Q communicate by passing a value through k. Rule
ActI4 accounts for the need to evaluate an expression for the
priority and the value to be transmitted. Rule ActI3 states
that the input prefix process (l?x, ve).P executes an input
operation reading the values in the variable vector x. Rule
ParC2 describes synchronization between P and Q using the
complementing events l? and l!, resulting in the τ event with
the priority n + m. Rule Cond states that if the condition
be holds, then the process P takes action, and otherwise the
process P behaves like NIL. According to Rule Rec, the
process C(−→ve) behaves in the same way as P [−→ve/−→x ] if there
exists a process declaration C(−→x )

def
= P .

Example 2.1: The following ACSR-VP description speci-
fies a timer that alarms when a given time duration elapses.

P
def
= (a?x, 1).P ′(x, 0) + ∅ : P

P ′(y, t)
def
= (t < y)→ ∅ : P ′(y, t+ 1)

+ (t = y)→ (b!y, 3).P

The process P starts by receiving a time value x via synchro-
nization on the channel a. The process P ′(x, 0) takes over the
execution by comparing the current time t and the given time
y (received as parameter in x). If t is less than y, P ′(y, t) is
repeated with t+1. If t is equal to y, the event action (b!(y), 3)
executes by sending the value of y via channel b, and then P
executes again.

A process term of ACSR-VP can be parameterized by a
macro template and instantiated as an actual process to be
executed. A macro template is defined by a starting process, a
continuing process, input and output parameters. For example,
a template PrcA is defined by the entering process P , the
exiting process P ′, and two input parameters rid and pri as
follows:

PrcA (P, rid, pri, P ′)

P
def
= {(rid, pri)} : P ′ + ∅ : P

The template PrcA is instantiable in the following way:

PrcA (Q,CPU, 3, Q′)

PrcA (R,CPU, 4, R′)

which are expanded (instantiated) to be actual process terms.
These two instances have identical behaviors as the following:

Q
def
= {(CPU, 3)} : Q′ + ∅ : Q

R
def
= {(CPU, 4)} : R′ + ∅ : Q

In the rest of this paper, the macro process template is
referred to as a process template.

3) VERSA: VERSA (Verification Execution and Rewrite
System for ACSR) is a formal verification for ACSR and
ACSR-VP [6]. It checks whether or not the system reaches
an undesired state that is not consistent with a verification
property modeled in a process term. VERSA supports three
types of analysis techniques:

1) Application of rewriting rules to ACSR specifications to
deduce system properties.
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TABLE II
UNPRIORITIZED TRANSITION RULES OF ACSR-VP

ActI1 (l?, ve).P
(l?,[ve])−−−−−→ P ActI2 (l!, ve).P

(l!,[ve])−−−−−→ P

ActI3 (l?x, ve).P
(l?n,[ve])−−−−−−→ P [n/x] ActI4 (l!ve1, ve2).P

(l![ve1],[ve2])−−−−−−−−−→ P

ActI5 (τ, ve).P
(τ,[ve])−−−−−→ P ActT A : P

A−→ P

ChoiceL P
α−→P ′

P+Q
α−→P ′

ChoiceR Q
α−→Q′

P+Q
α−→Q′

Cond P
α−→P ′, [be]=true

(be→P )
α−→P ′

Rec P [
−→
k /−→x ]

α−→P ′

C(
−→
k )

α−→P
, where C(x) = P

ParIL P
e−→P ′

P ′‖Q
e−→P ′‖Q

ParIR Q
e−→Q′

P ′‖Q
e−→P‖Q′

ParT P
A1−−→P ′,Q

A2−−→Q′

P‖Q
e−→P ′‖Q′

, where ρ(A1) ∩ ρ(A2) ParC2 P
(l!x,m)−−−−−→P ′, Q

(l?k,n)−−−−−→Q′

P‖Q
(τ,m+n)−−−−−−→(P ′‖Q′[k/x])]

CloseT P
A1−−→P ′

[P ]I
A1∪A2−−−−−→[P ′]I

, where A2 = {(r, 0)|r ∈ I − ρ(A1)} CloseI P
e−→P ′

[P ]I
e−→[P ]I

ResT P
A−→P ′

P\F
A−→P ′\F

ResT P
e−→P ′

P\F
e−→P ′\F

, where γ(e) /∈ F

HideT P
A−→P ′

P\\I
A′
−−→P ′\\I

, where A′ = {(r, p) ∈ A | r /∈ I} HideI P
e−→P ′

P\\I
e−→P ′\\I

2) Construction of a state machine, automatic exploration
and analysis of the state space to verify safety properties
and test equivalence of alternative process formulations.

3) Interactive execution of the process specification to ex-
plore specific system behaviors and sample the execution
traces of the system.

III. TIME AND RESOURCE-ORIENTED ANALYSIS

This section discusses our modeling and analysis method-
ology according to the perspectives of both suppliers and
manufacturers. This paper aims at analyzing a timed behav-
ior of an AUTOSAR SA description modeled from a VFB
perspective [8] with timing extensions [7]. To that end, we
provide a behavior semantics of AUTOSAR SA by defining
its basic descriptive elements with ACSR-VP process terms.
Defining the semantics relies on the informal descriptions
about the four primary SA descriptive elements: a component,
a port, an interface, and a runnable. The timing properties
regarding the dynamic of the system are characterized by
instantaneous or time resource-consuming actions made by
runnables and interfaces. An AUTOSAR architecture design
can be formally constructed by composing the descriptive
elements in ACSR-VP process terms, and then performing the
appropriate analysis for an ACSR-VP model of the AUTOSAR
architecture design.

A. Modeling Methodology

In practice, many E/E components of automotive systems
with the same functionality are reusable by different automo-
tive systems. The different execution deployment operating
platforms can operate the same software components with
different resource configurations. As a result, the behavior of
the software component can deviate from the desired one. For
this reason, the functionality of a system should pass through
at least two analysis phrases: at designing a functionality and
porting the implemented functionality on a platform.

From the same perspective, timing properties of real-
time systems can be divided into two classes: resource-
independent and resource-dependent timing properties. A
resource-independent timing property is a property that is to
be implemented as a part of functionality. For instance, the
following requirement

"The turn indicators should flash by a ON/OFF duty
cycle"

includes a timing property, ON/OFF duty cycle 1, as a part of
the functionality. The timing property is implemented to have
a delay.

Meanwhile, a resource-dependent timing property is a tim-
ing property that should be satisfied by the implemented
systems. For instance, the following requirement

"The door should be locked within 10 ms when the
key commands to lock"

is an end-to-end delay timing requirement. In practice, a
resource-dependent timing property cannot be analyzed prior
to the integration of software components exploiting limited
resources under various system constraints. Logically, execu-
tion of the current components sharing resources is subject to
the delay due to the prioritized acquisition of shared resources.
The analysis of a timing design ignoring resource constraints,
assumes that the execution of a system is given unlimited
resources.

In this paper, a resource-independent property is mod-
eled with functional behaviors by a Time-constrained Model
(TcM) while a resource-dependent property is captured
by a Resource-constrained Model (RcM) that refines TcM
with resource and system constraints. Compared to the
Platform-Independent Model (PIM) and the Platform-Specific
Model(PSM) in MDA, the focus of TcM and RcM is more on
timing properties.

1A duty cycle is the percentage of one period that elapses for a signal to
complete an on-and-off cycle.
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The ultimate goal of our paper is to analyze the timing
properties of a system represented by a behavioral model.
Basically, our model is based on an architectural design that
describes the structure of a system, in particular, the compo-
nent model of AUTOSAR SA. However, it is not originally
defined in a formal semantics, hence the behavior semantics
of an AUTOSAR SA is formally defined by ACSR-VP process
terms in a way that 1) the AUTOSAR SA descriptive elements,
i.e. components, ports, interfaces, and runnables are individu-
ally defined by behavioral elements using ACSR-VP process
terms, 2) the behavior of a component is composed of relevant
basic elements, 3) and individual component behaviors are
composed as a system behavior model. Each basic element is
parameterized by a macro template with a formal definition
of the element’s behavior using the ACSR-VP process terms.
The macro templates are instantiated with actual parameters.

B. Analysis Methodology

To develop timely correct automotive applications, we pro-
pose the following development process: first, a manufacturer
requires an automotive component by providing a functional
requirement specification including resource-independent tim-
ing requirements. Using AUTOSAR, such a functional require-
ment is given in the form of a VFB specification, which
might be extended with timing requirements for resource-
independent timing requirements. Given a functional require-
ment of a component, a supplier designs functionality and
characterizes timing properties of the component. Then, their
timing properties can be specified by refining runnables and
interfaces of a given VFB (Virtual Functional Bus) specifi-
cation with specific timing information, such as a WCET, a
period, and a deadline. Third, a manufacturer checks supplier-
designed behavior of applications against platform constraints
before integration of the applications and a specific platform.

Our approach supports the models shown in Fig. 4 to sup-
port the development process mentioned above. This frame-
work introduces three behavioral models: the Functional Be-

havioral Model (FM), the Timed-constrained Model (TcM),
and the Resource-constrained Model (RcM). First, FM cap-
tures a behavior of individual components complying with
functional requirements according to a given software ar-
chitecture description, but it ignores timing information. FM
can be used together with a VFB specification to describe
a detailed functionality of components. Second, TcM extends
FM w.r.t. timing information regarding functional behaviors,
based on timing extensions annotated to a SA description.
This timing information is independent from a platform and
must be implemented as a function. TcM can be used for
supplier’s design that specifies a timed functional behavior
of components independent from a platform. Third, RcM
extends TcM w.r.t. resource constraints regarding the resource
and system constraints including resource mapping tables,
scheduling policies for shared resources, and communication
mechanisms. RcM can be used for a manufacturer to check a
designed timed behavior of suppliers against various platform
constraints.

A FM and TcM can be used for PIM of applications. For
example, a FM is useful for a manufacturer of the automo-
tive system to provide suppliers with functional requirements
without timing features. A TcM can be used to describe
functional requirements together with timing requirements that
are independent from a platform. Meanwhile, a RcM is a PSM
in terms of behavior including both application and platform
features. It is useful for a manufacturer to specify and analyze
a configuration of platform resources.

Our timing analysis investigates TcM and RcM with respect
to timing requirements and constraints represented by a tim-
ing property behavior model, which monitors if the system
satisfies timing requirements and constraints.

In the following section, we formally describe our analysis
methodology. First, we define the relevant modeling elements.
Second, we define the composition of the modeling elements
for a component and a composition of components for a
system.
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C. Formal Definition of SA Analysis Framework

Basically, a behavior of a system is modeled with two
actions, timed and untimed (instantaneous) actions. Let A
denote a processing action that consumes time and resources.
Let E denote an untimed and instantaneous action which
could be a pure signal or data carrying. The AUTOSAR SA
is designed using the modeling elements of AUTOSAR and
denoted by < C,P, I,R >, where:
• C is a set of components,
• P is a set of ports,
• I is a set of interfaces,
• R is a set of runnables.

Individual modeling elements are specified by a specific iden-
tity i.e. a process and actions.

A component is characterized by a set of runnables and
ports. A port is given by its interfacing data and events whereas
the interface is given by the associated component’s ports and
communicating actions.

In the case of ports, we consider only two pairs of compat-
ible ports: RPort-Server and PPort-Client, and PPort-Sender
and RPort-Receiver ports. A port has one of the following
types:

Ptype ={serverrport, clientpport,
senderpport, receiverrport}

(1)

A port p ∈ P is characterized by a port identity, an event
carrying in/out signal and data, and its type. The set P of ports
is defined by:

P ⊆ Pid × EP × Ptype (2)

where Pid is a set of port identities, EP ⊆ E denotes the set
of events coming to the port or going out from the port, and
Ptype is a port type.

An interface ι ∈ I is modeled by a processing action that
handles communication between components. It connects an
input port of a component and an output port of another
component. It is regulated by a communication protocol,
which is distinguished by the interface type. According to the
AUTOSAR interface types, the type of an interface ι ∈ I is:

Itype = {server_client, sender_receiver} (3)

where server_client is the type of the interface connecting
server and client ports, and sender_receiver is the type of
the interface connecting sender and receiver ports. The type
of an interface implies the protocol that is followed by the
activated interface.

An interface ι ∈ I is characterized by an input event
associated with an output port of a component, an output
event associated with an input port of another component,
and a timed action to process a communication. The set I
of interfaces is defined by:

I ⊆ Iid × Ein ×A× Eout × Itype (4)

where Iid is a set of interface identities, and Ein ∪Eout ⊆ E .
A runnable of AUTOSAR SA is an action process that

executes the user-defined actions, exploiting various I/O ports

to communicate with others. The behavior of a runnable run
is defined by a list of processing actions with port actions,
which is in the following form of:

run = p1, a1, ..., an, p2, ... (5)

where a1, an ∈ A and p1, p2 ∈ P .
A component c ∈ C consists of one or more runnables and

ports. The set of components C is defined by:

C ⊆ 2R × 2P (6)

In our framework, a system model of AUTOSAR consists
of a set of components, ports interfacing a component, and
interfaces associating components. For timing analysis of a
system model, we introduce the following three models. First,
a functional behavioral model (FM) is defined by the union of
a subset of components and a subset of interface instances:

FM = (C, I) (7)

FM is a functional model that does not account for timing
information.

A TcM extends a FM with only timing information ignoring
resource-related information. For timing information, a timing
attribute t ∈ T is defined by a composition of a period, a
WCET, and a deadline:

T = prd×WCET × dline (8)

where prd, WCET , and dline denote a period, the
WCET, and a deadline of a runnable, respectively, such that
prd,WCET, dline ∈ N.

Runnable and interfaces can execute processing actions that
consume time and use resources. Two constraints functions
are introduced to restrict them to timing constraints. First,
a constraint function to associate a runnable and timing
constraints is defined by:

ΓR : R → T (9)

which associates a runnable with a time attribute.
Second, a constraint function to associate an interface and

timing constraints is defined by:

ΓI : I → N (10)

where N denotes the WCRT (worst-cast response time) of an
interface communicating action.

A TcM is obtained by restricting process actions of compo-
nent’s runnables and interfaces to timing constraints. Given
component’s runnables and interfaces restricted by timing
constraints, a TcM extends a FM such that:

TcM = (FM,ΓT ), where ΓT = (ΓR,ΓI) (11)

Let R be a set of resources and A a set of scheduling
algorithms. A RcM extends a TcM with resource constraints,
such as sharing policy. A resource is used by actions of
runnables and interfaces according to a scheduling (sharing)
algorithm. Thus, a resource constraint is given as a relation,
which is defined by:

ΓR ⊆ R× 2A ×A (12)
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Fig. 5. Component and Interface Model with Timing Extensions

where A is a set of processing actions executed by runnables
and interfaces.

Given resource constraints ΓR, a RcM is constructed such
that:

RcM = (TcM,ΓR) (13)

Example 3.1: Fig. 5 shows a basic AUTOSAR component
connected with two interfaces. It is extended with timed
information on the runnable and interfaces. A FM for this
model can be as :

C = {(R,P)}
R = {run1 = (p1, exe1, exe2, p2, p3)}
I = {(ιi, ein, epin, iexe1, sender_receiver),

(ιo, eout, epout, iexe2, sender_receiver)}
P = {(p1, epin, reciver), (p2, epout, sender)}
FM = (C, I)

For TcM obtained from the FM, the runnables and interfaces
are extended with timing information as, for example:

ΓR(run1) = (100, 15, 100), ΓI(ιi) = 15 ,ΓI(ιo) = 15

TcM = (FM,ΓR ∪ ΓI)

For RcM from the TcM, a constraints on resources can be
given as, for example:

ΓR = {(CPU1, {exe1, exe2}, FP ), (CAN1, {iexe1, iexe2}, FP )}
RcM = (TcM,ΓR)

In some cases, it might be necessary to give more infor-
mation about resource constraints, such as priority relations.

TcM is analyzed against timing requirements, focusing on
a resource-independent property. Meanwhile, RcM is analyzed
to check if the system in RcM satisfies timing requirements of
both resource-independent properties and resource-dependent
properties.

IV. FORMAL TIMED MODELS FOR AUTOMOTIVE
SOFTWARE ARCHITECTURE

A formal behavioral model of AUTOSAR SA description is
constructed in accordance with the formal SA given in the
previous section.

A system is a parallel composition of component and
interface processes in process terms. A component process
is captured by a list of port and runnable action processes.
In particular, a runnable process describes a sequence of pro-
cessing actions, and a port process describes input and output
event actions. An interface process describes communication
actions, such as reading/writing, receiving/sending, and data
processing actions for communicating.

TABLE III
THE CONCEPT PROCESS MODEL OF AUTOSAR SA SPECIFICATION IN

ACSR-VP

S
def
= C || I

C def
= c1 || ... || cn

I def
= ι1 || ... || ιn

c1
def
= run1 || ... || runn

run1
def
= start_run1.pin.a1...an.pout.run_end1
...

ι1
def
= intf_read_port1.intf_a1.intf_write_port1

...

Table III shows the conceptual behavioral model of an
AUTOSAR SA specification. S is the top process of the system,
which is composed of a set of parallel components C and
interfaces I. Note that the structure of the process S is
consistent with the definition of FM in Eq. 7. In the same way,
the component c1 is captured by one or more sequences of
port actions (pin and pout) and processing actions (a1, ..., a2)
according to the definition of the component in Eq. 6, the
behavior of runnable run1 according to Eq. 5, and the interface
ι1 according to Eq. 4.

In the following, we define the behavior semantics of
individual descriptive elements of AUTOSAR SA using ACSR-
VP process terms. The behaviors of individual descriptive
elements of AUTOSAR SA are based on their informal de-
scriptions in [8] and timing extensions of AUTOSAR SA are
based on [7].

A. Processing Action Process

In designing AUTOSAR SAs for operating platforms,
runnables and interfaces that execute processing actions that
consume time and use resources are restricted to a limited set
of resources, which might be shared according to a sharing
policy.

The sharing of resources might lead to delay of their
behaviors for an unexpected time. It is thus necessary to take
into account sharing mechanisms for shared resources, i.e.
scheduling mechanisms, when analyzing the timed behaviors
of runnables and interfaces.

Using ACSR-VP process terms, we design a processing
action taking into account three scheduling mechanisms: Pre-
emptive Fixed-Priority (PFP), Non-preemptive Fixed-Priority
(NFP), and Preemptive Dynamic-Priority, i.e. Earliest Dead-
line First (EDF).

1) Scheduled Processing Actions: Basically, a processing
action is defined as a scheduled timed action of ACSR-VP
controlled by a scheduling mechanism. A processing action
can use and consume a resource for a certain time. It can
preempt a resource or be preempted according to a scheduling
policy. In ACSR-VP, a timed action is scheduled according to
its priority, which is determined statically or dynamically. Ac-
cording to this principle, a processing action is characterized
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TABLE IV
PROCESSING ACTION TEMPLATES FOR RUNNABLES

PREEMPTIVE SCHEDULED ACTION
Temp1. PExRnb (P, rid, pri, tm, P’)

P
def
= P1(0)

P1(ct)
def
= (ct = tm)→ P ′

+ (ct < tm)→ {(rid, pri)} : P1(ct+ 1) + ∅ : P1(ct)

NON-PREEMPTIVE SCHEDULED ACTION
Temp2. NPExRnb(P, rid, pri, tm, P’)

P
def
= P1(0)

P1(ct)
def
= (ct = tm)→ P ′

+ (ct < tm)→ {(rid, pri)} : P1(ct+ 1)

PREEMPTIVE EXECUTION by EDF
Temp3. PExRnbEDF (P, rid, tm, dl, P’)

P
def
= P1(0, 0)

P1(ct, t)
def
= (t = dl)→ NIL

+ (ct = tm)→ P ′

+ (ct < tm)→ ∅ : P1(ct, t+ 1)

+ {(rid, (dlmax − dl) + t)} : P1(ct+ 1, t+ 1)

by three attributes: a resource identity (rid), a priority (pri),
and a resource-using time (ct).

Table IV shows three scheduled processing actions defined
by ACSR-VP process terms and parameterized by process
templates with formal parameters regarding timing attributes.
In addition to the basic parameters, the process templates add
two more parameters: the ID of the entering process P of the
template, and the ID of the exiting process P ′. The process P
is a process that begins a scheduled processing action, and the
exiting process P ′ is a process that should be executed after
the scheduled processing action finishes.

The template PExRnb defines a preemptive fixed-priority
action: the process P initiates the process P1(0), and then it
resets the execution time to 0. The process P1(ct) deviates
according to the condition of ct. If ct = tm, P1(ct) executes
the process P ′ to finish the processing. Otherwise, it selects
either the timed action or the idling action according to
the availability of a resource: If the resource r is available,
P1(ct) performs the timed action {(rid, pri)} for 1 time unit.
Otherwise, it performs an idling action ∅. The parameter ct of
P1 is the execution time spent on consuming resources, and
hence increases only when P1(ct) executes the timed action
{(rid, pri)}, and then proceeds to P1(ct+1). P1(ct) proceeds
to the exiting process P ′ when ct becomes equal to tm, i.e.
P1(ct) uses the resource for the required execution time tm.

In a similar way, a non-preemptive action NPExRnb is
defined so that a processing action is enforced to continue
to the end as soon as it begins. The difference of NPExRnb
from PExRnb is that if ct < tm, it executes the timed ac-
tion {(rid, pri)} without being preempted until the condition
ct = tm holds.

A preemptive action according to EDF can be modeled
as the template PExRubEDF. In contrast with the former

TABLE V
TEMPLATES FOR PORTS

SERVER PORT
Temp4. PortSrv(P, requestchan, pri, P’, P”)

P
def
= (requestchan?, pri).P ′ + P ′′

CLIENT PORT
Temp5. PortClnt(P, listenchan, pri, P’, P”)

P
def
= (listenchan!, pri).P ′ + P ′′

RECEIVER PORT
Temp6. PortRcv(P, writechan, pri, P’(data), P”)

P
def
= (writechan?data, pri).P ′(data) + P ′′

SENDER PORT
Temp7. PortSnd(P, readchan, pri, P’, P”)

P
def
= (readchan!data, pri).P ′ + P ′′

scheduled processing actions, it is not given a priority as its
parameter because the priority is computed according to the
absolute deadline (dl) and the current time (t) since the process
has begun by the EDF scheduling policy.

B. AUTOSAR SA Element Processes

1) Port Processes: A process for a port is modeled in a
straightforward way. In this paper, we present four types of
ports: Server, Client, Sender, and Receiver. Basically, a port
process interfaces between a component and an interface by
transmitting signals and data.

In Table V, the port templates PortSrv and PortClnt repre-
sent Server port and Client port, respectively. The templates
PortRcv and PortSnd correspond to Receiver port and Sender
port,respectively. PortSrv and PortClnt use the signal channel
primitives of ACSR-VP, i.e. requestchan and listenchan,
Meanwhile, PortRcv and PortSnd use the data channel prim-
itives, i.e. data. The process P of all the port processes
performs an input or output action.

The process P in PortSrv listens to a service request from a
component via the signal channel requestchan, and PortClnt
requests a service to other component via the signal channel
listenchan. The port templates PortRcv and PortSnd pass
data through the channels writechan and readchan with
priority pri. PortRcv reads data from other components while
PortSnd transmits data to other components to an interface.
In the case of PortRcv, P invokes the process P ′(data) to
process the data after reading it from the channel readchan.

In case of that an input or output action of the port processes
are unsuccessful, P ′′ can perform a special action such that
the port become synchronous or asynchronous. For instance,
if P ′′ is defined as ∅ : P , the process P repeats an input or
output action again after 1 time unit.

2) Interface Process: AUTOSAR requires the port inter-
faces to function in accordance with communication contracts
[8]. In our framework, we are concerned not only with
communication contracts but also with time and resource-
constraints. We present two different communication interfaces
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TABLE VI
TEMPLATES FOR INTERFACES

SERVER/CLIENT INTERFACE
Temp8. InfSrvClnt(P, listenchan, requestchan, rid, pri, tm, init)

P
def
= ∅ : P + (listenchan?, pri).P1(0)

P1(ct)
def
= (ct = tm)→ P2

+ (ct < tm)→ {(rid, pri)} : P1(ct+ 1) + (init?, pri).P

+ ∅ : P (ct)

P2
def
= ∅ : P2 + (requestchan!, pri).P + (init?, pri).P

SENDER/RECEIVER INTERFACE
Temp9. InfSndRcv(P, readchan, writechan, rid, pri, tm, init)

P
def
= ∅ : P + (readchan?val, pri).P1(0)

P1(ct)
def
= (ct = tm)→ P2

+ (ct < tm)→ {(rid, pri)} : P1(ct+ 1) + (init?, pri).P

+ ∅ : P (ct)

P2
def
= ∅ : P2 + (writechan!val, pri).P + (init?, pri).P

observing AUTOSAR: Server/Client and Sender/Receiver. The
interface Server/Client is used for event communication and
the interface Sender/Receiver for data communication.

Basically, the behavior of the interfaces is similar to that
of the port processes, except that it is constrained by time
and resources. An interface process begins by reading an
input data/signal from a port of a source component, and
then it executes a processing action to manipulate the input
data/signal. It then finalizes the communication by transmitting
the processed data/signal to a port of a destination component.
For instance, the process P in Server/Client interface template
of Table V is activated when receiving the event listenchan
from a Client port. After processing the event, the process
P2 sends the event requestchan to a Server port which is
receptive to the event.

The templates InfSrvClnt and InfSndRcv in Table VI are the
process templates that define the behavior of the Server/Client
and Sender/Receiver interfaces, respectively. The interface
process in InfSrvClnt interacts with the Server and Client
ports. It listens to a request from a Client port via the chan-
nel listenchan, and serves a Server port via requestchan.
The template InfSndRcv is the same as InfSrvClnt, except
that it uses valued (data-delivering) channels, readchan and
writechan, to transmit data. The interface process in InfS-
ndRcv interacts with the Receive and Sender ports. It receives
a datum from a Sender port via the channel readchan, and
sends a datum to a Receive port via writechan.

For the description of the use of resource and time, the pro-
cess P1(ct) in templates InfSrvClnt and InfSndRcv is designed
to exploit the resource rid for ct time units.

3) Component Process: A basic component of AUTOSAR
SA consists of one or more runnables and ports. In practice,
a runnable is initiated by a regularly periodic event or by
an irregular event. We introduce a dispatcher that dispatches
a runnable periodically. In our model, the dispatcher has
two functionalities: initiating the execution of a runnable and

TABLE VII
TEMPLATES TO COMPOSE COMPONENT ELEMENTS

START
Temp10. StartRnb(Pstart, st, pri, P)

Pstart
def
= (st!, pri).P + ∅ : Pstart

STOP
Temp11. StopRnb(Pstop, done, pri)

Pstop
def
= (done!, pri).NIL

DISPATCHER
Temp12. DPRnb(Disp, PStart, prd, dl, pri, st, done)

Disp
def
= (Start ‖ Mon)\{st, done}

Start
def
= Pstart4prddummy(NIL, Start,NIL)

Mon
def
= (st?, pri).F in4enddl (Mon,NIL,NIL) + ∅.Mon

Fin
def
= ∅ : Fin+ (done?, pri).(end!, pri).NIL

monitoring if a runnable misses the deadline.
The dispatcher cooperates with a starter and a reporter in

the following way: First, the starter begins execution of a
runnable process, synchronizing with a dispatcher and initiates
monitoring of the runnable process at the same time; Second,
the reporter notifies a dispatcher of the termination of a
runnable process in order for the dispatcher to check if the
execution of the runnable process has missed the deadline or
not.

Table VII lists the starter (StartRnb), reporter (StopRnb),
and dispatcher DPRnbl: The process P in the template
StartRnb is a runnable process that is to be initiated by a
dispatcher. The Pstart synchronizes with a dispatcher by
event st so that the dispatcher begins to monitor if the runnable
process has missed the deadline. Whenever a runnable process
finishes, it activates the process Pstop in the template Sto-
pRnb, which notifies a dispatcher by event done! to check if
the execution of the runnable process misses the deadline or
not.

The process template DPRnbl in Table VII is a dispatcher. It
has two functionalities: initiating and monitoring. The process
Start in DPRnbl is used to initiate a runnable process in
a way that the process Start activates the process Pstart,
which is the associated starter that waits until the period
prd expires. Simultaneously, the process Mon begins by
synchronization with the starter by event st and executes the
process Fin, which waits for done. If the synchronization
between a reporter and Fin is made by done, the process
Fin fires the event end to lead Mon to repeat the waiting
of the event st. Unless the process Mon receives the event
end before the deadline dl elapses, a deadlock occurs with
executing the NIL process.

C. System Process

The runnables, ports, interfaces, and dispatchers in ACSR-
VP process terms constitute a system component model, which
is obtained by binding those processes with associating events.
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TABLE VIII
TEMPLATE TO CONSTITUTE A SYSTEM MODEL

SYSTEM COMPOSITION
Temp13. SysComp(SYS, Components, Interfaces, SyncEvents)

SY S
def
= (Components || Interfaces)\SyncEvents

The system process SY S in Table VIII composes com-
ponents and interfaces into a system process by using a
set of synchronization events. That is, all the interfaces are
combined with ports used by runnables in components using
complementing events, e.g. e! and e?. SyncEvents is a set of
complementing events that enable the synchronization between
interfaces and ports.

D. Examples of TcM and RcM in Process Templates

1) TcM Construction: Listing 1 shows the TcM of Fig. 5
that is modeled using process templates. It considers only
timed behaviors of runnables and interfaces without resource
concerns. Thus, the time-concerning process templates, i.e.
IntSndRcv, PExRnb, and DPRnb, are given execution times
and exclusive resources without specific priorities.

The process template IntSndRcv in Line 2 represents the
interface I of Fig. 5. The first parameter I1 denotes the process
ID of the interface process, and the second parameter I is
its input event from a port. The third parameter p1in is the
event that goes to a port of its communicating component. In
this case, the port process PortRcv(Port1, p1in, 0, RunExe1)
in Line 7 will respond to the event from this interface. The
fourth and fifth parameters are, respectively, a resource and
time that are exploited to execute this interface process. The
last parameter is the event that resets the interface process. In
Line 6-7, the runnable run1 of Fig. 5 is represented by process
templates. The runnable is initiated by template StartRnb when
the dispatcher template DPRnb in Line 13 sends the event
startrun1 to StartRnb. The runnable expects to receive data via
the template PortRcv which is connected with the interface in
Line 2 via event p1in. When the process in template PortRcv
receives p1in, it activates the process RunExe1 that is the first
parameter of template PExRnb. Note that PExRnb specifies the
execution of the runnable that consumes 15 time units using
the resource RunExe1CPU. Afterwards, the process PExRnb
invokes the process Port2 that is a port process of template
PortSnd in Line 9, which is connected with the interface of
I2 in Line 3 via the event p2out. In the end, the runnable
finalizes its action using the process template StopRnb by
sending the event donerun1 to the dispatcher template DPRnb
so that DPRnb notices the end of the runnable’s execution.

Listing 1. TcM of Fig. 5 in process templates
1 / / I n t e r f a c e D e f i n t i o n
2 In tSndRcv ( I1 , I , p1in , 0 , INFCAN1 , 15 , i n i t )
3 In tSndRcv ( I2 , p2out , O, 0 , INFCAN2 , 15 , i n i t )
4
5 / / Runnable D e f i n t i o n
6 S t a r t R n b ( S t a r t r u n 1 , s t a r t r u n 1 , 0 , P o r t 1 )
7 Por tRcv ( Por t1 , p1in , 0 , RunExe1 )
8 PExRnb ( RunExe1 , RunExe1CPU , 0 , 15 , P o r t 2 )
9 Por tSnd ( Por t2 , p2out , 0 , EndR1 )

10 StopRnb ( Repor t run1 , donerun1 , 0 )

11
12 / / D i s p a t c h e r f o r Runnable
13 DPRnb ( DispRun1 , run1 , 100 , 100 , 0 , s t a r t r u n 1 , donerun1 )
14
15 / / Sys tem D e c l a r a t i o n
16 # d e f i n e I n t e r f a c e s = I1 | | I 2
17 # d e f i n e E v e n t S e t = { p1in , p2ou t }
18 # d e f i n e Componets = DispRun1
19
20 / / Sys tem D e f i n t i o n
21 SYSTEM( SYS , SubSYS , I n t e r f a c e s , E v e n t S e t )

Note that the parameter of the time-concerning templates
for resource is filled with an exclusive resource ID, such
as INFCAN1 and RunExe1CPU, which is not shared by any
processes. That is, the resource-concerning process execute
without resource constraints.

2) RcM Construction: A RcM is obtained only by re-
placing the exclusive resources of runnable and communi-
cation interface processes of TcM with actual resources. For
given resources, scheduling mechanisms are also implemented.
Some scheduling policies, such as the fixed-priority scheduling
algorithm, might require specifying a priority relation between
processes. For such a case, a priority relation can be specified
by the following grammar:

rid := pid | S | ε
S := pid > S | pid : s | :: schp

where rid denotes a resource ID and pid denotes a process
ID that shares the resource RId. “>" denotes the priority
precedence between processes. ":" means that priorities of
the two processes are the same. Finally, schp is a scheduling
policy that determines priorities of processes.

For instance, a resource constraint for the runnables P1, P2,
and P3 regarding a resource ECU1 can be given as follows:

ECU1 = P1 > P2 > P3 :: RM

For the execution RunExe1 at line 8 in Listing 1,
RunExe1CPU is replaced with a concrete resource ECU1, and
the priority 0 is replaced with 4. The final form of the template
to be RcM is as follows:

8 PExRnb ( RunExe1 , ECU1 , 4 , 15 , P2 )

For interfaces I1 and I2 in the TcM above, resource constraints
for them can be specified as follows:

CAN1 = I1 > I2 :: FIFO

Lines 2, 3 in Listing 1 are refined to RcM by the above
resource constraints, resulting in :

2 InfSndRcv ( I1 , I , p1in , 15 , CAN1, 25 , i n i t )
3 InfSndRcv ( I2 , p1our , O, 15 , CAN1, 30 , i n i t )

E. Specification of Timing Properties

A verification property is also specified as a process model,
called the timing constraint process, independently from the
system behavior model of AUTOSAR SA. The process model
is combined with a system behavior model and used to check if
the system behavior model satisfies timing properties required
by the constrained process.
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1) Timing Constraint Process: An end-to-end delay detoe
is a delay that elapses between two causal events In and Out
and can be defined by:

In→ Out ≤ detoe

which requires that for the given input In, the system gener-
ates the output Out not before detoe time units elapses. This
property can be formulated as a process model.

TABLE IX
TEMPLATE FOR THE COMPOSITION OF A SYSTEM MODEL AND

END-TO-END PROPERTY

END-TO-END DELAY
Temp14. EndToEndDly(P, detoe, In, Out)

P
def
= ∅ : P + (In?,MaxPrio).P14enddetoe

(P,NIL,NIL)

P1
def
= recX.({} : X + (In?,MaxPrio).X

+ (Out?, 1).(end!, 1).NIL)

Table IX shows a timing property model in ACSR-VP
process terms. This process checks if the output Out is
generated by the time detoe whenever it reads the input In.
Unless the output is generated on time, the process results in
deadlock.

Listing 2. Composition of system model and timing property model
1 / / Sys tem model
2 SYSTEM( SYS , SubSYS , I n t e r f a c e s , E v e n t S e t )
3
4 / / T iming p r o p e r t y model
5 EndtoEndDly ( P r o p e r t y , 250 , ChkIN , ChkOUT)
6
7 / / Env i ronmen t Model
8 Env=IEnv | | OEnv
9 IEnv ={} : IEnv + ( ‘ I , 1 ) . ( ‘ ChkIN , 1 ) . TimeDly ( 1 0 0 , IEnv )

10 OEnv ={} : OEnv + (O, 1 ) . ( ‘ ChkOUT , 1 ) . OEnv
11
12 / / Compos i t i on o f Models .
13 ES=(SYS | | Env | | P r o p e r t y ) \ { ChkIN , ChOUT}

A timing property to be investigated is specified as a model
and composed with a system model for timing analysis. An
environment model of the system is necessary to be composed
with the system as well. Listing 2 shows an environment
model, ENV, which consists of IEnv and OEnv. The process
IEnv triggers the system every 100 time units by the event
I. Whenever stimulating the system, IEnv triggers the timing
property model, Property, by the event ChkIN to initiate
analysis by the property model. The process OEnv is waiting
for outputs from the system with expecting the event O for the
end-to-end analysis. If it receives the event O, then it informs
the timing property model of the end of the system’s reaction
by triggering the event ChkOUT. Finally, the composition of
a system under analysis, the timing property model, and an
environment model can be like the process ES in the last line
of Listing 2.

V. CASE STUDY: THE AIR SYSTEM IN ENGINE CONTROL
SYSTEM

In the case study conducted in this section, we illustrate
how to design and verify an AUTOSAR SA component of an
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Fig. 6. Overview of air system [21]

engine control system [21]. Through this case study, we show
the applicability of our approach to practical development.

The system we analyze is the air system, a component
of an engine control system conforming to the AUTOSAR
architecture. Fig. 6 shows the data flow description of the air
system to compute a desired throttle position according to the
current throttle position and the accelerator pedal position. The
timing requirements of the system include the following:

• The sampling rate of inputs AcceleratorPedalPosition1
and AcceleratorPedalPosition2 is 10 ms.

• The sampling rate of inputs ThrottlePosition1 and Throt-
tlePosition2 is 10 ms.

• The actuating rate of the outputs DesiredThrottlePosition
for the 4 inputs is 10 ms.

Among those timing requirements, we focus on the property
that “the output of the air system should be released within
10 ms since an input is fed to the system."

A. Air System in AUTOSAR SA with Timing Extensions

Fig 7 shows the air system that is designed in an AUTOSAR
component model with timing extensions. The runnables are
extended with the period, the worst-case execution time, and
the deadline. For instance, the runnable APedSensorRunnable
is extended with 5 ms (millisecond), 0.2 ms, and 0,5 ms, which
correspond, respectively, to the period, the worst-case execu-
tion time, and the deadline of the component. The interfaces
are also extended with the worst-case response times. Based
on the annotations on the AUTOSAR SA designs, we obtain a
timed model of the air system for the timing analysis.

B. TcM of Air System

To obtain a TcM, a FM of the AUTOSAR is first constructed
for the air system. Then a TcM is constructed as shown in List-
ing 3. In the TcM, it is shown that the runnable APedSensor is
designed with a series of runnable processes together with port
processes and interface processes. Notice that each process
of runnables in the part of System Composition is assigned
to an exclusive resource that is not shared with others, and
that makes the model designed independently from resource
constraints.
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Fig. 7. Air System in AUTOSAR with Timing Extensions

Listing 3. TcM of the air system
1 # d e f i n e PESet { RAPSenrVolt1_2 , PAPedPos1_2 , RAPedPos1_2

, . . . }
2 # d e f i n e I E v t S e t { PAPSenrVolt1_2 , PThrSenrVol t1_2 , RADThrPo

, . . . }
3 # d e f i n e PREvtSet {ChkIN , ChkOUT}
4
5 / / I n t e r f a c e : APSenrVol t
6 InfSndRcv2 ( APSenrVolt , PAPSenrVolt1_2 , RAPSenrVolt1_2 ,

IRscAPSenrVol t , I P r i A P S e n r V o l t , 1 ,
I n i t A P S e n r V o l t )

7 . .
8 / / I n t e r f a c e : APedPos9
9 InfSndRcv2 ( APedPos , PAPedPos1_2 , RAPedPos1_2 , IRscAPedPos ,

IPr iAPedPos , 1 , I n i t A P e d P o s )
10 . . .
11 S t a r t R n b ( RnbAPSenr , stRnbAPSenr , RPriAPSenr ,

RPortRAPSenrVolt1_2 )
12 Por tRcv2 ( RPortRAPSenrVolt1_2 , RAPSenrVolt1_2 , }
13 RnbAPSenrExe1 , EndRnbAPSenr )
14 PERnb ( RPriAPSenr , RnbAPSenrExe1 , RRscAPSenr , 2 , 50 ,

PPortPAPedPos )
15 Por tSnd2 ( PPortPAPedPos , PAPedPos1 \ _2 , RPriAPSenr ,

EndRnbAPSenr )
16 StopRnb ( EndRnbAPSenr , spRnbAPSenr , RPriAPSenr )
17 DPRnb ( DPRnbAPSenr , RnbAPSenr , 50 , 50 , RPriAPSenr ,

stRnbAPSenr , spRnbAPSenr )
18 . . .
19 / / Sys tem Compos i t i on
20 I n f S y s 1 = [ APSenrVolt ] \ { IRscAPSenrVol t }
21 | | [ APedPos ] \ { IRscAPedPos }
22 | | [ VtdAPedPos ] \ { IRscVtdAPedPos }
23 | | [ CDThrPos ] \ { IRscCDThrPos }
24 . . .
25 SubSys1 = [ DPRnbAPSenr ] \ { RRscAPSenr }
26 | | [ DPRnbAPVot ] \ { RRscAPVot}
27 | | [ DPRnbThrCnt ] \ { RRscThrCnt }
28 | | [ DPRnbThrAct ] \ { RRscThrAct }
29 | | [ DPRnbThrSenr ] \ { RRscThrSenr }
30 I n f S y s = I n f S y s 1
31 SubSys = SubSys1
32 Sys = I n f S y s | | SubSys
33 SysComp ( S , SubSys , In fSys , PESet )

C. RcM of Air System

An RcM is constructed by assigning shared resources and
priorities to runnables and interfaces in TcM. In Listing 4,
the RcM has two more descriptions, Priority Assignments for
Runnables, and System Composition. In Priority Assignments
for Runnables, different priorities are given to runnables and
interfaces. In System Composition, different resources are also

Listing 4. RcM of the air system
1 / / P r i o r i t y A s s i g n m e n t s f o r Runnab les
2 # d e f i n e RPriAPSenr 10
3 # d e f i n e RPr iTh rSen r 9
4 # d e f i n e RPriAPVot 7
5 # d e f i n e RPr iThrCnt 5
6 # d e f i n e RPr iThrAct 3
7 / / P r i o r i t y A s s i g n m e n t s f o r I n t e r f a c e s
8 # d e f i n e I P r i A P S e n r V o l t 20
9 # d e f i n e I P r i T h r S e n r V o l t 15

10 # d e f i n e I P r i T h r P o s 13
11 # d e f i n e IP r iAPedPos 11
12 # d e f i n e IPr iVtdAPedPos 9
13 # d e f i n e IPr iCDThrPos 7
14 # d e f i n e IPr iADThrPos 5
15 . . .
16 / / Sys tem Compos i t i on
17 I n f S y s 1 = [ APSenrVolt | | T h r S e n r V o l t | | ThrPos | | APedPos

] \ { CAN1}
18 I n f S y s 2 = [ VtdAPedPos | | CDThrPos | | ADThrPos ] \ { CAN2}
19 SubSys1 = [ DPRnbAPSenr | | DPRnbThrSenr ] \ { ECU1}
20 SubSys2 = [ DPRnbAPVot | | DPRnbThrCnt | | DPRnbThrAct ] \ { ECU2

}
21 I n f S y s = I n f S y s 1 | | I n f S y s 2
22 SubSys = SubSys1 | | SubSys2
23 Sys = I n f S y s | | SubSys
24 SysComp ( S , SubSys , In fSys , PESet )

given to them. For instance, ECU1 is assigned to APedSensor
(DPRnbAPSenr) and ThrottleSensor (DPRnbThrSenr). ECU2
to APVoter (DPRnbAPVot), ThrottleController (DPRnbThrCnt),
and ThrottleActuator (DPRnbThrAct). Individual runnables and
interfaces are given different priorities for shared resources.

D. Timing Verification

A timing verification of the air system was performed to
check if the system satisfies the end-to-end property. For
variation of the analysis, with the same execution time, the
settings of the system were varied with in terms of the
following:
• End-to-end delay,
• Periods and deadlines of runnables,
• Resource configuration, such as assignment of resource

to runnables and interfaces, and scheduling policy for
resources.
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The TcM is checked to see if timed behaviors of runnables
with periods and deadlines satisfy the end-to-end delay, which
depends on the runnable’s real-time attributes, e.g. execu-
tion period, deadline and worst-execution time. That is, the
runnable attributes, i.e. periods and deadlines, should be fea-
sible w.r.t. timing requirements.

1) Verification Result 1: The results of checking the TcM
of the air system against timing requirements varying periods
and deadlines are shown in Table X, in which the setting of
runnable real-time attributes is satisfiable for the system to
return the output within 25 ms, but cannot generate the output
within 20 ms.

TABLE X
TIMING VERIFICATION RESULTS OF TCM (TIME UNIT: MS)

Runnable Period WCET Deadline
APedSensor 5 0.2 5
APedVoter 5 0.3 5
ThrottleSensor 5 0.5 5
ThrottleController 5 1 5
ThrottleActuator 10 1 10
Timing Constraints Verification Results

End-to-End PAPSenrVolt1_1 → ≤ 25ms OK
RADThrPos ≤ 20 ms Not OK

2) Verification Result 2: The RcM is checked to see if
resource configurations for priority relations and scheduling
policies are feasible for the system to satisfy timing require-
ments. After the setting of TcM is proved feasible satisfying
timing requirements, the corresponding RcM is checked to see
if the system on such resource constraints satisfies the same
timing requirements. With the same runnable’s attributes in Ta-
ble X, we varied resource configurations as given in Table XI.
As a result, we could verify that Resource Configuration I has
a shorter delay than Resource Configuration II.

3) Verification Result 3 (Scheduling Policy): The same sys-
tem was checked with the same resource setting of runnables
except scheduling policies, i.e. EDF, FIFO, or Round-Robin.
However, variation of the scheduling policy do not enhance
the end-to-end delay because all the runnables are in a close
causal relation.

4) Experiment Environment and Verification Time: The
experiment environment was set up as follows:
• Intel CPU Core i7-3520 2.90 GHz,
• Memory 8 GB,
• Windows 64 bit.
The average verification time for each model was less than

2 minutes. The following screen shot shows the size of the
system in verification and the time to compute a property given
for the verification.

VI. RELATED WORK

Related work is discussed in three perspectives: A) general
timing analysis methods, B) timing analysis of automotive
systems, and C) timing design and analysis for software
architecture of automotive systems.

TABLE XI
TIMING VERIFICATION RESULT OF RCM (×103 SEC)

Runnable Period WCET Deadline
APedSensor 5 0.2 5
APedVoter 5 0.2 5
ThrottleSensor 5 0.5 5
ThrottleController 5 1 5
ThrottleActuator 10 1 10
Resource Constraints I
ECU1 ::= RRscAPSenr > RRscThrSenr:: RM
ECU2 ::= RRscAPVot > RRscThrCnt > RRscThrAct::RM
CAN1::= IPriAPSenrVolt > IPriThrSenrVolt > IPriThrPos > IPriAPedPos:: FP
CAN2::= IPriVtdPedPos > IPriCDThrPos> IPriADThrPos :: FP
Timing Constraints Verification Results

End-to-End PAPSenrVolt1_1 → ≤ 21.4 ms OK
RADThrPos ≤ 20 ms Not OK

Resource Constraints II
ECU1 ::= RRscAPSenr > RRscThrSenr > RRscAPVot >

RRscThrCnt > RRscThrAct :: EDF/Round-Robin/FIFO
CAN1::= IPriAPSenrVolt > IPriThrSenrVolt > IPriThrPos > IPriAPedPos >

IPriVtdPedPos > IPriCDThrPos> IPriADThrPos :: FP
Timing Constraints Verification Results

End-to-End PAPSenrVolt1_1 → ≤25 ms OK
RADThrPos ≤ 20 ms Not OK

A. Formalism for Timing Analysis

For last several decades, numerous analytical methods, such
as [13], [29], [30], [32], have been introduced to investigate
real-time properties of the systems, such as schedulability and
response-time of the system. However, as real-time systems
become more complicated and heterogeneous, model-based
approaches are drawing much attention. Timed Automata (TA)
[11] is one of the most well-known formalisms, which is
supported by the UPPAAL[14], a model checker for TA.
Recently, the authors in [16] have applied TA and its variations
to a complicated scheduling system to verify various timing
properties by using UPPAAL symbolic and statistical model
checking techniques. The literature [18] presents a formal
framework where feature requirements of each component are
parameterized by timing requirements so as to facilitate the
separation of timing constraints from functional decomposi-
tions.

The salient difference between our work and the previous
works is in the way the notion of resource constraints is
related with timing requirements. In the previous studies, a
resource is not the primary concern in designing a system,
hence it is required to implement resource-sharing mechanisms
to account for resource constraints that may cause the state-
explosion problem. ACSR-VP views a resource as the primary
reason that causes the delay of job’s execution and provides a
primitive for resource so that there is no need to implement any
scheduling function to schedule jobs for shared resources. Us-
ing ACSR-VP, we parameterize a timed system with resource
constraints in the primitives of ACSR-VP for resources.

B. Timing Analysis of Automotive Systems

For timing analysis of automotive E/E systems, simulation
is a widely-used method. In [27], Krause et al. provided a
simulation method to analyze timing properties of an AU-
TOSAR model by transforming the model to the corresponding
SystemC model. In [33], Monot et al. dealt with the problem
of sequencing and grouping runnables on limited ECUs for a
multi-core setting of the system. It views a resource constraint



1551-3203 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2527624, IEEE
Transactions on Industrial Informatics

15

in the same angle as ours but focuses more on finding a
feasible group of runnables for a limited set of ECUs rather
that timing analysis. Anssi et al. [12] studied schedulability
analysis and task scheduling in automotive ECUs in the
context of AUTOSAR. They modeled a cruise control system
in the same point of view, and checked the schedulability of
the system using MAST [3].

Scheickl [34] presented a comprehensive overview of au-
tomotive software design in terms of timing design. Feiertag
et al. [20] presented a timing analysis framework for end-to-
end delay. They highlighted different path semantics of end-
to-end delays that must be carefully dealt with during timing
modeling and analysis. Lakshmanan et al. [28] also studied
an analytical way of calculating an end-to-end delay for
networked AUTOSAR-compliant systems from the viewpoint
of networking.

Compared to the previous work, our method is more flexible
so that any scheduling mechanism for shared resources can be
formulated. It is more rigorous so that our analysis techniques
guarantees the verified properties of a system with 100%
certainty such that the result obtained by our analysis methods
can satisfy a high software integrity level.

C. Model-based Timing Analysis of Software Architecture

In principle, our method is one of realizations of MDA [4],
in which software systems is driven by a platform-dependent
architecture and a platform-independent architecture to im-
prove application’s re-usability and applicability to various
platforms. However, our method focuses more on timing
properties such that they can be analyzed from both PIM and
PSM perspectives.

Sokolsky et al. in [35] presented a formal specification and
verification framework that is similar to our approach: AADL,
an architecture description language for embedded systems, is
used to describe the SA [5], and ACSR and VERSA are used
for formal specification and formal verification, respectively.

For timing extension of automotive SAs, Timing models
(TIMMO) developed Timing Augmented Descriptive Lan-
guage(TADL), named a timing modeling language. TADL
extends EAST-ADL2 [2] and AUTOSAR [10] with timing
information. This method augments the structural concepts
with information related to timing and events referring to
structural elements. Our AUTOSAR description adopts the
timing extension of AUTOSAR SA description by augmenting
of timing information. However, we have created a way of
formally specifying the behavior of individual descriptive
elements of AUTOSAR components and analyzing the behavior
of applications in terms of platform-constraints. So that our
method is more useful for a high integrity software system.

The most recent relevant work is the work of Kim el al. in
[23], [24]. In this work, a cyber-physical system is modeled
adopting MDA. In particular, a PSM in their work is captured
by two layers, an application layer and a platform layer,
which are distinguished by Input/Output and Monitor/Control
variables individually. In this work, the computation and
communication time of applications depending on a platform
are abstracted by a delay which is physically measured.

Distinguished from [23], [24], a platform constraint in our
work is imposed upon application’s behavior in the form
of a specification, instead of an independent model. So that
application’s behavior can be updated to account for specific
platform constraints just by specifying resource constraints
upon time and resource actions of our model.

The work in [36] by Voss et.al is also similar with this work.
The authors provided a framework where a suitable software
architecture is estimated by computing task and message
schedules that are optimized with respect to a global discrete
time base. However, our work is more specific for AUTOSAR
by providing process templates of descriptive elements of the
AUTOSAR SA.

In [21], Frey also studied timing extensions of AUTOSAR
and timing analysis. His approach covers the overall process
of design, timing extensions, and analysis of AUTOSAR SA.
In [25], Klobedanz et al. presented a case study on timing
modeling and analysis for software systems in AUTOSAR SA
description. In [19], Paul et al. introduced a timing analysis
tool, called ViTal (A Verification Tool for EAST-ADL), using
UPPAAL Port for EAST-ADL. They provided a model check-
ing technique for EAST-ADL descriptions w.r.t. timing and
functional behavioral requirements.

Compared with Frey’s work [21], basically, we adopt his
timing extension method for AUTOSAR SA. However, our
work covers a wider spectrum of artifacts from functional
requirement to an architecture description extended with tim-
ing and resource information. Moreover, we pursue a formal
framework where a proof for safety of a given system can be
created by formal verification techniques. Klobedanz’s work
[25] also focused on timing analysis in terms of schedulability,
similarly with this work. His work analyzes the usage of
resources and the latency of processing. The main difference
between our work and Klobedanz’s is that our approach sticks
to the principle of MDA. In Klobedanz’s work, resources, such
as ECU and FlexRay, are assigned to tasks in advance and are
checked in terms of schedulablity. Afterwards, tasks divided
into resources are modeled to AUTOSAR. On the contrary, in
our approach, a SA is first built, and then it is extended with
timing attributes. After going through timing verification for
the timing design on timing-extended SA, the SA is restricted
by resource constraints that are determined by the platform.
Thus, our platform-independent SA model is more applicable.
Analogous to Paul’s work [19], our approach deals with timing
properties of functionality of real-time systems. However,
our approach focuses on a timed behavior of the system
varying resource constraints to evaluate the composability of
application with a given platform [26].

VII. CONCLUSIONS

Recently, numerous automotive software components have
been partially developed by independent suppliers, and then in-
tegrated into a single system by a manufacturer. Such software
components are highly vulnerable to timing errors. For this
reason, the standardized automotive SAs, such as AUTOSAR
and AADL, have been extended with timing aspects. As a
consequence, a timing analysis for the automotive SA should
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be performed from the viewpoints of both the supplier and the
manufacturer, i.e. resource-independent and dependent view-
points. During the timing analysis stage, software architects
need to be able to identify appropriate values for the timing
attributes such as periods, deadline, priorities of execution
units, and optimal resource configurations for various settings
of automotive SAs. To deal with these issues, this paper
introduces the following contributions:

1) Based on the separation of concerns principle in MDA,
we proposed two timed models, (time-constrained) TcM
and (resource-constrained) RcM, that represent the sup-
plier and manufacturer’s concerns, respectively.

2) We develop an efficient way to obtain TcM and RcM
for each modeling element of the AUTOSAR components
using our formal description templates. Moreover, we
propose a systematic way to compose the description
elements to form one system.

3) TcM helps to find feasible timing attributes of automotive
SA, such as periods, deadlines, and priorities of process-
ing units.

4) RcM help in identifying feasible resource configurations
including scheduling policies that satisfy the timing re-
quirements.

Furthermore, our formal verification framework can be used
to provide formal safety proofs of automotive software systems
that are required by the international safety standards, such as
ISO 26262.
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