
Compositional Predictability Analysis of Mixed
Critical Real Time Systems

Abdeldjalil Boudjadar1, Juergen Dingel2, Boris Madzar2, Jin Hyun Kim3

1 Linköping University Sweden
2 Queen’s University Canada

3 INRIA Rennes France

Abstract. This paper introduces a compositional framework for ana-
lyzing the predictability of component-based embedded real-time sys-
tems. The framework utilizes automated analysis of tasks and commu-
nication architectures to provide insight on the schedulability and data
flow. The communicating tasks are gathered within components, mak-
ing the system architecture hierarchical. The system model is given by
a set of Parameterized Stopwatch Automata modeling the behavior and
dependency of tasks, while we use Uppaal to analyze the predictabil-
ity. Thanks to the Uppaal language, our model-based framework allows
expressive modeling of the behavior. Moreover, our reconfigurable frame-
work is customizable and scalable due to the compositional analysis. The
analysis time and cost benefits of our framework are discussed through
an avionic case study.

1 Introduction

Since the Apollo Guidance Computer has been recognized as one of the first suc-
cessful embedded systems designed early in the 60’s, embedded software func-
tions have been increasing in number, complexity and scale in the design of
automotive and avionic systems. In some application areas, for example avion-
ics, human life might be dependent on the reliability of such embedded systems
which makes these systems highly critical. To demonstrate the reliability of safety
critical systems, an intensive effort has been jointly undertaken by researchers
and practitioners. Such a pursuit includes the definition of appropriate software
engineering principles [23] (modularity, abstraction, separation of concerns, etc)
and the development of powerful analysis tools [3, 27, 17].

A common execution requirement to be guaranteed when designing an em-
bedded system is the response time [19], which is the end-to-end delay of the
system execution. To be able to guarantee response times, 1) the execution times
of actions must be bounded; 2) an analysis must demonstrate that the system
produces its results under all relevant circumstances and all ways to resolve inter-
nal non-determinism (due to, e.g., concurrency and communication delays) and
external non-determinism (due to, e.g., changes in input values/arrival times).

Predictability [16] has been identified as an input related requirement. It
ascertains that the externally observable behavior of a process or a system re-

mains the same despite internal non-determinism while removing external non-
determinism (i.e., keeping the inputs and their timing unchanged).

Proving the predictability [25] means that the system analysis is successfully
passed regarding both data flow and time-constrained behavior under any ex-
ecution assumption, for example concerning failure and workload. An example
of the predictability property is the Emergency Brake System [26] mounted in
Volvo FH truck series since 2013 to avoid rear end collisions. Such a feature is
a component of the Adaptive Cruise Control (ACC) system. Once the radar of
a moving truck discovers an obstacle on the route of the truck, it communicates
the distance information to a computation process that calculates the braking
pressure to be applied based on the obstacle distance and the truck speed and
delivers the braking pressure value to the braking system. The radar component
is a composition of sensors and cameras. A danger state is determined by the
presence of a stationary or a moving vehicle just in the front of the truck with
a very slower speed than the truck’s. The computation must output the correct
brake pressure at the expected time, which is a couple of micro seconds after the
detection of the obstacle. An unpredictable computation process might deliver
different outputs in response to the same inputs, which could result in bugs that
are hard to detect.

Different techniques have been introduced to analyze the predictability of
real-time systems [15, 14, 12, 28], where the analysis does not leverage the system
structure and systems are analyzed monolithically. This may lead to a state space
explosion, making large systems non-analyzable. To the best of our knowledge,
compositional analysis techniques for predictability have not received a lot of
attention in the literature (discussed in Section 3).

By compositional analysis [5], we mean that the analysis of a system relies on
the individual analysis of its components separately, since they are independent.
In such a design architecture, when a component violates its requirements it
does not affect the execution of other components because the faulty component
cannot request more than the resource budgeted by its interface (Section 5.2).

The system architecture we consider in this paper is structured in terms
of components having different criticality levels. During execution, criticality
levels will be used as static priorities to sort components. Each component is
the composition of either other components (hierarchical) or basic processes
(periodic tasks) having deterministic behavior. Each component will be analyzed
individually and independently from the other system components thanks to its
abstraction through an interface. We use parameterized stopwatch automata
(PSA) to model the system while we use Uppaal toolsuite for simulation and
formal analysis. The contributions of this paper include:

– How to support the predictability of hierarchical real-time systems through
certain design restrictions.

– A scalable predictability analysis framework due to the component-based
design and compositional analysis.

– Flexible and customizable framework due to the parametrization and instan-
tiation mechanism of Uppaal.

2

The rest of the paper is organized as follows: Section 2 motivates the pre-
dictability analysis through an industrial example. Section 3 cites relevant re-
lated work. Section 4 introduces the predictability notion we adopt as well as
schedulability as a sufficient condition for the predictability. In Section 5, we
introduce a compositional analysis technique. Section 6 shows our model-based
analysis for the predictability of component-based real-time systems using the
Uppaal. Section 7 presents a case study. Section 8 concludes the paper.

2 Motivating Example

(a) (b)

Fig. 1: Volvo’s Emergency Brake System.

Fig. 1 depicts the structure (1.(a)) and abstract behavior (1.(b)) of Volvo’s
emergency brake system mentioned above. The system consists of 6 concur-
rent components, each of which is given a set of timing attributes as well as
a priority level. Once an input is generated by component Radar module, the
component Determine risk determines whether a potential obstacle is present
or not. The component Notify driver is responsible for notifying the driver
in case a risk occurs. Based on the driver reaction, received and analyzed by
component Driver reaction, the system decides which action to take next.
If the driver reaction is continuously missing for a certain duration, component
Process brake data calculates the necessary brake pressure according to certain
input data such as distance, truck speed and obstacle speed. Once the pressure
value is handed over to component Applying brakes, it brakes the truck.

Fig. 1.(b) depicts an abstract behavior of the overall emergency brake system.
The system execution is initially in state Wait waiting to be triggered by the
radar (external sensor) via a signal through channel detection. Once such a no-
tification occurs, the system moves to state Notified waiting for the emergency
data acquisition before notifying the truck driver. The data communication could

3

be done via shared memory, bus, etc. The maximum waiting time for data ac-
quisition must not exceed slacktime1 time units. If the data is communicated
late during the allowed interval [0, slacktime1], the remaining distance to the
collision will not be the same, i.e., much shorter, as the truck is moving. After
notifying the driver, the system moves to the state Processing and keeps cal-
culating the remaining distance and time to the collision until either the driver
reacts, and thus moves to the initial state, or reaches a critical time slacktime2
by which it moves to state PressureCalculation. The slack time is calculated
on the fly according to the distance, the truck speed, the elapsed time since de-
tection and the obstacle speed. Once the brake pressure is calculated, the system
activates the hardware through a signal on channel EmegencyBrake and moves
to the initial state. The pressure calculation must be done within slacktime3
time units. A safety property expected from this system is that it must deliver
the right brake pressure at the expected time (bounded by the slack times). The
later the notification arrives, the stronger the brake pressure has to be. In fact,
the brake pressure delivered at time x, is different of that delivered at time x+1,
and strongly dependent to the input values and the acquisition time of such in-
puts. Moreover, such a brake pressure must be predictable in a way that it is
the same whenever the system is in the same configuration (data arrival time,
elapsed time since the collision detection, the initial distance, the truck speed,
etc). If the brake pressure is wrongly calculated (not sufficient) or delivered late,
the truck will probably collide with the obstacle.

3 Related Work

In the literature, several model-based frameworks for the predictability analy-
sis of real-time systems have been proposed [15, 14, 12, 28]. However, only few
proposals consider the behavior of system processes (tasks) when analyzing pre-
dictability. Moreover, to the best of our knowledge it is very rare that the system
predictability is analyzed in a compositional way.

The authors of [12] presented a model-based architectural approach for im-
proving predictability of performance in embedded real-time systems. This ap-
proach is component-based and utilizes automated analysis of task and commu-
nication architectures. The authors generate a runtime executive that can be
analyzed using the MetaH language and the underlying toolset. However the
tasks considered are abstract units given via a set of timing requirements. With-
out considering the concrete behavior of system tasks, the analysis could be
pessimistic and may lead to over-approximated results.

The authors of [22] defined a predictable execution model PREM for COTS
(commercial-off-the-shelf) based embedded systems. The purpose of such a model
is to control the use of each resource in the way that it does not exceed its satura-
tion limit. Accordingly, each resource must be assigned at the expected time thus
avoiding any delay at the operation points. This work focuses on resource uti-
lization rather than data flow in case of communicating architectures. Moreover,
analyzing the whole system at once might not be possible.

4

Garousi et al introduced a predictability analysis approach [15], for real-time
systems, relying on the control flow analysis of the UML 2.0 sequence diagrams as
well as the consideration of the timing and distribution information. The analysis
includes resource usage, load forecasting/balancing and dynamic dependencies.
However, analyzing the whole system at once makes the identification of faulty
processes/components not trivial.

The authors of [4] introduced a compositional analysis technique enabling
predictable deployment of component-based real time systems running on het-
erogeneous multi-processor platforms. The system is a composition of software
and hardware models according to a specific operational semantics. Such a frame-
work is a simulation-based analysis, thus it cannot be used as a rigorous analysis
means for critical systems.

Our paper introduces a compositional model-based framework for the pre-
dictability analysis of component-based real time systems, so that faulty com-
ponents can easily be identified. The framework uses the expressive real-time
formalism of parameterized stopwatch automata to describe the system/compo-
nents behavior. We rely on the advances made in the area of model-checking
by analyzing each component formally using the Uppaal model checker. The
compositionality and parametrization lead our framework to be scalable and
flexible.

4 Predictable Real time Systems

Concurrent real-time systems [18] are usually specified by a set of communicating
processes called tasks. Each task performs a specific job such as data acquisition,
computation and data actuation. Moreover, tasks are constrained by a set of
features, such as roundness and execution time, as well as a dependency relation
capturing the data flow between processes.

– Roundness includes the activation rhythm (periodic, aperiodic, sporadic)
and the necessary time interval for each activation.

– Execution time specifies the amount of processing time required to achieve
the execution of one task activation on a given platform.

– Dependency [10] describes the communication and synchronization order
between tasks, meaning that a dependent task cannot progress if the task
on which it depends has not reached a certain execution step or delivered a
specific message.

Another property to be considered in case of dependency is the manipulation
of correct data. So that when a task T1 interacts with (or preempts) another task
T2, task T1 must reload the data possibly modified by the execution of T2 in
order to avoid using out of date or inconsistent data. Powerful synchronization
mechanisms enable to capture the interaction, and thus determine the time point
at which the data produced by a task must be delivered to the consumer task.

In the literature, recent work [22, 2] enhances the predictability of real-time
systems by restraining the observability of data in such a way that a consumer

5

Radar

Tracking

Target
 Disp

Keyset

Weapon

(a) Dependency

Tracking: Execution
Pj Pj+1

Execution

Radar: Execution
Pi Pi+1

Execution

y

x

(b) Restricted observability

Fig. 2: Example of dependency and restricted observability.

task can only access the data produced by a run-until-completion execution
of the corresponding producer task. Moreover, such data must be produced be-
fore the consumer starts it current execution. For data consistency, tasks read
and write data only on the beginning and the end of their period execution re-
spectively. This implies that any data update made after the release of a given
task will be ignored by that task for the current execution. This notion of run-
to-completion data consistency is called restricted observability [2].

For example, if a consumer task synchronizes with a producer task, the legal
data values to be used by the consumer after the synchronization must be the
data issued before the consumer started its current job. This means that if the
producer does not complete its execution before a synchronization point, the
data value to be considered by the consumer for its current execution (potentially
released at the synchronization time point) is not the value computed until the
synchronization time but rather it is the data delivered at the termination of
the previous execution period of the producer.

Fig. 2.(a) illustrates a dependency relation between different tasks of a mis-
sion control computer system. An arrow from one task T1 to another task T2

means that T2 depends on T1. Once the radar component captures the presence
of a potential enemy engine it outputs data concerning the enemy position to the
tracking task which in turn identifies the enemy status, speed, etc. Meanwhile,
the tracking task unlocks the display task with the updated data for the target
display on the screen. Once the enemy is positioned in a reachable distance, the
keyset task will be unlocked to enable the aircraft pilot activating the weapon
task to destroy the enemy engine.

Fig. 2.(b) depicts a data flow example following the restricted observability.
For the period Pj+1, Tracking is released at time y while Radar is still running
under its period Pi+1, the data to be considered by Tracking must be that issued
by Radar before time x which means before the beginning of period Pi+1. Thus,
the data considered by task Tracking during the period Pj+1 is the update made
by task Radar at the end of its execution for period Pi.

6

Technically, the predictability property we consider consists of 2 require-
ments: 1) data consistency; 2) execution order.

– Data consistency ensures that all tasks have the same observability of the
data regardless of their dependencies. The non-preemption of tasks ensures
that tasks access the shared data only at the scheduling time points, i.e a
dependent task execution considers the data update made by the tasks on
which it depends before its current release (scheduling) for the whole current
period. Any other data update made externally during the task execution
is ignored and can only be considered in the next scheduling of the task. A
scheduling time point is the time instant when the execution of a running
tasks is done and the scheduler releases another ready task. This approach
to data observability is known as predictable intervals [22].

– Execution order between tasks follows the scheduling mechanism adopted by
the real-time system, and must not be in contradiction with the dependency
relation so that a dependent task cannot first execute before the tasks on
which it depends.

Therefore, for real-time systems specified using non-preemptive tasks if the
execution order, reflecting both scheduling mechanism and data consistency, is
guaranteed then the schedulability is a sufficient condition for predictability [2].
Accordingly, predictability will simply be analyzed through schedulability.

Apart from the temporal partitioning [24] of the system workload to tasks,
the separation of concerns [21] allows gathering collaborative and dependent
tasks within components. Thus making the system architecture modular.

5 Compositional Framework for Predictability Analysis

In this section, we consider real-time systems structured as a set of independent
components while we analyze system predictability, relying on the schedulability
as a sufficient condition, in compositional way so that each component will be
analyzed individually.

5.1 Hierarchical Real-Time Systems

Hierarchical scheduling systems [13, 11] have been introduced as a component-
based representation of real-time systems, allowing temporal partitioning and
separation of concerns. A major motivation of the separation of concerns [21]
is that it allows isolation and modular design to accommodate changes in the
system such that the impact of a change is isolated to the smallest component. An
example of the increasing use of hierarchical scheduling systems is the standard
ARINC-653 [1] for avionics real-time operating systems.

An example of a hierarchical scheduling system running on a single core plat-
form is depicted in Fig. 3. It consists of 2 independent components, Component1
and Component2, scheduled by the system level according to FPS (Fixed Pri-
ority Scheduling). For compositionality purposes, each component is given an

7

System

Component1 Component2

Task1

FPS

FPS RM

(100,37,2) (70,25,3)

Task2

(250,40,2) (400,50,1)

Task3 Task4

(140,7,4) (150,7,3)

Task5

(300,30,2)

Fig. 3: Example of a hierarchical scheduling system.

interface (period, budget, criticality) e.g. (100,37,2) for Component1, where bud-
get is the CPU time required by component for a time interval period. In our
context, criticality1 is handled as static priority to sort components at their par-
ent level, so that in Fig. 3 Component2 has priority over Component1 (2 < 3).
Each component in turn is a composition of tasks scheduled according to a lo-
cal scheduler, FPS for Component1 and RM (Rate Monotonic) for Component2.
Each task is also assigned an interface (period, exectime, prio), where exectime
and prio are respectively the execution time and priority. Of course, the priority
will be considered if a static priority scheduling scheduler is adopted. We also
consider dependencies between tasks (the dashed arrow from Task4 to Task5),
so that the execution of a dependent task (Task5) cannot start until the task on
which it depends (Task4) finishes it execution. In this work, we only consider
periodic non-preemptive tasks.

At the system level, each component will be abstracted as a task given by the
interface (period, budget, criticality) regardless of its child tasks. The interface
of a component is a contract that the system level supplies such a component
with budget CPU time every time interval of size period. Once a component is
scheduled by the system level, it schedules one of its local tasks according to its
scheduler, i.e. a component can trigger its child tasks only when it is allocated
the CPU resource.

5.2 Compositional Analysis

By compositional analysis [5] we mean that the analysis process of a system
relies on the individual analysis of each component separately, since components
are independent. In such a design architecture, when a component violates its

1 We do not consider the criticality related features like fault tolerance for soft critical
components.

8

requirements it does not affect the execution of other components. The misbe-
havior cannot propagate because the faulty component, even though it is not
satisfied with the resource budget it has been granted, cannot request more
than the resource budgeted by its interface. Thus, the other concurrent compo-
nents will not be deprived and remain supplied with the same budgeted resource
amounts as in case of the successful behavior.

The analysis of each component consists in checking the feasibility of its tasks
against its interface (period, budget), which is a guarantee that the component
always supplies its tasks with the budgeted resource amount every period. To
check that the tasks are feasible whatever the budget supply time, we consider all
possible scenarios. We model the resource supply by a periodic process (supplier)
having a non-deterministic behavior. For each period, the supplier provides the
resource amount specified in the component interface (budget). Thereafter, we
use a model checker to explore the state space, by considering all potential
supply times, and verify whether all tasks are satisfied for all supply scenarios.
For further description and illustration of our compositional analysis technique,
we refer readers to [7, 8].

Depending on the interpretation of the deadline miss, the faulty component
can either be suspended for the current period execution, discarded from the sys-
tem (blocked) or just be kept running. The deadline miss interpretation strongly
depends on the criticality and the application area of the failed component/sys-
tem. Since we are considering criticality, in our framework the occurrence of
a deadline miss implies a suspension of the execution, thus tasks termination
(by deadline) is not guaranteed (the system is not schedulable). This implies
that tasks cannot output data at the expected time (deadline), thus violate the
predictability property.

5.3 Conceptual Design

Basically, the dependency relation can be viewed as order on the tasks execution
in the way that a dependent task cannot run while the task on which it depends
does hand out the event or data expected by the dependent task (in our context
it is just a run-to-termination of the task execution for the current period). Tasks
are usually given with a period period, an offset offset, an execution time exec-
Time, a priority prio and a deadline deadline. Moreover, in our framework we
consider a dependency relation Dependency between tasks. Throughout this pa-
per we assume that the task period is greater or equal to the deadline. Moreover,
the deadline must be greater than the execution time.

Fig. 4 depicts a conceptual model of tasks with dependency. The task is
initially in state Wait Offset expiry waiting for the expiration of its offset. In
state Wait dependency, the task waits execution termination of the immediate
tasks on which it depends while its deadline is not missed yet. Once a task obtains
the requested inputs it becomes ready to be scheduled and thus waiting for the
CPU. A ready task moves to state Running when it is scheduled. Since the task
behavior we consider is not preemptive, a scheduled task keeps running until
satisfying the execution requirement or missing its deadline by which it joins the

9

Offset expired

Dependency
solved

scheduled

Execution done

Period
expired Deadline missed

Deadline
missed

Deadline
missed

Wait offset
expiry

Wait
dependency

Wait period
expiry

Running

Ready
Deadline

miss

Fig. 4: Conceptual model of tasks.

state Deadline miss. After having satisfied the execution requirement the task
enters state Wait period expiry waiting for the expiry of its current period.

Namely, the dependency relation is a direct acyclic graph where nodes rep-
resent tasks execution and transitions are the dependency order. A transition
from a node to another means once the execution of the source node task is done
the target node task is unlocked. Of course this does mean that the execution of
such a task will start immediately but only becomes ready to be scheduled. A
task must not depend to its dependent tasks nor to the tasks depending to one
of its dependent tasks so far. The dependency of task must be applied for each
period. Accordingly, a dependent task waits for its dependency to be satisfied
whenever a new period starts. In turn, such a task unlocks its dependent tasks
just for the execution of their current periods.

6 Uppaal System Model

Uppaal [3] is a tool environment for modeling, simulation and formal verification
of real-time systems modeled as composition of inter-communicating processes.
Each process is an instance of a template model. Our system model consists of a
set of independent components, each of which is modeled separately and will be
analyzed individually. Each template is a Parameterized Stopwatch Automata
(PSA), offering the ability to use stopwatch clocks [9] and instantiation with
different parameters.

Components Modeling. Each component is given by an interface (period, bud-
get, criticality), a local scheduler and a workload. The workload of a component
is either a set of tasks (i.e., basic component) or other components (i.e., hierar-
chical component). Components are independent and viewed by their parents as
single periodic tasks having deadlines the same as periods. Such components are
scheduled by their parent level’s scheduler according to their criticality. Each
component consists of a task model, a scheduler model, a CPU resource model,
a supplier model [5] and a dependency relation.

10

curTime[tid]<=task[tid].deadline &&
exeTime[tid]'==0

wcrt[tid]'==0

r_req[tstat[tid].pid]!

finished[tstat[tid].pid]!

curTime[tid]>=task[tid].deadline

x>=task[tid].offsetexeTime[tid] >= task[tid].execTime

dependencySolved(tid)

exeTime[tid]'==isTaskSched()
&& curTime[tid]<=task[tid].deadline

exeTime[tid]'==0
&& curTime[tid] <= task[tid].period
&& wcrt[tid]'==0

curTime[tid]>=task[tid].deadline

exeTime[tid]'==0
&& x<=task[tid].offset

exeTime[tid]'==0
&& x<=task[tid].initial_offset
&& wcrt[tid]'==0

curTime[tid]>=task[tid].periodPDone WaitOffset

IDLE

WaitDependency

Run

MISSDLINE

curTime[tid]=0, exeTime[tid]=0, x=0

enque(tstat[tid].pid,tid),
x=0, temp = isTaskSched()

curTime[tid]=0, exeTime[tid]=0, x=0, wcrt[tid]=0

error=1

x=0
delete_tid(tstat[tid].pid,tid), temp=0,
unlockDependency(tid),
reestablishDependency(tid)

error=1

Fig. 5: Task model.

Task Model. Tasks are instances of the task template with the corresponding
attributes (tid, period, offset, exectime, deadline, prio) as parameters. The task
identifier tid is used to distinguish between tasks. Fig. 5 shows the PSA template
we designed to model tasks. We use two stopwatch variables exeTime[tid] and
curTime[tid] to keep track of the execution time and the current time respectively
of a given task tid . Such variables are continuous but do not progress when their
derivatives are set to 0.

Once started, the task model waits for the expiry of the initial offset at
location IDLE. At location WaitOffset, the task waits until its periodic offset
expires then moves to location WaitDependency. At both locations IDLE and
WaitOffset the stopwatch exeTime[tid] does not progress because the task is not
running yet. At location WaitDependency, the task is waiting until either its dead-
line is missed (curTime[tid]≥ task[tid].deadline) or its dependency gets unlocked
(dependencySolved(tid)). The stay at such a location is constrained by the in-
variant curTime[tid]≤ task[tid].deadline, during which the stopwatch exeTime[tid]
does not progress. Once the deadline is missed, the task moves to location MISS-
DLINE. Otherwise, the task is ready and it requests the CPU resource through an
event r req[tstat[tid].pid]! on channel r req and moves to location Run. Through
such an edge, the task enqueues its identifier tid into the queue of the resource
model identified by pid. In fact, location Run corresponds to both ready and
running status thanks to the stopwatch. Once the task gets scheduled through

11

function isTaskSched() it keeps running while it is scheduled and its execution
requirement is not fully satisfied. Thus, the stopwatch exeTime[tid] measuring
the execution time increases continuously while isTaskSched() holds, i.e., exe-
Time[tid]’==isTaskSched().

For analysis performance, whenever a deadline is missed the faulty task up-
dates the global variable error to one. Thus, the schedulability will be checked
upon the content of this variable. When the execution requirement execTime
is satisfied, exeTime[tid]≥task[tid].execTime, the task moves to location PDone
waiting for the expiry of the current period. Through such an edge, the task
releases the CPU, unlocks the dependent tasks waiting for such a termination
and reestablishes its original dependency for the next period.

CPU Resource Model. Fig. 6 depicts the CPU resource model. Once it starts,
the CPU resource moves to location Idle, because the initial location (with dou-
ble circles) is committed, and waits for a request from tasks through channel
r req[rid]. Through a resource request, the CPU model moves to location Re-
qSched and immediately calls the underlying scheduler. At location WaitSched,
the CPU model is waiting for a notification from the scheduler through which
the CPU will be assigned to a particular task at location Assign. Such a task
will immediately be removed from the resource queue by the edge leading to the
location InUse. As we consider non-preemptive execution only, if a task requests
the CPU while it is assigned to another task such a request will be declined.
However the requesting task will immediately be enqueued. Whenever the CPU
resource is released by the current scheduled task, the resource model calls the
scheduler to determine to which task it will be assigned if the the queue is not
empty (location ReqSched). Otherwise, the resource model moves to location Idle
waiting for task requests.

rq[rid].length== 0

rq[rid].length!=0

rq[rid].length>0

rq[rid].length==0

Assign WaitSched ReqSched

InUse

Idle

r_preemptive[rid]=preemptive

r_sup[rid][rq[rid].element[1]]!

r_req[rid]?

finished[rid]?

ack_sched[policy][rid]? run_sched[policy][rid]!

r_req[rid]?

Fig. 6: CPU resource model.

12

Dependency Relation Modeling. Given n tasks, we model their dependen-
cies by a matrix of 2 dimensions each of which has n elements. A row i represents
the dependencies of all tasks to the task having identifier tid = i, whereas a col-
umn j states the identifiers of tasks on which the task tid = j depends. The
content of each cell is Boolean, so that cell [i, j] states whether task tid = j
depends on the task having identifier tid = i. Accordingly, the dependencies of
a task x are satisfied if the cells of column x are all False. Table. 1 shows the
matrix representation of the dependency relation given in Fig. 2.(a).

Table 1: Implementation of the dependency relation of Fig. 2.(a).

Dependency Radar Tracking Target Keyset Weapon

Radar False True False False False

Tracking False False True True False

Target False False False False False

Keyset False False False False True

Weapon False False False False False

To manipulate the dependencies of tasks during components execution, we
introduce the following functions:

– dependencySatisfied(tid) checks whether all tasks on which a given task tid
depends have already updated their status to Done (execution finished for
one period). This is done by verifying that all cells of the tid th column of
the dependency matrix are False.

– unlockDependent(tid) unlocks all tasks dependent on a given task tid when
the execution of such a task is finished. This is done by updating the cells
of row tid to False.

– reestablishDependency(tid) establishes the original dependency relation of a
given task tid when its execution is done. This is done by updating the
cells of column tid , corresponding to the tasks on which task tid originally
depends, to True. Such a reestablishment is because, as stated earlier, the
dependency relation is applicable every task period.

7 Case study

To show the applicability and scalability of our analysis framework, we modeled
and analyzed an avionics system [20]. Table 2 lists the system components,
tasks and their underlying timing attributes. Columns two and three list the
criticality level and tasks of each component. Columns four to seven list the
timing attributes of tasks, whereas the last column describes the tasks on which
each task depends. Due to space limitation, we do not consider inter-component
dependencies however it can simply be applied since our analysis is recursive
where components are viewed by their parent levels as single tasks.

13

Table 2: Avionics Mission Control System

Component Criticality Tasks pi ei di prioi Task dependency

Status Update (T1) 200 3 200 12 T2, T3, T5

Keyset (T2) 200 1 200 16 —
Display 1 Hook Update (T3) 80 2 80 36 —

Graph Display (T4) 80 9 80 40 T1, T3

Store Updates (T5) 200 1 200 20 T2

RWR 3 Contact Mgmt (T6) 25 5 25 72 —

Radar 3
Target Update (T7) 50 5 50 60 T8

Tracking Filter (T8) 25 2 25 84 —

Nav Update (T9) 59 8 59 56 T10

NAV 2 Steering Cmds (T10) 200 3 200 24 —
Nav Status (T11) 1000 1 1000 4 T9

Tracking 1 Target Update (T12) 100 5 100 32 —

Weapon Protocol (T13) 200 1 200 28 T15

Weapon 4 Weapon Release (T14) 200 3 200 98 T13

Weapon Aim (T15) 50 3 50 64 —

BIT 0 Equ Stat Update (T16) 1000 1 1000 8 —

Data Bus 2 Poll Bus (T17) 40 1 40 68 —

We consider that components having criticality levels less than 2 are not
hard critical. Moreover, for the components having one task only, the compo-
nent period, respectively budget, is the same as the child task period, respectively
execution time. Since tasks are non preemptible and satisfy the restricted ob-
servability, we check predictability through schedulability. Table. 3 summarizes
the analysis results. First, we calculate the minimum budget of each composite
component using a binary checking while varying the component budget [6].

Table 3: Analysis results of the case study.

Component Period Budget CPU utilization Analysis time (s) Memory space (KB)

Display 80 13 13/80 0.016 8852

Radar 10 2 2/10 0.016 7656

NAV 20 3 3/20 0.016 7784

Weapon 50 4 4/50 0.015 7748

The analysis time (15 and 16 milliseconds) is very low compared to the system
size, while the used memory space is relatively acceptable. In a previous work
[20], Locke et al estimated the resource utilization of the whole system to 85%
without considering data flow time. In our paper, while considering data flow
between certain tasks we estimated the resource utilization to 86.25%. Such a
utilization is very high and leads the avionic system to be non-schedulable, in

14

particular if the overhead time is also considered. Accordingly, the individual
tasks cannot guarantee to output data before their deadlines, thus making the
system unpredictable.

8 Conclusion

In this paper we have introduced a compositional model-based framework for
the predictability analysis of real-time systems. The architecture we considered
is hierarchical where components running on a single core platform may have
different criticality levels. The system tasks are periodic and may depend on
each other. We analyze each component individually by providing insight on the
schedulability and data flow.

Our framework is set using Uppaal while the real-time formalism we used
to model tasks and data flow is the stopwatch automata. We believe that our
framework is scalable as long as the system is designed in terms of independent
(average size) components.

A future work is the introduction of a new task model to capture data flow
and analyze the predictability without considering the schedulability as a suffi-
cient condition.

References

1. ARINC 653. Website. https://www.arinc.com/cf/store/documentlist.cfm.
2. C. Aussagues, D. Chabrol, V. David, D. Roux, N. Willey, A. Tournadre, , and

M. Graniou. PharOS, a multicore OS ready for safety-related automotive systems:
results and future prospects. In ERTS2’10, May 2010.

3. G. Behrmann, A. David, and K. Larsen. A tutorial on Uppaal. In M. Bernardo
and F. Corradini, editors, Formal Methods for the Design of Real-Time Systems,
volume 3185 of LNCS, pages 200–236. Springer Berlin Heidelberg, 2004.

4. E. Bondarev, M. Chaudron, and P. de With. compositional performance analysis
of component-based systems on heterogeneous multiprocessor platforms. In SEAA
’06., pages 81–91, Aug 2006.

5. A. Boudjadar, A. David, J. Kim, K. Larsen, M. Mikuionis, U. Nyman, and A. Skou.
hierarchical scheduling framework based on compositional analysis using Uppaal.
In FACS’13, LNCS, pages 61–78. Springer, 2013.

6. A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikucionis, U. Nyman,
and A. Skou. widening the schedulability of hierarchical scheduling systems. In
Proceedings of FACS 2014, pages 209–227, 2014.

7. A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikucionis, U. Nyman,
and A. Skou. A reconfigurable framework for compositional schedulability and
power analysis of hierarchical scheduling systems with frequency scaling. Science
of Computer Programming-Journal, In Press(X):25, 2015.

8. A. Boudjadar, J. H. Kim, K. G. Larsen, and U. Nyman. compositional schedulabil-
ity analysis of an avionics system using Uppaal. In Proceedings of the International
Conference on Advanced Aspects of Software Engineering ICAASE, pages 140–147,
2014.

15

9. F. Cassez and K. G. Larsen. the impressive power of stopwatches. In
C. Palamidessi, editor, CONCUR, volume 1877 of LNCS, pages 138–152, 2000.

10. A. David, K. G. Larsen, A. Legay, and M. Mikucionis. schedulability of Herschel-
Planck revisited using statistical model checking. In ISoLA (2), volume 7610 of
LNCS, pages 293–307. Springer, 2012.

11. Z. Deng and J. W.-S. Liu. scheduling real-time applications in an open environ-
ment. In RTSS, pages 308–319, 1997.

12. P. Feiler, B. Lewis, and S. Vestal. Improving predictability in embedded real-time
systems. Technical Report CMU/SEI-2000-SR-011, Carnegie Mellon University,
December 2000.

13. X. A. Feng and A. K. Mok. a model of hierarchical real-time virtual resources. In
RTSS ’02, pages 26–35. IEEE Computer Society, 2002.

14. J. Fredriksson. Improving Predictability and Resource Utilization in Component-
Based Embedded Real-Time Systems. PhD thesis, Mälardalen University, 2008.

15. V. Garousi, L. C. Briand, and Y. Labiche. a unified approach for predictabil-
ity analysis of real-time systems using UML-based control flow information. In
MoDELS, volume LNCS 3844, 2005.

16. T. A. Henzinger. Two challenges in embedded systems design: predictability and
robustness. Philosophical Transactions of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, 366(1881):3727–3736, 2008.

17. G. Holzmann. The model checker spin. Software Engineering, IEEE Transactions
on, 23(5):279–295, May 1997.

18. J. Hooman. Specification and Compositional Verification of Real-Time Systems
(Book), volume 558 of LNCS. Springer Verlag, 1991.

19. M. Joseph and P. Pandya. Finding response times in a real-time system. The
Computer Journal, 29(5):390–395, 1986.

20. C. Locke, D. Vogel, and T. Mesler. building a predictable avionics platform in
Ada: a case study. In Proceedings of RTSS, pages 181–189, 1991.

21. M. Panunzio and T. Vardanega. A component-based process with separation of
concerns for the development of embedded real-time software systems. Journal of
Systems and Software, 96(0):105 – 121, 2014.

22. R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley.
a predictable execution model for COTS-based embedded systems. In RTAS’11,
pages 269–279, April 2011.

23. S. L. Pfleeger and J. M. Atlee. Software Engineering — Theory and Practice (4th
Edition). Pearson Education, 2009.

24. K. Purna and D. Bhatia. Temporal partitioning and scheduling data flow graphs
for reconfigurable computers. Computers, IEEE Transactions on, 48(6):579–590,
Jun 1999.

25. J. Stankovic and K. Ramamritham. What is predictability for real-time systems?
Real-Time Systems, 2(4):247–254, 1990.

26. Volvo Trucks Great Britain and Ireland. Driver support systems: Keeping an
extra eye on the road. http://www.volvotrucks.com/trucks/uk-market/en-gb/

trucks/volvo-fh-series/key-features/Pages/driver-support-systems.

aspx.
27. F. Wang. Efficient verification of timed automata with BDD-Like Data-Structures.

In VMCAI’03, volume 2575 of LNCS, pages 189–205. Springer Berlin, 2003.
28. S. Yau and X. Zhou. schedulability in model-based software development for dis-

tributed real-time systems. In Proceedings of WORDS’02, pages 45–52, 2002.

16

