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Abstract— This article proposes a scheme for bandwidth allo-
cation in wireless ad hoc networks. The quality of service (QoS)
levels for each end-to-end flow are expressed using a resource-
utility function, and our algorithms aim to maximize aggregated
utility. The shared channel is modeled as a bandwidth resource
defined by maximal cliques of mutual interfering links.

We propose a novel resource allocation algorithm that employs
an auction mechanism in which flows are bidding for resources.
The bids depend both on the flow’s utility function and the intrin-
sically derived shadow prices. We then combine the admission
control scheme with a utility-aware on-demand shortest path
routing algorithm where shadow prices are used as a natural
distance metric.

As a baseline for evaluation we show that the problem can
be formulated as a linear programming (LP) problem. Thus,
we can compare the performance of our distributed scheme
to the centralized LP solution, registering results very close to
the optimum. Next we isolate the performance of price-based
routing and show its advantages in hotspot scenarios, and also
propose an asynchronous version that is more feasible for adhoc
environments.

Further experimental evaluation compares our scheme with
the state-of-the-art derived from Kelly’s utility maximiz ation
framework and shows that our approach exhibits superior per-
formance for networks with increased mobility or less frequent
allocations.

Index Terms— Mobile computing, pricing and resource alloca-
tion, quality of service, optimization, performance evaluation of
algorithms and systems.

I. I NTRODUCTION

Mobile ad hoc networks are formed by wireless nodes that
move freely and have no fixed infrastructure. Each node in the
network may act as a router for other nodes, and flows follow
a multi-hop path from source to destination. The infrastructure-
less flexibility makes ad hoc networks a strong complement
to cellular networks, and ideal for many novel scenarios, such
as cooperative information sharing, defence applications, and
disaster management. Mobile ad hoc networks will support a wide
range of services in which soft real-time (multimedia), andhigh-
priority critical data, seamlessly integrate. As society becomes
dependable on the provision of such services, their availability
under overloads becomes a critical issue.

In comparison to wireline networks, wireless multi-hop net-
works will always be more resource constrained due to several
fundamental differences. The first major issue is the limited spec-
trum of the locally shared communication channel. Neighbouring
nodes can interfere and cannot transmit independently. Thesecond
major difference is the mobility of the nodes and its effect on
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the established paths. That is, paths are constantly created and
destroyed, requiring flow rerouting in the latter case. Network
resources such as bandwidth and power have to be dealt with in
fundamentally different ways compared to wireline or centralised
cellular networks. Resource availability can quickly change, and
therefore continuous resource reallocation is needed to provide
graceful degradation during overloads, or quality of service (QoS)
improvements when more resources become available.

An ad hoc network that is designed for adaptive and autonomic
reaction to failures and overloads should take advantage ofthe
flexibility of the service it provides. Best-effort connections are
considered to tolerate any changes in their allocation, whereas
real-time flows might require a fixed allocation, otherwise the so
far accrued utility will be lost. If every service is associated with
multiple levels of acceptable quality, the flows in the network can
be regularly adapted to achieve optimised QoS. In addressing the
above, our scheme supports allocation algorithms that provide
differentiation among flows and enforce resource assurancefor
each flow (subject to system-wide optimisation).

Our approach is based onutility functions that capture how
the user values the flow’s different resource allocation levels.
This approach allows for flexible allocations without needing
online QoS negotiations. Utility functions provide the means
for the network to revise its allocation decisions on-the-fly and
optimise resource usage. For instance, choosing an allocation that
maximises the aggregated utility of the flows in the network has
been shown to be a powerful mechanism for optimising resource
allocation instantaneously [1], but also in a time-aware context
(i.e. over the age of a given flow) [2].

The contributions of the paper are as follows. We propose and
evaluate a combined routing, admission control, and resource allo-
cation scheme that aims to maximise the aggregated utility of the
system. As part of this scheme, two novel utility-based algorithms
are presented. The core of the scheme is a distributed, QoS-aware,
price-based allocation algorithm that allocates bandwidth to flows
using only locally available information. A complementaryprice-
based routing algorithm for choosing the most advantageouspath
for the flows is also proposed.

We start by formulating the allocation problem as a linear
programming (LP) maximisation problem. To properly dividethe
shared channel in an ad hoc setting we use the concept ofclique
resource [3], [4]. It allows gathering mutually interfering links
in partially overlapping maximal cliques. The cliques determin-
istically account for bandwidth capacity and act as resources in
the LP problem.

We then propose a distributed low-complexity allocation algo-
rithm that uses the concept of resourceshadow price, borrowed
from the dual LP problem. The novelty is that the algorithm
employs an auction mechanism, where flows are bidding for
resources. The bids depend both on the flow’s utility function
and the intrinsically derived shadow prices.



We present two versions of the allocation scheme. Focusing
on the key concepts, the first version is based on network wide
synchronised allocation rounds among clique resources. Besides
being hard to achieve, synchronisation also creates periodical
bursty control signalling. Thus, we also propose an asynchronous
version that shows a utility-based performance similar to the
synchronous version.

We study the performance of our scheme at different traffic
loads and mobility speeds, and compare our algorithms against
two baseline algorithms representing lower and upper perfor-
mance bounds. The two baselines are: 1) an allocation scheme
using hop-based shortest path first routing, followed by maximum
possible bandwidth allocation, and 2) an optimal, centralised
algorithm that solves the LP form of the problem. The need
for global knowledge and a high computational demand makes
the LP implementation unsuitable for online allocation. However,
it provides an excellent measure of the upper bound on the
performance.

Our distributed algorithms are shown to provide an accrued
aggregate utility that is very close to the optimum achievable
by the centralised LP solution. In our experiments we also
isolate the performance gain of using the price-based routing
algorithm by comparing it with a hop-based shortest path routing
algorithm. The price-based routing algorithm shows its advantage
in scenarios with load hotspots.

As a final contribution, we have compared our algorithm to an
algorithm proposed by Xue et al. [5], [3], that is representative for
a class of state-of-the-art algorithms based on the work by Kelly
et al. [5], [3], and which use a distributed gradient projection
method (GPA). While both algorithms solve similar allocation
problems, they are conceptually different. Our algorithm employs
distributed bidding and auctioning, and acts according to an
admission controlparadigm. Xue et al.’s algorithm is a GPA type,
and falls into thecongestion controlcategory. To our knowledge,
there is no other class of algorithms that solve a similar allocation
problem.

To compare our algorithm to the GPA, we constructed a
compatible experimental environment. The comparison focuses
on convergence properties and performance measured in terms of
accumulated utility for different levels of mobility. The simulation
results show that our algorithm adapts better to the changesin
a dynamic ad hoc network. Furthermore, our algorithm exhibits
far better behaviour when the intervals between allocationpoints
are increased, thus being able to decrease the control signalling
overhead with only small decreases in the overall performance.

The paper is organised as follows: Section II discusses related
work and Section III presents utility functions, the network
model and the LP formulation of the problem. The distributed
utility-based allocation scheme is described in Section IV. In
Section V we evaluate our allocation scheme in comparison totwo
other baseline schemes, and also compare its two versions, one
with synchronous, the other with asynchronous allocation rounds.
Finally, Section VI introduces the gradient projection algorithm
and compares it to our allocation algorithm. Section VII concludes
the paper and outlines future work.

II. RELATED WORK

Work in resource allocation for ad hoc wireless networks
has been addressed either at the MAC-level, as an extension to
routing, or at an optimisation policy level.

Bandwidth availability in ad hoc networks can be either
precomputed [3], [4], [6] or measured at MAC level [3]. Xue
and Ganz [6] compute the available bandwidth at a node as
the channel bandwidth minus the bandwidth consumed by the
traffic at all neighbours. While easy to implement, this is too
pessimistic, and better models can be created when interference
structures are built based on link interference [3], [4]. Inthis
work, we use the contention model based on maximal cliques
of contending links [3]. If no global optimisation is sought,
resource allocation can be attempted independently at every node
by appropriate MAC layer design. Luo et al. [4] present a
packet scheduling approach to ensure a minimum weighted-fair
scheduling combined with maximising spatial reuse of channel.

In several earlier works resource allocation/reservationis
treated as an extension of the routing protocol. For instance,
Chen and Nahrstedt [7] propose an on-demand distributed routing
algorithm that aims to avoid flooding the network. They consider
delay and bandwidth constrained least cost problems. The feature
of the “bandwidth routing” [8] protocol is that link-layer schedul-
ing is directly considered in the protocol. Karaki et al. provide
a survey on QoS routing problems [9]. QoS routing is usually
not directly aimed at optimal resource allocation but at finding
either the shortest path that satisfies at least some minimumQoS
requirements, or the path that gives the largest margins fora QoS
constraint. In our work, however, the routing algorithm is part of
the global allocation optimisation scheme.

A seminal work concerning optimal resource allocation and
usage of quantised utility functions is presented by Lee et al [1].
Among others, the authors propose an algorithm that uses the
convex hull of the utility functions, and yields good results
despite computational simplicity. In our work we adopt the
same discrete utility function model. We also build upon a QoS
differentiation method proposed in earlier work [10], [2].By
taking into consideration the sensitivity of different application
types to resource reallocations, it can consistently treatboth real-
time and best effort connections.

Several other works describe utility-based approaches to re-
source allocation in multihop wireless networks [11], [12]. Liao
et al [11] provide a utility fair max-min allocation for wireless
networks. A distributed allocation scheme is used, and periodical
reallocations keep the consistency. We believe, however, that aim-
ing for equal utility can be counterproductive during overloads,
as it will degrade all flows to a lowest acceptable level. A system
that addresses resource allocation in a wireless/wirelineaccess
network is the “TIMELY architecture” proposed by Bharghavan et
al [12]. Maximising the revenue based on max-min fairness isone
of the criteria used during allocation and adaptation. Theyemploy
a 4-tuple revenue model (revenue function, termination credit,
adaptation credit and an admission fee), where the same instance
of the 4-tuple is used globally. While simplifying allocation, this
prevents an accurate differentiation between flows.

During recent years several works have addressed the problem
of maximising network utility and have proposed distributed
approaches to achieve this [5], [3], [13], [14], [15], [16].To our
knowledge they all derive their solution from a decomposition
method presented in the seminal work of Kelly [17] and solved
by employing gradient/subgradient projection algorithms. For the
reminder of this section we continue discussing characteristics
and examples of this class (to which we refer as the GPA class).

Like our approach, these works also use concave utility func-



tions and aim to maximise the aggregated utility of the flows in
the network. However, there are some fundamental differences
between the two approaches. The GPA class formulation works
only with twice differentiable continuous functions whileour
formulation works with piecewise linear ones. The expressiveness
of the latter is important to us as we aim to capture the real user-
perceived utility of the flows, while in the GPA class the utility
functions are used to enforce a certain rate-fairness criteria.

In our case we allocate the constrained resource in explicit
allocation rounds, with flows admitted according to the size
of their bid (following an admission control paradigm). The
gradient/subgradient projection algorithm on the other hand reacts
based on the congestion level of the resource and moves step-
wise in the direction of the gradient (following a congestion
control paradigm). Thus, if the step-size is large, the allocation
will overshoot the optimum and may lead to oscillative behaviour.
If the step-size is small the algorithm will converge but many
allocation iterations are needed to reach the equilibrium.While
this works for flexible flows, it is unacceptable for inflexible
flows needing a guaranteed resource level once it is allocated.
In addition, networks with a high grade of mobility and irregular
flow arrival rates could spend little time in an optimal state, and
flows would suffer frequent oscillations in their allocation. In our
scheme we attempt to allocate close to the optimum in one try,and
(re)allocation is considered only to account for sizeable changes
in the network state. Note also that in our case the allocation can
change only to clearly defined resource amounts (specified by
the pieces of the utility function) and we take into consideration
how/if reallocation affects the utility that has already been accrued
for the flow.

The work by Xue, Li and Nahrstedt [5], is an example of the
GPA class that addresses a formulation that is very similar to ours.
Both works use shadow prices of the bandwidth clique resources
on the end-to-end path of the flow for steering allocation. They
use an iterative algorithm where a) the network adapts to the
rate of flows by changing the resource price, b) the flow adapts
to the new price by modifying the transmission rate. In a more
recent work [3], Xue et al. consider a mobile environment and
use AODV as a routing algorithm. AODV routes over the shortest
path (in number of hops) and this might overload inner network
paths while resources will go unused towards the marginal areas.
Our work uses a price-based approach even for routing decisions.
A further description of the Xue et al. work together with a
comparative study is presented in Section VI.

Other works attempt to directly include the MAC scheduling in
the optimisation problem. Eryilmaz and Srikant propose a solution
based on a queue-length centralized scheduler and a primal-dual
distributed congestion controller [13]. Another solution, where
the MAC scheduling is also distributed does rate allocationby
changing the transmission persistence probability of links and
nodes. However, due to the MAC inclusion only utility functions
with enough curvature can be used [14]. An overview of cross-
layer optimisation in wireless networks is provided in the tutorial
by Lin et al. [18]. In our work we use clique resources, which
allow us to decouple our allocation optimisation problem from
how MAC scheduling is performed. The disadvantage is that the
number of clique resources a link traverses can be considerably
higher compared to the number of traversed links, and that a more
conservative estimation of capacity is needed (due to possible
scheduling interdependencies).

In the context of wireline networks, Lin and Shroff [15]
explicitly include the QoS routing part in their utility optimisation
problem by allowing a flow to use multiple paths and optimising
the routing probability over the different paths. By including flow
arrival and service time probabilities the authors optimise for
average network conditions thus decreasing the frequency of the
control loops. Multipath routing optimisation is also addressed by
Han et al.[16] where it includes stability conditions for a generic
multi-path TCP implementation. In our work we do not include
routing in the optimisation loop. However, we use the results of
the allocation optimisation by choosing the route which will use
the least congested path. Thus, we expect multipath routingto
provide an advantage only for very large long-lived flows. The
opportunity for multi-path routing needs also to be traded off
against the overhead of maintaining the multiple paths.

A preliminary version of our distributed allocation scheme
and a comparison with Xue et al. algorithm have appeared in
conference proceedings [19], [20].

III. PROBLEM FORMULATION

In this section we first outline our utility and network model,
followed by the LP formulation of the allocation problem. We
then present the notion of shadow prices and highlight some
properties of the optimal solution that will be used as a guideline
when constructing the distributed algorithm.

A. Utility functions

Many types of mobile applications support different QoS levels.
For example, multimedia services can decrease audio or picture
quality to meet some bandwidth or delay restrictions, while
applications like e-mail or file sharing can usually adapt to
anything available. The changes in application utility depend
on the amount of allocated resource, and can be captured by
an associated utility function. By using utility functionsin the
allocation process a clear quantitative differentiation can be made
among competing applications. Thus, the system can optimise
QoS by lowering the allocation for the least efficient applications
during overload periods, and increasing the allocation of the most
efficient ones when resources become available. Moreover, online
negotiations are not needed as they are intrinsically builtin the
utility functions.

In our work we employ a user-centric utility view. Utility
functions do not act only as internal parameters for the system
policy, but also reflect the “contract” between the user and the
service provider. Graphical tools with built-in examples could
help the user easily construct such utility functions [21].As a
starting point these tools could suggest to the user values taken
from quality assessment studies [22], such as evaluations of video
codecs [23]. Note that the unit used for measuring utility isnot
important, as long as we use the same unit globally for all flows
and for all resource prices. A straightforward way to use this
utility model in a commercial system is by directly linking the
utility of a certain service level to the price the user is ready to
pay. For instance, if a user prefers a fixed price rate, a simple,
one-step utility function can be used.

Let us denote withui(bi) the momentary utility accrued for an
allocated bandwidth ofbi. Furthermore, for ease of representation,
and to keep complexity low, we use quantised utility functions
similar to the ones used in the QRAM project [1]. Thus, we



can represent the function as a short list of bandwidth-utility
pairs, ui =
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Utility functions could take any shape, which makes the optimal
allocation problem NP-complete even for a single resource case.
Nevertheless Lee et al [21] obtained results very close to the
optimum when approximating general utility functions withtheir
convex hull frontier. We too use convex hull frontier approxima-
tion and our simulations presented in Section V-G confirm that
the imperfection in allocation is small even in our setting.The
utility functions for the different application types usedin our
experiments can be found in Section V-A, Figure 6.

Finally we would like to emphasise that utility functions donot
inherently reflect application flexibility with respect to resource
reallocations. An application that can function at severalresource
levels may be nevertheless quite sensitive to changes once an
initial resource level is chosen and allocated to it. Our system can
treat rigid applications (e.g. real-time) differently from flexible
applications (e.g. file transfer). This is done by changing the user-
provided utility functions at run-time for allocation purposes. For
example, a real-time flow’s utility function will increase with age,
expressing the importance of not losing invested resources. In
earlier work we have illustrated the benefits of this differentiation
mechanism in a cellular setting [10], [2].

B. Network model

We consider a wireless ad hoc network withn nodes. Two
nodes that are in transmission range of each other are regarded
as connected by a wireless link. Nodes communicate with each
other by means of multi-hop bidirectional end-to-end flows,fi,
between an originator (source) node and a destination node.

In ad hoc wireless networks, we have a location-dependent
contention between the transmissions on the wireless links. Trans-
missions over a link can be bidirectional, thus two links contend
with each other if one of the end-nodes of a link is within the
transmission range of an end-node of the other link [5], [4].A
link contention graph can be constructed, where vertices represent
links, and an edge connects two vertices if the corresponding links
contend with each other. Each maximal clique in such a graph
represents a distinct maximal set of mutually contending links1.
A necessary condition for afeasiblebandwidth allocation is that
for each maximal clique the bandwidth allocated over all links
forming the clique is less than or equal to the maximum channel
capacity. In practice, the choice of transmission scheduling algo-
rithm and additional interference can impose a tighter bound than
the channel capacity. That is,

∀j,
X

l∈rj

bl ≤ Bmax
j (1)

where bl is the allocated bandwidth over wireless linkl, and
Bmax

j is the achievable capacity of the maximal cliquerj . Note
that Bmax

j is less than or equal to the wireless channel capacity.
Hence, each maximal clique can be regarded as an independent

clique resourcewith capacityBmax
j . Since only links close to

each other contend for the same bandwidth, local information is
sufficient for constructing the cliques that a certain link belongs

1A maximal clique is a subset of vertices, of which each pair defines an
edge, that cannot be enlarged by adding any additional vertex.

to2. In constructing the cliques we use a similar approach to the
one used by Xue et al [5], [3]. Section IV-D details how cliques
are constructed and on which nodes the clique-related activities
take place.
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Fig. 1. Network example

In Figure 1 we present an example of a network topology (the
mobile nodes are represented as squares) and two ongoing flows
using this network. Figure 2 presents the link contention graph,
where vertices represent the links (identified by corresponding
numbers) of the network in Figure 1. We can identify three
maximal cliques representing resources. Note that a singleflow
can span over several links belonging to the same clique resource.
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Fig. 2. Link contention graph for network example

Let qij represent how many links of cliquerj are used by flow
fi. Transmissions on the links belonging to a clique are mutually
exclusive, which means that the bandwidth used up by a flow is
qij times the flow’s transmission rate. Letm be the total number
of flows, andbi a certain allocation to flowfi. Then we can
rewrite the constraint in Equation 1 in relation to the bandwidth
allocated to them flows in the network:

∀j

m
X

i=1

qij × bi ≤ Bmax
j (2)

Note that when a flow does not traverse a clique we haveqij =

0. Table I presents the values ofqij for the example in Figures 1
and 2.

TABLE I

FLOW-RESOURCE USAGE FOR NETWORK EXAMPLE

qij r1 r2 r3

f1 3 3 2
f2 2 3 2

2We assume that the communication range is the same as the transmission
range. Otherwise, bandwidth estimation has to be used, since two nodes could
interfere but not be able to communicate.



C. The optimisation problem and its linear programming form

For the wireless multi-hop network, having computed all the
clique resources, and assuming that routing has already been
done, at any allocation moment we can formulate the following
allocation problem. Letui be the utility function andxi the
allocation to be determined for flowi (we usexi to represent the
allocation to be found, whilebi represents an allocation example).
Let p be the number of clique resources andqij the usage count
of clique resourcej by flow i. Then the optimal allocation for all
xi over all cliquesj can be obtained from:

Maximise

m
X

i=1

ui(xi) (3)

subject to

m
X

i=1

qij × xi ≤ Bmax
j (4)

0 ≤ xi ≤ bmax
i (5)

whereBmax
j is the maximum bandwidth available for cliquej,

andbmax
i is the maximum bandwidth required by flowi.

Fig. 3. Linear segments of a convex hull

To make the previous general problem solvable in polynomial
time, we first approximate the original utility functions,ui,
with their convex hull frontiers,u′

i which are piece-wise linear
and concave. To completely linearise the objective function we
conceptually split a flow in several parallel subflows (same source,
destination, and path), each corresponding to a linear segment
of the utility function. For a subflowk of flow i the allocation
is constrained through the utility function levelsBk

i as follows,
bk
i ≤ Bk

i −Bk−1

i . Theutility efficiencyof the subflow (utility/bit)

is λk
i =

Uk
i −U

k−1

i

Bk
i −B

k−1

i

. In Figure 3 we have an example of a convex

hull with 3 linear segments corresponding to3 subflows. Then,
givens segments in the convex hull, for allocationsbk

i to subflows
of flow i, we have:

u′
i(bi) =

s
X

k=1

λk
i × bk

i (6)

where bi =
Ps

k=1 bk
i . However, not every allocation to the

subflows is consistent. In order to use the right side of Equation 6
as a function, the following two constraints must be satisfied:

(C1) Every k-th subflow has a maximum allocation limit. That
is, bk

i ≤ bk max
i wherebk max

i = Bk
i − Bk−1

i .
(C2) The order of the segments in the R-U function must be

respected when allocating (i.e. “gaps” are not allowed). That
is, if bk

i > 0 then for all l < k, bl
i = bl max

i .

Given that the constraints above are satisfied, we can present
the following LP form of the problem. The subflow allocation

variables are denoted byxk
i .

Maximise

m,s
X

i=1,k=1

λk
i × xk

i (7)

subject to

m,s
X

i=1,k=1

qij × xk
i ≤ Bmax

j (8)

0 ≤ xk
i ≤ bk max

i (9)

Constraint (C1) is linear and directly used in the above form.
Moreover, an optimal allocation automatically respects constraint
(C2), as the linear segments of the convex hull are ordered highest
efficiency first. This is proven by the following lemma.

Lemma 3.1:The results of the maximisation problem in Equa-
tions (7) to (9) satisfy constraint (C2).

Proof: Let’s assume the opposite, which means that there
are two subflows,l and k, l < k, of a flow i wherebl

i < bl max
i

and bk
i > 0. Let γ = min(bl max

i − bl
i, b

k
i ). We denote the utility

generated by subflowsl and k by Ul+k = λl
i × bl

i + λk
i × bk

i .
Since both subflows belong to the same flow, one can imagine
subtractingγ from subflowk and allocating it to subflowl. Let
U ′

l+k = λl
i× (bl

i +γ)+λk
i × (bk

i −γ). ThenU ′
l+k > Ul+k because

λl
i > λk

i for a concave function. Other allocations being equal,
this means thatbl

i, b
k
i are not optimal. Contradiction.

Obviously, a centralised algorithm that implements the LP solver
requires large computational and signalling overheads, making
it infeasible for online allocation in an open and dynamic ad
hoc network. However, we use it as an upper bound baseline
to evaluate the performance of the distributed, low complexity
algorithm we propose in Section IV.

D. Worst case error introduced by convex hull approximation

Next we give a theoretical worst case difference between the
optimal solution to the original maximisation problem (Equations
(3) to (5)), and the solution given by the above LP formulation
(Equations (7) to (9)) that uses convex hull approximationswhen
deciding allocation. Note that even though we use the convexhull
approximation to reach an allocation decision, saybi, the utility
accounting is done using the original utility functions:
U =

P

i ui(bi) =
P

i ui(
P

k bk
i ).

Let Uopt denote the optimal attainable utility. ObviouslyU ≤

Uopt. Let δi denote the maximum difference between the convex
hull of a utility function and the utility function itself, for any
of the flows involved. For instance in Figure 6(a) the maximum
difference between the convex hull (the thick dashed line) and
the utility function (the continuous line) is just before the 0.5

bandwidth point. Letξ be the largestδi among all the utility
functions of the involved flows,ξ = maxm

i=1δi. Let bk
i be an

allocation as obtained by solving the LP problem of Equations (7)
to (9), and letp be the number of clique resources. Then we can
state:

Lemma 3.2:Uopt − p × ξ ≤ U ≤ Uopt.
Proof: First we define an additional variable, an upper

bound utility,Usup. It denotes the optimal value for the objective
function in Equations (7) to (9), i.e. the utility that wouldaccrue
if the convex hulls were the real utility functions,Usup =

u′
i(bi) =

Ps
k=1 λk

i ×bk
i . Sinceu′

i > ui for all allocation instances,
Uopt ≤ Usup. Now, let’s see how large the difference betweenU

andUopt can become. Regarding the allocation of subflows,bk
i , if

bk
i = 0 or bk

i = bk max
i the subflow has the same contribution to



U and Usup. So the difference betweenU and Usup is given
by the number of subflows with partial allocation, i.e. where
0 < bk

i < bk max
i . These partial allocations can result only due

to the constraints in Equation (8). Due to Lemma 3.1, for each
of the p constraints in Equation (8), at most one segment might
result in a partial allocation. ThusUsup −U ≤ p× ξ, which leads
to Uopt − p × ξ ≤ U ≤ Uopt.
Note that bothU andUsup are easily computable at runtime, and
sinceU ≤ Uopt ≤ Usup we can compute at runtime a “better”
worst case bound for a particular system instance. In Section V-G,
Table V we present such a worst case runtime result.

E. Dual formulation and characteristics of optimal solution

In the distributed allocation algorithm we use the concept
of shadow prices. In order to introduce shadow prices, we
next present a dual LP formulation together with some useful
characteristics of the optimal solution.

The following problem is the dual of the LP problem presented
in Equations (7) to (9). It aims to put a price on the resources
(i.e yj andvk

i ) by solving:

Minimise

p
X

j=1

Bmax
j × yj +

m,s
X

i=1,k=1

bk max
i × vk

i (10)

subject to

p
X

j=1

qij × yj + vk
i ≥ λk

i (11)

0 ≤ yj , 0 ≤ vk
i (12)

The shadow priceyj of a resourcej, shows the marginal
increase of total utility if the resource amount could be increased
with one more unit. Conversely it can be interpreted as the
marginal decrease in utility (per resource unit) if less resource was
available. We can imagine a new subflow requesting a marginal
amount of bandwidth along its end-to-end path. In order to make
space for the new flow, the system has to ensure a marginal
amount of available bandwidth on all the resources the new flow
traverses (potentially rejecting other subflows). According to the
above definition of shadow prices, the utility/bit lost by making
room for the new flow isppi =

P

j qij × yj, whereppi stands
for path-priceof flow i. The utility/bit gained by accepting the
new subflow is given byλk

i . Intuitively, in order to maximise
utility, the network should only accept subflows whereλk

i > ppi,
otherwise the total utility of the system will decrease. Note that
both λi and yj have the same unit (utility/bit), and that both
parameters measure utility, albeit from different perspectives. The
first one directly measures the utility of the flow, while the second
one measures the utility of the clique resource, generated as a
consequence of the flows contending for it.

For a complete definition of the dual problem, we need to
model the fact that each subflow is restricted to a maximum
allocation ofbk max

i . Thus we introduce artificial resources that
are exclusively used by a corresponding subflow, with the only
purpose to limit allocation tobk max

i . The shadow price of these
resources is denoted byvk

i .
Here we present some important characteristics of solutions to

the primal and dual LP problems, characteristics that give us a
better insight into the allocation problem and help us devise the
distributed allocation algorithm. Out of constraints (8) and (11) we
can derive the non-negative slack variableswj andzk

i . The first,
wj , represents the amount of unused capacity at clique resource

j. The second,zk
i , represents “loss per bit” for subflowfk

i (zk
i =

ppi + vk
i − λk

i , i.e. the difference between the cost of resources
on the path and the utility yield of the subflow). Using the slack
variables, the inequalities of the primal and dual problem turn
into equalities:

m,s
X

i=1,k=1

qij × xk
i + wj = Bmax

j (13)

p
X

j=1

qij × yj + vk
i − zk

i = λk
i (14)

According to LP theory [24], the optimal solutions for the
primal and dual problems fulfil the following constraints on
allocations and resource prices. Constraint (17) is similar to (16),
but applies to the above mentioned maximum subflow bandwidth
resources.

xk
i × zk

i = 0 (15)

yj × wj = 0 (16)

vk
i × (bk max

i − xk
i ) = 0 (17)

From Equations 13-17 we can identify the following charac-
teristics of the optimal solution:

(O1) Either a resource is underutilised (wj > 0) and then its
shadow price is zero (yj = 0), or it is fully contended (with
some subflows receiving no allocation) and its price is greater
than zero.

(O2) For subflows wherezk
i > 0, we havexk

i = 0. Note also that
sincexk

i = 0, we have alsovk
i = 0. This is in accordance to

P

j qij ×yj > λk
i , meaning that the path-price (accumulated

price of resources along the path) is higher than the subflow
utility efficiency, and the subflow is not profitable enough to
get an allocation.

(O3) For subflows wherezk
i = 0, andvk

i = 0, we have
P

j qij ×

yj = λk
i . This means that the subflow is at the allocation

edge given the resources it uses.
(O4) For subflows wherevk

i > 0, we have xk
i = bk max

i ,
that in turn implies zk

i = 0. This is in accordance to
P

j qij × yj + vk
i = λk

i . Thus, vk
i represents a “pricing

slack”, i.e. the amount by which the accumulated prices of
the used resources could increase, and the flow would still
be profitable.

Note that in the last three casesλk
i plays the role of a “pricing

budget”. As long as the subflow is able to “pay” for all the
used resources (by the path-price,ppi) without overshooting the
budget, it is accepted, otherwise it is rejected. For a practical
interpretation ofλi andppi as part of a user-to-provider payment
mechanism both the following modes are supported: 1) For every
admitted flow, the user pays the actual path price,ppi. The budget,
λi, signals to the provider the maximum amount the user is
willing to pay. In this mode, the optimisation scheme assures the
user that the price he is paying is the minimum price given the
competition he is facing. To ensure profit for the provider even
when the network is underloaded, a minimum price/bit should
be demanded from the users. 2) The user always pays the full
budget,λi, as specified by the utility function. In this mode, the
optimisation scheme will ensure that higher paying customers are
always accepted first, which also means profit maximisation for
the provider.



IV. D ISTRIBUTED RESOURCE(RE)ALLOCATION

The ad hoc network considered in this work is an open dy-
namic system where resource request and availability are always
changing. Therefore our scheme employs periodic reallocations
to keep the resource usage optimised. As end-to-end connections
span several nodes and clique resources, it is important that
(re)allocations are well coordinated along the path. Moreover,
reallocations imply a “mode” change for applications so their
number should be strictly controlled. In this section we present
an algorithm that uses allocation rounds that are synchronised for
all clique resources. The use of periodic, synchronised allocation
rounds guarantees that flows will enjoy a fixed allocation forat
least one period. It also puts a bound on the reallocation rate in the
system, even if the rate of events (traffic and topology changes)
is much higher. Later, in Section IV-F, we propose a new version
of the algorithm that works also when the allocation rounds
are not synchronised among the clique resources. Choosing an
appropriate period size implies a tradeoff. The shorter theperiod,
the better the system is at keeping the utility optimised, but the
larger the computation and signalling overhead.

We will now proceed to describe the synchronised version
of the allocation algorithm that will be referred asadhoc-TARA
henceforth. Assume for now that a route for a flow is already
established (we will come back to how this route is found in
Section IV-E). Conceptually, at each period the (re)allocation will
proceed like this:

• Every flow calculates a bid for all clique resources it tra-
verses, based on their associated shadow prices.

• Each clique resource independently evaluates the bids, pro-
poses a certain bandwidth allocation to the flow and recal-
culates its shadow price.

• The flow chooses the lowest bandwidth proposal from all the
cliques it traverses as the new bandwidth for the new period.

A. Bid construction

As already mentioned, the utility efficiency,λk
i , represents

the maximum “budget” available for “paying” for the traversed
resources. Note that a subflow needs to be accepted at all the
traversed resources in order to be established. We assume that
the contention level of a resource will not abruptly change from
one period to the next, so we start with a preliminary bid equal to
the shadow price of the resource in the previous period. Now,if
we add all these preliminary bids, we end up with the path price
of the previous period,ppi =

P

j qij × yj . Then, if we subtract
the path price from the budget, we can compute aprice slack,
slkk

i = λk
i − ppi. So, how should this slack be included in the

bids? As we do not make any assumptions on the evolution of
the resources’ congestion, we divide the slack uniformly among
the used resources. The number of resources used by a flow is
given by the clique-counter,cci =

P

j qij .
Thus, the bids are created as follows:

bidk
ij = yj +

λk
i − ppi

cci
= yj +

λk
i −

P

j qij × yj
P

j qij
(18)

wherebidk
ij is the bid of subflowk

i for resourcej. The sum of
a subflow’s bids always amounts to its maximum budget,λk

i . As
a simple example, imagine a subflow,f1

1 with budgetλ1
1 = 10,

that uses three clique resources with the shadow prices (of the
previous allocation period)y1 = 2, y2 = 2, y3 = 3. The slack

slkk
i = 10−2−2−3 = 3 is divided uniformly for each resource.

Thus the new bids are:bid1
11 = 3, bid1

12 = 3, bid1
13 = 4.

During allocation, if all bids are large enough, the subflow
is accepted, and corresponds to either category (O3) or (O4) in
Section III-E.

B. Independent allocation

After all the bids have been placed, every clique resource inde-
pendently allocates the bandwidth to the subflows in decreasing
order of bids until bandwidth is depleted. Then thenew shadow
price of the resource is set to the price of the lowest bid among
the accepted subflows. Note that all the bandwidth is reallocated,
and some subflows might get this time an allocation different
from last period.

If contention at a certain resource is greater than during the
previous allocation, its price will increase. If some subflow’s bid
cannot accommodate this increase, the subflow will be rejected. If
contention decreases, the price of a resource will decrease. This
means that some subflows that bid less than the previous shadow
price (i.e. have a negative price slack) are accepted, bringing the
price down accordingly. If a resource does not allocate all its
bandwidth, it is underloaded and its shadow price becomes zero
(case (O1) in Section III-E).

C. Discussion

Note that if the real shadow prices (the solutions of the dual
problem) were known, perfect bids could be constructed. In such
a case, a subflow would consistently be accepted or rejected at
all the cliques that it traverses. As we do not know the new
shadow price beforehand, we use the shadow price from the last
allocation as an estimate. At a certain clique resource, thenew
price could become higher than the bids of some flows (i.e the
new contention level was underestimated at bid construction). In
such a case, some flows that with hindsight could have offered
a proper bid are rejected. Conversely, overestimating a resource
price unnecessarily increases its bid to the detriment of bids for
other resources.

As a consequence of over/underestimation, the allocated band-
width could be different at different clique resources, andthe
flow can use only the minimum allocation over the end-to-
end path. Hence, one could use several consecutive iterations
of the algorithm to better balance the bids. Nevertheless, as
the algorithm is intended for online allocation we use only one
iteration per reallocation period, and any mis-allocated bandwidth
will remain unused for that period. Since during an optimal
allocation the amount of this mis-allocated bandwidth is zero, in
our experiments we use the mis-allocated bandwidth as another
measure of how close to optimal allocation the performance of
our algorithm is.

Figure 4 presents a pseudo-code of the two parts of the dis-
tributed algorithm that run synchronously at every clique resource
and at every node respectively. For every clique resource a clique-
leader node, which is used to perform the (re)allocation compu-
tations, is determined at clique-construction time (see Section IV-
D).

The clique-leader gathers information about the flows usingthe
clique resource and then runs the allocation algorithm. Whenever
a flow starts/stops using a wireless link, the link’s end-node closer
to the clique-leader registers/deregisters the flow with the clique-
leader. This applies to all cliques containing the given link. The



Allocation algorithm run at every clique-leader j,
at every period τ :
Let Fj be the set of flows using resourcej
avbj = Bmax

j //initialise available bandwidth
∀ subflowsfk

i ∈ Fj

bidk
ij = yj + (λk

i − ppi)/cci //compute bid
while Fj 6= ∅ //allocate for highest bidder first:

selectfk
i ∈ Fj with highest bid

if avbj > qk
ij × bk max

i

xk
ij = bk max

i

avbj = avbj − qk
ij × xk

ij

else
xk

ij = 0
Fj = Fj − fk

i

yj = min(bidk
ij | xk

ij > 0) //recompute resource price
∀i wherefi ∈ Fj

xij =
P

k
xk

ij

sendxij and priceyj to source offi

Flow adaptation algorithm run at every node n,
at every period τ :
∀ flows fi sourced at noden

∀ resourcesj that fi traverses
wait for allocationxij and priceyj

xi = min(xij) //set bandwidth offi

ppi =
P

j
qij × yj //recompute its path price

∀ resourcesj that fi traverses
sendppi to clique-leader of resourcej

Fig. 4. The distributed allocation algorithm

clique-leader can be chosen such that the distance to the end-
nodes of the links belonging to the clique is at most2 hops
away. Therefore, inside-clique signalling could use the MAC layer
signalling (e.g. piggyback RTS, CTS, ACK packets).

The natural place for running the flow-adaptation part of the
algorithm (i.e. adjusting transmission rate to the new allocation) is
at the flow’s source node. Note also that the signalling information
between clique resources and the source nodes of the flows is
sent only along established routes, and thus can be piggybacked
on existing packets. Packets belonging to any flow using a link
in the clique will pass through a node that is at most2 hops
away from the clique-leader (with which it communicates using
in-clique signalling).

The flow’s source node must receive the new bandwidth deci-
sion from all the clique resources on the end-to-end path of the
flow and choose the minimum allocated. The larger the synchroni-
sation error between the clocks of the clique-leaders, the more the
source-node has to wait until it can set the new rate of the flow.
Thus a flow could set an increased rate some time before another
flow finishes its allocation round and decreases its rate, leading
to short-lived congestions at certain points. Regarding clock-
synchronisation protocols in wireless (sensor) ad hoc networks,
Römer et al. [25] give precision results of less than100µsec for
nodes five hops away. These clock skews are small compared to
the envisioned reallocation periods, and thus we assume these
congestions to be easily mitigated. Nevertheless, synchronised
allocation generates bursty signalling in the network, andin
Section IV-F we present modifications to the allocation algorithm
to study the potential for asynchronous allocation rounds among
the clique resources.

Finally we would like to point out that in this work we

assume a collaborative approach. Nevertheless, one direction for
accommodating selfish nodes could be to reward the nodes of
a clique proportionally to the advertised clique-price andthe
quantity of the flows traversing the clique, combined with using
signature mechanisms when gathering statistics. Thus falsely
decreasing the clique prices would decrease the revenue of the
clique. Falsely increasing the clique prices would result in the
clique being avoided and underutilized (due to flows routingon
other, lower-priced paths), which will also result in diminished
returns.

D. Mobility and clique construction

Due to mobility, a node might enter or exit the communication
range of another one, thus creating a new wireless link, or
alternatively breaking one. Discovery of topology changescan
be implemented either event-based (using MAC feedback) or
periodically (local broadcast of hello messages).

As mentioned previously, only local information is needed to
construct the maximal cliques. We know that only links adjacent
to nodes that are at most3 hops away might contend with
each other (see Section III-B). Thus, if all nodes send their
neighbourhood list3 hops away, every node will be able to
identify all the cliques containing any adjacent link [3].

Addressing detected neighbourhood changes at every noden
if the neighbour set changed

notify sources of broken flows to reroute
two-hop broadcast thenew andbroken links

Clique construction at every noden
if notification of newand/orbroken links received

update local topology view
reconstruct clique resources

∀ newly identifiedclique resourcesrj

identify the clique-leader node
∀ rj wheren is clique-leader

establish initial price,yj

∀ flows fi traversingrj

sendqij andyj to source of flowfi

Flow adaptation to topology at every noden
∀ flows fi sourced at noden

if fi is broken
reroute

if qij andyj from a cliquerj is received
recompute path price,ppi =

P

j
qij × yj

recompute its clique-counter,cci =
P

j
qij

sendppi andcci to clique-leader ofrj

Fig. 5. Clique-construction and topology-related algorithms

Information from packets that traverse any link belonging to a
clique should reach the clique-leader node. To minimise thein-
clique signalling, the clique-leader is chosen as the node closest
to all the links in the clique (i.e. the aggregated hop-countto the
closest end-nodes of the links in the clique is minimal). Ties can
be broken using node addresses. Note also that the “peripheral”
nodes (i.e. those that are adjacent to only one link belonging to
the clique) are neither candidates for clique-leader nor the nodes
that communicate with the clique-leader on behalf of the link
(i.e. the node closer to the clique-leader). Thus, for a proper
clique construction it suffices to send neighbourhood information
only 2 hops away. Similar to Xue et al [3], we use the Bierstone



algorithm [26] for clique identification. The Bierstone algorithm
has a complexity ofO(l2l ), where ll is the number of links in
the local analysed subgraph, which contains only nodes at most
2 hops away from the computing node.

In conclusion, for clique (re)computation, every node should
only broadcast adjacent new and broken links (i.e. changes to its
neighbourhood set) to all nodes as far as2 hops away. Thus, after
network initialisation, the signalling overhead involvedin clique
computation greatly depends on network mobility.

If a link breaks, all the flows that use this link should be re-
routed. Some old clique resources will disappear and some new
ones will be created. To set an appropriate starting price onthe
new cliques, we perform a “dry allocation” at creation time (no
bandwidth is actually reallocated) based on the inherited flows.
After a topology change all the affected flows must update their
path price for the next allocation round.

Figure 5 shows the three independent algorithms used at each
node for adapting to topology changes. No related synchronisation
amongst nodes is needed. In the second algorithm, the “clique-
leader” node is determined as the node in the clique that has the
largest address, and is adjacent to at least two links belonging to
the clique.

E. QoS routing

Traditional QoS routing algorithms typically use either shortest
path (respecting minimum constraints), or widest path (allowing
a better QoS for that flow). However, these are two extreme cases
and do not optimise global utility. Shortest path might overload
some routes. Widest path may produce too long routes, increasing
total network load. Therefore, as part of adhoc-TARA we propose
a new routing algorithm based on the shadow price of resources
introduced above. Given the allocation algorithm presented in
Section IV-C the best chance for a flow to receive the highest
QoS is by routing it along a path with the lowest path price. Thus,
we use an on-demand, shortest path first (SPF) routing algorithm
that uses the path price as distance metric (i.e. it chooses apath
that yields a minimalppi =

P

j qij ×yj)). This lowest path price
routing algorithm takes into account both less contended links
(lower link prices), and shorter topological paths (lower number
of links).

Once chosen, keeping a route fixed is important for deter-
ministic resource allocation. For this we employ the source-
routing principle. In source routing the source specifies all the
intermediate relays, and routing tables are not needed. Besides
providing load balancing capabilities, source-routing prevents
route and load oscillations when, for instance, the best route
changes.

We perform flow rerouting only when a link in the end-to-end
path breaks due to mobility. Topology events are independent of
network load, and there might be enough bandwidth available
to reroute the flow. On the other hand, rerouting should not be
used in the case of a decrease in allocation. In this situation the
network is most likely too loaded to accommodate that flow, so
an alternative route will not help. Moreover, rerouting in such a
case would create an oscillating allocation pattern where flows
constantly chase a better route. In our experiments in Section V-
H we compare the performance of our price-based routing to a
hop-based SPF routing in both a uniformly loaded network and
a network with hotspots.

F. Extending adhoc-TARA for asynchronous allocation

The version of adhoc-TARA presented in the previous sections
relies on synchronous allocation at all clique resources. Synchrony
is required since the source of the flow has to receive all new
allocations (from all traversed clique resources) before it can
choose the lowest allocation as the new rate for the upcom-
ing period. Implementing this in an open ad hoc environment
is problematic due to the following two factors. 1) Network-
wide synchronisation of allocation rounds is needed due to the
interweaving of flows and resources. This implies a network-wide
consensus on allocation time points, good clock synchronisation,
and fast and reliable transmission of the packets containing the
new allocations and clique-prices from the clique leader tothe
source nodes of the flows. 2) Bursty control traffic must be dealt
with. The information exchange between flow source node and
clique-leaders can be seen in Figure 4. The source transmitsλi

andppi to all the traversed cliques. This information is the same
for all cliques, and can be naturally piggybacked on the flow’s
packets. The dissemination is not time-critical (as it has the entire
period to reach the relevant clique-leaders). In the other direction,
however, the clique-leaders transmit all the new allocations xij

and clique-pricesyj to all the source nodes of traversing flows (a
much larger information size). This transmission is time-critical
and might thus need special prioritised packets. Since all the
clique-leaders transmit this information synchronised, the network
has to deal with bursts of control information.

By using an asynchronous allocation scheme we could elim-
inate both the network-wide synchronisation maintenance and
the bursty control traffic. To this end we propose the following
solution. At every source node of a flow, we maintain a list of
all the proposed allocations from all the clique resources that
the flow is traversing. Whenever the flow’s source is receiving
a new bandwidth allocation, we update the value in the list
that corresponds to the originating clique. Then we check ifthe
minimum value of all the allocations in the list has changed.If
yes, then we set it as the new rate of the flow. Note also that with
a new allocation, a new clique-price is received too. Whenever
a new clique-price is received, the path-priceppi is immediately
recomputed by the source and disseminated with the flow.

Using the previous mechanism, a flow’s source need not wait
for results from other cliques to arrive in order to decide if
a rate change is opportune. Thus, the allocation moments for
different clique resources may occur asynchronously. Notethat
care has to be taken for new and rerouted connections. We have
to wait until all the traversed clique resources have decided on
the first allocation (i.e. wait for the duration of one allocation
round), before setting a flow’s first transmission rate. Thatis,
we accept a subflow only if it accepted by all clique resources
along the path. Note that for a particular clique resource westill
have a fixed period between two reallocations. As we assume
the allocation time points of the different clique resources to be
uniformly spread, control traffic will also be uniformly spread
in time, in contrast to the periodic bursts of control traffic
in the synchronised approach. In Section V-I we compare the
synchronous and asynchronous versions of the scheme.

V. EVALUATION

A. Evaluation setup

To evaluate the behaviour of our resource allocation schemewe
use a traffic mix representative for future mobile communication



networks [27], [2]. Table II summarises the traffic characteristics.
To create a diverse traffic mix, the maximum required bandwidth
follows a geometric distribution with the given minimum, maxi-
mum and mean values.

TABLE II

TRAFFIC MIX USED IN THE EXPERIMENTS

Applic. 

Group
 


Max. Bandwidth 

Requirement (Kbps)
 


Connection Duration 

(sec)
 


Examples
 
 Class
 
 Utility 

Scaling
 


 
 min
 
 Max
 
 avg
 
 min
 
 max
 
 avg
 
  
  
 Factor
 

1
 
 30
 
 30
 
 30
 
 60
 
 600
 
 180
 
 Voice Service & 


Audio Phone
 

I
 
 1
 


2
 
 64
 
 256
 
 128
 
 60
 
 1800
 
 300
 
 Video
-
phone & 

Video
-
conference
 


II
 
 1
/3
 


3
 
 200
 
 1000
 
 500
 
 300
 
 7200
 
 600
 
Interact. 
Multimedia 

& Video on Demand
 


II
 
 1/10
 


4
 
 10
 
 30
 
 20
 
 10
 
 120
 
 30
 
 E
-
Mail, Paging,
 

& Fax
 


III
 
 1/2
 


5
 
 64
 
 512
 
 256
 
 30
 
 7200
 
 180
 
 Remote Login &
 

Data on Demand
 


III
 
 1/5
 


6
 
 128
 
 2000
 
 512
 
 30
 
 1200
 
 120
 
 File Transfer & 

Retrieval Service
 


III
 
 1/7
 


 


The second column from the right presents the flexibility class,
which shows the flexibility of the applications to bandwidth
reallocations.

• Class I represents rigid applications, e.g., for a real-time
application once the “mode” is set by the initial allocation,
any allocation increase is useless, and any decrease fatal.
That is, the utility accumulated in time for this flow is
completely lost if resources are decreased.

• Class II is semi-rigid, where the lowest allocation point
is used to compute the utility for the whole duration (i.e.
if resource is decreased a proportional chunk of already
accumulated utility will be lost). Examples could be sensor
flows with different accuracy, or sensitive multimedia.

• Class III represents fully flexible applications that have
no problem to adapt (for every new allocation period the
accumulated utility of the flow grows with the utility of the
given allocation). Examples are non-real-time data transfers
(FTP, email).

The allocation scheme accommodates the class I and II types by
online modifications to the utility functions, prior to their usage
by the allocation algorithm. These modifications are orthogonal to
the allocation scheme presented here, and are presented in earlier
work [10], [2].

The shapes of the utility functions for the different application
groups distinguished in the first column in Table II are presented
in Figure 6. On the x-axis we plot the normalised bandwidth with
respect to the maximum requested by the application (Column2
of Table II). On the y-axis we have the normalised utility with
respect to the maximum utility, which is obtained by multiplying
the maximum requested bandwidth with theutility scaling factor
from the rightmost column of Table II. The utility scaling factor is
important, as it provides a means to determine importance among
application types. It represents the utility per bit associated with
the maximum required bandwidth, and scales the shape of the
utility function accordingly. For example, even though onemight
be ready to pay roughly three times more for a video-phone
conversation (bandwidth demand of 256 Kbps), the utility per
bit is almost three times higher for an audio-phone application
(which requires only 30 Kbps).

Assigning utility values is always a subjective problem, so
we chose some common sense values and also consulted with
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Fig. 6. Utility functions for the six application groups

Ruben et al. [28] who performed a study at Ericsson Cyberlab
in Singapore and had access to conceivable business models.In
the graphs in Figure 6 the solid line corresponds to the original
utility function (the one that defines the “contract” between user
and provider), while the dashed line is the convex hull frontier,
used for the allocation decision.

A simulator was built on top of the J-sim component plat-
form [29], and packet level simulation was not considered atthis
stage. The experiments use1500×1500m2 area where60 mobile
stations are uniformly, randomly deployed. The communication
range is250m and considered equal to the interference range.
Environmental perturbations are not considered, and everyclique
resource has the4Mb/s channel bandwidth at their disposition.

Mobility is implemented using a modified random way-point
model (RWP), with a random speed between zero and a maximum
speed. As pointed out by Yoon et al. [30] RWP mobility models
have deficiencies, and real applications may indeed show a differ-
ent behaviour (see the work by Kuiper and Nadjm-Tehrani [31]
for example). Thus, to avoid the slowdown of the original RWP,
in our model we change the destination waypoint periodically
(regardless if the destination waypoint has been reached ornot).
Moreover the nodes have no pause time. This provides for
an average speed that is constant in time. To ensure a good
connectivity and stop the mobile nodes from clumping together,
we make nodes move away from each other when they come
closer than a third of the communication distance. We believe
this is a reasonable model in urban connectivity. The inter-arrival
time of new flows follows an exponentially distribution, andall
the six application groups arrive with equal probability. To solve
the linear programming part, we have used a Java package from
the operation research objects collection (OR-Objects) [32].

B. Comparison of allocation schemes

In this section’s experiments we compare the behaviour of the
following routing and allocation schemes for different load and
mobility scenarios.

• As a baseline algorithm we use a non-utility routing and
allocation scheme denoted bysimplein the experiments. The



routing is on-demand shortest path first (hop-based). After
a route is chosen, the minimum of the bandwidth available
at all clique resources on the end-to-end path is allocated
to the flow. Actually, if enough bandwidth is not available
to accommodate the minimum then the flow is rejected. If
the path breaks, the flow is rerouted, and new bandwidth
allocated. If a clique resource becomes overloaded due to
mobility, flows will be dropped on a last-accepted first-
rejected basis.

• To represent best possible solution, we use aLP solver to
optimally solve the global allocation problem as defined in
Section III-C. The formulation of the LP problem does not
include routing, so we use the price-based routing algorithm
described in Section IV-E. This serves to compare our
distributed allocation algorithm with the optimal allocation.

• Next we show the results of runs for theadhoc-TARA
scheme. It uses the distributed allocation algorithm described
in Sections IV-A to IV-C and the routing algorithm presented
in Section IV-E.

• Finally, we compare with a variant of our distributed al-
location scheme, denotedaltbid, where a different formula
is used to construct the bids. In this alternative the budget,
λk

i , is proportionally divided based on shadow prices. Thus,

bidk
ij =

yj×λk
i

P

j qij×yj
. The intuition is that resources with

higher shadow prices are more disputed, and thus have a
higher chance of getting even more disputed. However, bids
for low priced resources become very small, and in the case
of a zero priced resource, all bids become null. In this case,
ties are broken based onslkk

i = λk
i − ppi.

For all the four schemes, the main evaluation metric is the
accumulated utility. Note that irrespective of how allocations are
determined, utility accounting is performed using the original
utility functions and the extended utility model briefly described
in Section V-A. According to the model, a class I flow is dropped
if the initial bandwidth cannot be maintained. A class II flow is
dropped if theminimumbandwidth cannot be maintained. A class
III flow is never dropped (unless there is a network partition).
If a flow is dropped, no utility is gained for the flow, and the
bandwidth invested during its lifetime is wasted.

C. Network-wide utility and mobility influence

As utility is our main performance metric we will first show
how the four schemes behave when subjected to scenarios with
different mobility. Thus in Figures 7 and 8, on the X-axis we
have the average speed of the nodes (m/s), and on the Y-axis the
time-accumulated system utility. Every plotted point represents
an average of 8 different experiments. Each experiment was run
over a period of600sec, with a (re)allocation period of2 seconds.
All the experiments were run with a moderate overload (average
inter-arrival rate of1/200s−1).

The experiments in the two figures are differentiated by the
type of the applications used. In Figure 7 (“rt-mix” scenario)
we consider a mix of rigid and flexible application groups as
presented in Table II. In Figure 8 we consider that all the 6
application groups are fully flexible (their class is set to class
III). In this case no flows will be dropped due to zero allocation.

We can see that the results of adhoc-TARA come surprisingly
close to the optimal LP allocation. Even at the lowest point the
distributed allocation algorithm is at almost 90% of the optimal
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Fig. 7. Utility for rt-mix traffic

allocation (recall that LP uses the same routing as adhoc-TARA).
Both the “flexible” and the “rt-mix” scenarios suffer from mobility
in a similar way. The simple scheme cannot properly differentiate
between flows and is trailing at around half of the utility of the LP
algorithm. The altbid algorithm performs constantly belowadhoc-
TARA (at worst 72% of the LP). This is because the bid is too
biased towards high-priced resources, while low priced resources
can also quickly become more congested. Adhoc-TARA, on the
other hand, creates a more balanced bid.
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Fig. 8. Utility for flexible traffic

Figure 8 shows the achieved utility as an average of eight
different topologies/traffic scenarios for every plotted point. Since
measuring confidence intervals for utilities achieved overdifferent
topologies would be meaningless, we compute them on a different
basis. That is, we compute a relative performance by dividing the
results ofadhoc-TARAandsimpleto the optimal results ofLP that
are achieved on the same traffic/topology setup. Only then wego
on and compute statistical confidence. As exemplified in Figure 9
for “flexible” traffic, the 90% confidence intervals have the largest
size of ±0.015 (around a0.93 point) for adhoc-TARA, while
being roughly double, max±0.035 (around a0.63 point), for
simple. Though not shown as a graph, the confidence intervals for



Figure 7 are comparable; i.e. with the 90% confidence intervals
for adhoc-TARAhaving max±0.04 (around a0.97 point), and for
simplemax±0.05 (around a0.61 point).

D. Network-wide utility and offered load dependency

The next set of experiments, presented in Figure 10, show how
utility depends on the offered load. In all experiments the average
speed is4m/s, we plot results for light, moderate and heavy
offered load, and each point is an average of 8 experiments.
Both “flexible” and “rt-mix” scenarios have similar trends.We
can observe that the utility of all3 schemes increases almost
proportionally with load, preserving the superior performance of
adhoc-TARA. The 90% confidence intervals for the relative utility
performance ofadhoc-TARAhave max±0.06 (around a0.94

point), and ofsimplehave max±0.06 (around a0.60 point).
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E. Bandwidth mis-allocation in adhoc-TARA

In Table III we present the bandwidth utilisation of adhoc-
TARA as compared to the utilisation of the LP algorithm. The
mobility row shows the average speed of nodes (m/s). Our dis-
tributed algorithm independently allocates bandwidth at the clique

resources along the flow’s path. If allocations are different, some
bandwidth is wasted. The LP solution is using global knowledge
and thus has no such problem. Nevertheless, the difference in
bandwidth usage (as an average over all clique resources) between
LP and adhoc-TARA is only around 15% as presented in Table III.

TABLE III

BANDWIDTH USAGE OF ADHOC-TARA COMPARED TOLP

mobility 0 2 4 8
usage(%) 92 84 80 87

F. Running time comparison

Besides signalling overhead, computational complexity isa big
drawback of the LP solution and one of the strengths of adhoc-
TARA. Table IV gives a comparison of the average time (seconds,
on a 1GHz P III) needed to reach an allocation decision, as offered
load is increased. The running times of the experiments givea
good indication of the relative merits of adhoc-TARA compared
to optimal LP.

TABLE IV

AVERAGE RUNNING TIME OF ALLOCATION DECISION

interarrival rate 1/400 1/200 1/100
LP 54.1 173.8 890.9

adhoc-TARA 0.179 0.265 0.476

G. Run-time bound for convex hull related error

In Figures 7 and 8, we have presented the LP solution as
optimal. Nevertheless, it uses the convex hull frontier approx-
imation of the utility functions in its decision making, which
may introduce an error compared to the true optimum, as shown
by Lemma 3.2, in Section III-D. In this section we calculate a
runtime bound of how large this error could be.

In Section III-D we definedU , Usup, and Uopt and showed
that U ≤ Uopt ≤ Usup. As we can easily computeU and Usup

for every allocation round, we can compute a run-time difference
bound betweenU and Uopt. Let’s denote it as∆Uopt = Usup −

U ≥ Uopt − U .
During an experimental run,300 allocation rounds are per-

formed in a simulated half hour. We experiment for different
offered loads, as shown in Table V. We show the average number
of connections in the system, together with the average value of
∆Uopt/U during the300 allocation rounds. We can observe that
the potential error introduced by using the convex hull frontier
in the allocation decision is not larger than 5%, even thoughthe
flows used in our experiments are quite large compared to the
capacity of the wireless channel. In networks populated with a
large number of small sized flows we expect even better bounds.

TABLE V

APPROXIMATION BOUND FORLP ALGORITHM

interarrival rate 1/400 1/200 1/100
avg. nr. of conns 14 29 60
avg. ∆Uopt/U 0.043 0.047 0.040



H. Isolating the performance of price-based routing

In this section we measure the utility improvement due to the
price-based routing algorithm presented in Section IV-E (labelled
asprice in the forthcoming curves) instead of a hop-based shortest
path first routing algorithm (labelled asspf). We simulate two
different load scenarios, one in which the load in the network
is uniformly distributed, and the other one containing a hotspot
region. The hotspot has a radius of150m and is created in the
middle of the1500 × 1500m2 simulation area. Contention in the
hotspot is increased by setting the capacity of the cliques in the
hotspot range to1Mb/s instead of the4Mb/s of the rest. The
experiments with the hotspots scenarios are labelled with ahs
suffix on the curves. In both cases the allocation is performed by
adhoc-TARA, only the routing is different.

Figure 11 presents the network-wide utility and its variation
with increasing mobility for a moderate overload (inter-arrival
rate 1/200s−1). The results for of the scenario with uniformly
distributed load show only marginal difference between price-
based and hop-based SPF routing. This is expected, as in a
uniformly loaded network, the shadow prices are similar andthus
the path length largely determines path price. Basically inthis
case price-based routing degenerates to a hop-based SPF routing.

The hotspot scenario on the other hand shows a clear dif-
ferentiation among the routing algorithms. In this case there is
a real advantage for some flows to avoid the hotspot and take
a longer route. This is visible in the mobility-independent11%
utility gained by using the price-based routing algorithm.
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Fig. 11. Utility with different routing algorithms as function of mobility

Figure 12 shows the performance dependency on offered load,
at an average mobility of4m/s. When the network is only lightly
overloaded (inter-arrival rate1/400s−1) best paths are the shortest
paths and the difference is marginal. As already presented,under
moderate overload the hotspot scenario shows the benefits of
price-based routing. Note also that for heavy overloads (inter-
arrival rate1/100s−1), even for the scenario with no hotspots
there is a difference between price-based and hop-based routing.
This is due to the topology, that makes more connections to route
through the centre of the area in the hop-based routing case.

For both Figure 11 and 12 each point is an average of 8
experiments with different initial topology/traffic. We computed
confidence intervals in a similar manner to Section V-C. The
90% confidence intervals of the relative utility performance of
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Fig. 12. Utility with different routing algorithms as function of load

spf divided by price are small; they have max±0.02 (around a
0.98 point), and ofspf-hsdivided by price-hshave max±0.045

(around a0.86 point).

I. Evaluating asynchronous allocation

In the previous sections we evaluated a synchronous version
of adhoc-TARA. As presented in Section IV-F, however, imple-
menting an asynchronous version has several advantages. Thus,
in Figure 13 we present the comparison of both the synchronous
and asynchronous versions of the algorithm, as a function of
both mobility and offered load. The suffixes of the labels show
the interarrival rate of new connections. Intuitively, we have no
reasons to expect a different achieved utility by the asynchronous
allocation algorithm, and this is confirmed by the experiments.
As future work we intend to theoretically prove that there is
no difference among the two versions with respect to their
convergence towards optimality. Each point is an average of8
different experiments, and the confidence intervals further confirm
the similarity of asyncand synch. For any of the mobility/load
combinations the 90% confidence intervals ofasyncdivided by
synchhave max±0.013 (around a1.02 point).
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VI. COMPARING ADHOC-TARA TO THE GRADIENT

PROJECTION ALGORITHM

In this section we compare adhoc-TARA to another utility/price
based resource allocation algorithm proposed by Xue et al. [5],
[3]. As presented in the introduction, this algorithm belongs to a
class based on the seminal formulation by Kelly et al. [33], [17],
and uses gradient projection method to reach optimal allocation.

The algorithm, to which we refer to as the gradient projection
allocation (GPA), addresses a maximisation problem that isvery
similar to ours, as presented by Equations (3)-(5). It also employs
an iterative allocation algorithm that estimates the shadow prices
of clique resources. The concepts of link contention and clique
resources are identical in both works. Nevertheless, the solutions
expose fundamentally different concepts, that also require utility
functions with different characteristics. While concavity is needed
in both cases, the GPA needs continuous, twice differentiable
utility functions as an input. In the next two subsections we
introduce the GPA algorithm and present how we constructed the
utility functions in order to make both schemes comparable.Then
we compare the two allocation methods focusing on convergence
properties and performance measured in terms of accumulated
utility.

A. The gradient projection algorithm

Starting from the optimisation problem presented in Equa-
tions (3)-(5) we introduce a set of multipliersyj and relax the
constraints to obtain the Lagrangian objective function:

L(xi, yj) =

m
X

i=1

ui(xi) −

p
X

j=1

yj(

m
X

i=1

qij × xi − Bmax
j )

=

m
X

i=1

ui(xi) −
m

X

i=1

xi(

p
X

j=1

qij × yj) +

p
X

j=1

yj × Bmax
j

(19)

Now we can define the Lagrangian dual function:

DL(yj) = max
0≤xi≤bmax

i

L(xi, yj) (20)

and the dual problem accordingly:

min
0≤yj

DL(yj). (21)

The multiplier yj can be interpreted as the price a flow has
to pay for accessing cliquej. Remember, the quantityppi =
Pp

j=1
qij × yj in (19) corresponds to the accumulated price of

all resources a flowi uses, and is referred as the flow’s path-
price. We observe that the last term in (19) is constant for given
yj and does not influence the optimal allocation solution. We can
therefore neglect it without changing the problem. For clarity, we
restate the Lagrangian dual function in its new form:

DL(yj) = max
0≤xi≤bmax

i

L(xi, yj)

= max
0≤xi≤bmax

i

m
X

i=1

ui(xi) −
m

X

i=1

ppi × xi

(22)

Thus, the optimisation problem is decomposed into two sep-
arate problems, the Subproblem (22), which aims at finding an
optimal allocation given the clique pricesyj and the Subprob-
lem (21) for finding the optimal prices for the cliques. From
optimisation theory it is known that if the utility functions are

concave, then an optimal solutiony∗j to (22), and the optimal
solutionx∗

i to the main problem (3)-(5) satisfy:

x∗
i ∈ arg max

0≤xi≤bmax
i

L(xi, y
∗
j ) (23)

In other words we can obtain a solution to our initial problem(3)-
(5) by solving the problems (21) and (22). Furthermore,y∗j
represents theshadow priceof clique j.

Xue, Li and Nahrstedt [3] proposed the application of the GPA
for utility optimised allocation. To use this method the utility
functions must be twice differentiable. It is further assumed that
the utility functions are strictly concave, and hence the problem
has a unique optimal solution. The gradient projection method is
an iterative method to find an extreme point of a constrained
function. It approaches an extreme point by taking from the
current position a step with a fixed lengthγ, in the direction of
the (negative) gradient. If outside, the obtained point is projected
back onto the feasible region.

In GPA, a gradient of Subproblem (22) for every resource
dimensionj is given by

Pm
i=1 qij × xi − Bmax

j , and thus each
component can be calculated separately on a given cliquej,
requiring only knowledge of the flows traversing the clique.
Similarly, the allocated bandwidth can be determined by the
source nodes, given the prices of the cliques that the flow traverses
(since for all other cliquesqij = 0). Hence, like for adhoc-
TARA, the problem can be solved in a distributed manner without
resorting to any global information about the network. It isshown
in [3] that for a given set of prices, a unique optimal solution
is obtained by lettingxi = [ d

dx
ui]

−1(ppi). The algorithm in
Figure 14 summarises the basic steps for the rate allocation(by
[...]+ we denote that negative values are set to 0, so the pricesyj

remain in the feasible region). The clique part calculates new
resource prices given the bandwidth allocations, and the flow
part sets new bandwidth allocations as a function of traversed
resource prices. By iteratively executing the two parts, both the
allocation and prices converge towards the optimum, given that
the rightγ is chosen, and both topology and traffic configuration
is static [33], [3]. As we will see in the experiments section, in a
mobile environment the period between two iterations will play
a big role with respect to the performance.

Price update algorithm run at leader node of every cliquej
update price,yj = [yj − γ(Bmax

j −
Pm

i=0
qij × xi)]

+

sendyj to all flows traversing cliquej

Bandwidth allocation algorithm run at source of every flow i
calculate path price,ppi =

Pp

j=1
qij × yj

calculate allocation,xi = [ d

dx
ui]

−1(ppi)

Fig. 14. The gradient projection algorithm (GPA)

On a conceptual level we can differentiate GPA and adhoc-
TARA by noting that the GPA algorithm is acongestion control
algorithm. We can observe that the price of a resource increases
(and subsequently the rate of the flow decreases) only as a
consequence of an overload. Moreover, as all the flows take
independent rate change decisions, an underload in a resource
triggers a rate increase of all the traversing flows, which can lead
then to an overload, and so on. Adhoc-TARA on the other hand
can be labelled as anadmission controlalgorithm, since every
clique employs explicit allocation rounds. Thus flows do notadapt
independently, and resources do not get overloaded.



Another difference is that the GPA can adapt only in small
steps, so in the case of severe over/underload the algorithm
needs several iterations to allocate the real amount of resource.
In comparison, adhoc-TARA always attempts to fully allocate
according to the right resource capacity.
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B. Utility functions and accounting

The gradient projection method requires the utility functions
to be continuous and differentiable while for adhoc-TARA they
have to be piece-wise linear. We adopt the following strategy in
order to perform comparable evaluation. For GPA we use utility
functions that are specified asU(x) = a log(bx+ c), wherea, b, c

are arbitrary parameters that control its shape. For adhoc-TARA
these functions are linearly interpolated at 7 equidistantpoints
so as to get a piecewise linear utility function consisting of 6
segments, sayL(x) (cf. Figure 15).

The utility accounting is based on each algorithm’s utility
function. More precisely, given a period length ofτ , the utility
for allocationxt

i for period [t, t + τ ] is given byut
i = τL(xt

i) for
adhoc-TARA andut

i = τU(xt
i) for GPA. The system utility is

then simply
P

t

Pm
i=0 ut

i. Although L(x) is slightly lower than
U(x) our experiments showed that this difference is negligible.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  10000  20000  30000  40000  50000  60000  70000  80000

U
til

ity

Allocated bandwidth (bps)

Voice service
Video phone

Multimedia
Email

Data on demand
File transfer

Fig. 16. The traffic mix used for subsequent experiments

To run the comparative analysis we have modified the utility
functions of the six application groups in the traffic mix (see
Section V-A) to the ones depicted in Figure 16. Projection ofeach
curve’s end point on the x-axis shows the average bandwidth that
is used by a connection of this class.

The GPA algorithm cannot accommodate rigid and semi-rigid
flows (as the ones presented in Section V-A), and for a fair
comparison, we treat all six application classes as fully flexible
connections for both algorithms.

Furthermore, during overload situations, the GPA might allo-
cate more bandwidth than it is available at a resource. In real
networks this would lead to packet drop and retransmission.We
simulate the packet drop by granting all connections the allocated
bandwidth until the resources at a clique are exhausted. The
remaining connections will then be allocated zero bandwidth.
The possible overhead that frequent retransmission induces in real
networks is not accounted for.

For the experiments presented in the next sections we extended
our J-sim-based simulator to perform allocation using the GPA
algorithm. We used the synchronous version of the simulation
environment. For routing we used the on-demand shortest path
algorithm where the length of a path corresponds to the number of
hops. Packet-level simulation is not implemented and thus packet-
level overhead are not studied in this context.

C. Convergence properties

To illustrate the basic functioning of the algorithms we apply
them to the simple, static scenario depicted in Figure 17, with a
logarithmic utility functionU(x) = ln(x). It is linearly interpo-
lated at 7 points to obtain a piecewise linear function for adhoc-
TARA, as shown in Figure 15. The required bandwidth of both
flows is 3Mbps. The resource capacityBmax

j is set to4Mbps.
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Fig. 17. A simple network configuration and its contention graph

Figure 18 illustrates how the two algorithms allocate bandwidth
to cliques and flows in this situation. We observe that once
both algorithms have converged, the allocation is quite similar,
but not exactly the same. The reason is that adhoc-TARA can
only allocate at a discrete number of points. We also see that
GPA needs a few iterations to converge to the optimal solution,
while in this simple scenario adhoc-TARA is able to reach near-
optimal allocation at once. In GPA the allocation oscillations are a
consequence of the flows adapting independently to the available
bandwidth. Right in the beginning both flows observe an empty
resource and move to occupy it, then they observe the overload,
and so on. In Figure 18(b), where the bandwidth allocation atthe
two cliques is depicted, we also observe that in the initial phase
the GPA allocates more bandwidth than is actually available, until
it converges to a feasible allocation. In real networks thiswould
lead to packet loss and retransmission. Figure 18(a) shows that in
an optimal solution the allocated bandwidth for flow 2 is twice
as small as for flow 1 despite the fact that both flows have the
same utility function. This allocation makes sense, as flow 2uses
two links in cliqueR1 while flow 1 uses only one.
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Fig. 18. Bandwidth allocation for the flows and cliques in Figure 17

D. Performance comparison and mobility dependency

For the experiments that follow we use the same simulation
parameters as the ones presented in Section V-A, with two
differences. First, the comparable utility functions presented in
Section VI-B, Figure 16 are used. Second, we introduce the step-
length parameterγ, which is particular to the GPA, and unless
otherwise specified has the following value,γ =1e-10.

We proceed by studying the influence of mobility on the
accumulated utility. Nodes join and leave the interferencerange of
other nodes, hence changing the clique’s load abruptly. Moreover,
a route can be lost forcing the connection to take another route.
As already discussed, it may take quite a few iterations for GPA to
adapt when facing such abrupt changes, whereas adhoc-TARA’s
allocation reflects this change immediately. We therefore expect
that the performance of GPA deteriorates quicker than adhoc-
TARA. Figure 19 clearly confirms our expectation. Similar tothe
results in Section V-C we can observe that the performance of
adhoc-TARA is very close to the optimal LP-based algorithm.
There are two important factors that influence the performance of
the GPA in highly dynamic environments. These are the period
between iterations,τ , and the step-lengthγ, and we look closer at
them in the next sessions. Note that in this graph’s experiments,
we usedτ = 0.02 s andγ =1e-10. For every point we performed

4 experiments with different initial topology/traffic. We computed
the relative performance of bothadhoc-TARAand GPA divided
by LP as we did Section V-C. The 90% confidence intervals are
small, for adhoc-TARAthey have max±0.013 (around a0.98

point), and forGPA max ±0.035 (around a0.94 point).
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Fig. 19. Influence of mobility on the performance

E. Influence of period length on the performance

As we have already mentioned, the period time (τ ) in our
mobile simulation is of crucial importance for GPA. The larger
the period, the longer the GPA stays in suboptimal allocation after
a traffic or topology change. And these changes occur quite often
in a mobile scenario, with important consequences. Thus, itis
clear that the accumulated utility is monotonically increasing as
τ moves closer to zero. Figure 20 shows how the accumulated
utility is affected by the interallocation period length. Each point
is an average of 4 experiments, and the relative performanceof
GPAdivided byadhoc-TARAstable. The 90% confidence intervals
have max±0.013 (around a0.98 point).
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Fig. 20. Influence of the period timeτ on the performance

We observe that a short period time is vital for GPA to show
good performance, while adhoc-TARA is less sensitive to longer
dissemination times. The less sensitive behaviour of adhoc-TARA
is explained by two facts. First, in adhoc-TARA the flows do not
adapt independently, and a clique never allocates more bandwidth



than available. Second, if a change in the network demands it,
adhoc-TARA can operate large changes in a flow’s allocation
(from max to zero, or vice versa). In GPA on the other hand,
flows need to adapt in steps, the size of which depends onγ.

In a real network, the period is lower-bounded by the end-to-
end transmission time of the packets, and regulates how often
the control information is transmitted. Thus, there is a trade-off
between signalling overhead and the time GPA needs to converge
to an optimal solution.

F. Influence of step-length on GPA

Choosing the right step-length,γ, is crucial for the performance
of GPA. Xue et al. [3] show that convergence is guaranteed if
γ satisfies0 < γ < 2/κY Z, where, informally speaking,κ is
a bound on the curvature of the utility functions,Y the length
of the longest path for a flow andZ the number of sub-flows
at the most congested clique. In our experiments we note that
κ is the dominating factor, and it turns out to be of the same
order of magnitude as the requested bandwidth of a connection.
If we have a good idea about the peak traffic in our network, the
above formula helps us to choose the step-length small enough.
Unfortunately such information is rarely available.
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Fig. 21. Allocated bandwidth at a sample clique (inter-arrival rate1/200s−1)

Choosing a too large step length can result in oscillating
allocation behaviour, as shown in Figure 21, starting around
allocation point 1800. This figure shows the bandwidth allocated
by GPA to an arbitrary clique withγ =1e-10. Being conservative
and choosing the step-length too small will ensure convergence.
This, however, is done at the cost of convergence speed, and thus
the system spends more time in suboptimal states.

Optimal step-length depends on the traffic type, as illustrated
in Figure 22. The simulations were performed for two different
traffic models, namely the mixed traffic presented in SectionV-A
with an inter-arrival rate of1/600s−1, and a traffic setup where
all the connections are of “file transfer” type (see Figure 16). The
inter-arrival rate in the latter case is1/1000s−1.

VII. C ONCLUSIONS AND FUTURE WORK

In this paper we present a novel utility/price-based bandwidth
allocation scheme for wireless networks, together with a com-
patible price-based routing algorithm. We first show that wecan
use discrete utility functions together with linear programming
for optimising resource allocation in multihop ad hoc networks.
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Fig. 22. Influence of step-length in GPA on the accumulated utility for two
different traffic mixes

We then propose adhoc-TARA, a distributed allocation algorithm
that bids for resources depending on theirshadow prices, and
the utility efficiencyof the flows. Simulations show a very good
performance of the distributed allocation algorithm, comparable
to an optimal LP based global allocation, and with a much lower
overhead. Furthermore, in hotspot scenarios price-based routing
shows its benefits as compared to hop-based SPF routing.

Since synchronous allocation might be hard to implement in an
ad hoc setting, we then present an asynchronous version of the
algorithm and show that its performance is not affected by this
change.

Finally, we compare adhoc-TARA to another type of distributed
price-based allocation algorithm, which is based on the gradient
projection method. The simulations show that adhoc-TARA is
much more robust with respect to both mobility and length of
the allocation period. On the other hand, the GPA has been
theoretically proven to converge towards the optimum [17],[3].

As a future work we aim to study convergence conditions
and properties of adhoc-TARA, and theoretically prove that
it converges towards the optimum. Current work includes the
implementation of needed additions and modifications throughout
the protocol stack of an ad hoc network, to test it using detailed
packet-level simulations. We aim to study and compare the
packet-level overheads introduced by our allocation algorithm.
Complementary simulation studies are needed for testing the
resilience of the algorithm to loss of control packets, yielding
guidelines on how we can better trade-off signalling overhead
against control accuracy.

Wireless networks face a paradigm shift. They intend to com-
plement the Internet with its different services and applications,
with much less available resources. Thus, we argue that without a
quantitative measure for the importance of the flows, the network
cannot provide resource assurance and allocation flexibility at
overloads. Under these conditions, combining utility functions
with a lightweight distributed implementation could provide a
very strong argument to get rid of the old performance metrics
and optimise the QoS as perceived by the user.
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