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Abstract— This article proposes a scheme for bandwidth allo-
cation in wireless ad hoc networks. The quality of service (QS)
levels for each end-to-end flow are expressed using a resoarc
utility function, and our algorithms aim to maximize aggregated
utility. The shared channel is modeled as a bandwidth resoue
defined by maximal cliques of mutual interfering links.

We propose a novel resource allocation algorithm that emplygs
an auction mechanism in which flows are bidding for resources
The bids depend both on the flow’s utility function and the intrin-
sically derived shadow prices. We then combine the admissio
control scheme with a utility-aware on-demand shortest pat
routing algorithm where shadow prices are used as a natural
distance metric.

As a baseline for evaluation we show that the problem can
be formulated as a linear programming (LP) problem. Thus,
we can compare the performance of our distributed scheme
to the centralized LP solution, registering results very abse to
the optimum. Next we isolate the performance of price-based
routing and show its advantages in hotspot scenarios, and s9
propose an asynchronous version that is more feasible for adoc
environments.

Further experimental evaluation compares our scheme with
the state-of-the-art derived from Kelly’s utility maximiz ation
framework and shows that our approach exhibits superior per
formance for networks with increased mobility or less frequent
allocations.

Index Terms— Mobile computing, pricing and resource alloca-
tion, quality of service, optimization, performance evalation of
algorithms and systems.

I. INTRODUCTION

the established paths. That is, paths are constantly dreete
destroyed, requiring flow rerouting in the latter case. Nekw
resources such as bandwidth and power have to be dealt with in
fundamentally different ways compared to wireline or caliged
cellular networks. Resource availability can quickly chpanand
therefore continuous resource reallocation is needed duig®
graceful degradation during overloads, or quality of sEn\(QoS)
improvements when more resources become available.

An ad hoc network that is designed for adaptive and autonomic
reaction to failures and overloads should take advantagdeof
flexibility of the service it provides. Best-effort conniests are
considered to tolerate any changes in their allocation, redse
real-time flows might require a fixed allocation, otherwike 0
far accrued utility will be lost. If every service is assdeid with
multiple levels of acceptable guality, the flows in the netwcan
be regularly adapted to achieve optimised QoS. In addigdban
above, our scheme supports allocation algorithms thatigeov
differentiation among flows and enforce resource assurémce
each flow (subject to system-wide optimisation).

Our approach is based anility functions that capture how
the user values the flow’s different resource allocatiorelev
This approach allows for flexible allocations without needi
online QoS negotiations. Utility functions provide the mea
for the network to revise its allocation decisions on-tlyedhd
optimise resource usage. For instance, choosing an atodhtat
maximises the aggregated utility of the flows in the netwaak h
been shown to be a powerful mechanism for optimising resourc
allocation instantaneously [1], but also in a time-awaratext

Mobile ad hoc networks are formed by wireless nodes théte: Over the age of a given flow) [2].
move freely and have no fixed infrastructure. Each node in thelhe contributions of the paper are as follows. We propose and

network may act as a router for other nodes, and flows follof¥@luate a combined routing, admission control, and regoaifo-

a multi-hop path from source to destination. The infragtiees

cation scheme that aims to maximise the aggregated utflitireo

less flexibility makes ad hoc networks a strong complemefiyStem. As part of this scheme, two novel utility-based rilgms
to cellular networks, and ideal for many novel scenariogshsu@ré presented. The core of the scheme is a distributed, Qafa

as cooperative information sharing, defence applicatiam

price-based allocation algorithm that allocates bandwidtflows

disaster management. Mobile ad hoc networks will suppoiide w USing only locally available information. A complementauce-

range of services in which soft real-time (multimedia), dngh-
priority critical data, seamlessly integrate. As sociegcdmes
dependable on the provision of such services, their avliiab
under overloads becomes a critical issue.

based routing algorithm for choosing the most advantagpatts
for the flows is also proposed.

We start by formulating the allocation problem as a linear
programming (LP) maximisation problem. To properly divitie

In comparison to wireline networks, wireless multi-hop -neShared channel in an ad hoc setting we use the concepigoe
works will always be more resource constrained due to skevefgSource [3], [4]. It allows gathering mutually interfering links

fundamental differences. The first major issue is the lichipec-
trum of the locally shared communication channel. Neighingu
nodes can interfere and cannot transmit independentlysg@bend

in partially overlapping maximal cliques. The cliques detim-
istically account for bandwidth capacity and act as resssiia
the LP problem.

major difference is the mobility of the nodes and its effent o Ve then propose a distributed low-complexity allocatiogoal
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rithm that uses the concept of resousteadow price borrowed
from the dual LP problem. The novelty is that the algorithm
employs an auction mechanism, where flows are bidding for
resources. The bids depend both on the flow’s utility fumctio
and the intrinsically derived shadow prices.



We present two versions of the allocation scheme. FocusingBandwidth availability in ad hoc networks can be either
on the key concepts, the first version is based on network wigeecomputed [3], [4], [6] or measured at MAC level [3]. Xue
synchronised allocation rounds among clique resourcesidBe and Ganz [6] compute the available bandwidth at a node as
being hard to achieve, synchronisation also creates peailod the channel bandwidth minus the bandwidth consumed by the
bursty control signalling. Thus, we also propose an asynaus traffic at all neighbours. While easy to implement, this i® to
version that shows a utility-based performance similar He t pessimistic, and better models can be created when irgader
synchronous version. structures are built based on link interference [3], [4].tlis

We study the performance of our scheme at different traffigork, we use the contention model based on maximal cliques
loads and mobility speeds, and compare our algorithms sigaiof contending links [3]. If no global optimisation is sought
two baseline algorithms representing lower and upper perfaesource allocation can be attempted independently ay exete
mance bounds. The two baselines are: 1) an allocation scheoge appropriate MAC layer design. Luo et al. [4] present a
using hop-based shortest path first routing, followed byimam packet scheduling approach to ensure a minimum weighied-fa
possible bandwidth allocation, and 2) an optimal, cergeali scheduling combined with maximising spatial reuse of ckénn
algorithm that solves the LP form of the problem. The need In several earlier works resource allocation/reservatisn
for global knowledge and a high computational demand makgsated as an extension of the routing protocol. For ingtanc
the LP implementation unsuitable for online allocationwéwer, Chen and Nahrstedt [7] propose an on-demand distributeihgou
it provides an excellent measure of the upper bound on thgyorithm that aims to avoid flooding the network. They cdasi
performance. delay and bandwidth constrained least cost problems. Tdtarke

Our distributed algorithms are shown to provide an accrued the “bandwidth routing” [8] protocol is that link-layeckedul-
aggregate utility that is very close to the optimum achiévabing is directly considered in the protocol. Karaki et al. yide
by the centralised LP solution. In our experiments we alsp survey on QoS routing problems [9]. QoS routing is usually
isolate the performance gain of using the price-based mgutinot directly aimed at optimal resource allocation but atifigd
algorithm by comparing it with a hop-based shortest pathimgu either the shortest path that satisfies at least some mini@os
algorithm. The price-based routing algorithm shows itsamtizge requirements, or the path that gives the largest margina QoS
in scenarios with load hotspots. constraint. In our work, however, the routing algorithm &rtpof

As a final contribution, we have compared our algorithm to aihe global allocation optimisation scheme.
algorithm proposed by Xue et al. [5], [3], that is represtweafor A seminal work concerning optimal resource allocation and
a class of state-of-the-art algorithms based on the work &@fyK usage of quantised utility functions is presented by Led Et]a
et al. [5], [3], and which use a distributed gradient prd@tt Among others, the authors propose an algorithm that uses the
method (GPA). While both algorithms solve similar alloocati convex hull of the utility functions, and yields good result
problems, they are conceptually different. Our algorithmp®ys  despite computational simplicity. In our work we adopt the
distributed bidding and auctioning, and acts according Mo @ame discrete utility function model. We also build upon &Qo
admission controparadigm. Xue et al.'s algorithm is a GPA type differentiation method proposed in earlier work [10], [By
and falls into thecongestion controtategory. To our knowledge, taking into consideration the sensitivity of different &pation
there is no other class of algorithms that solve a similarcallion types to resource reallocations, it can consistently tregt real-
problem. time and best effort connections.

To compare our algorithm to the GPA, we constructed a several other works describe utility-based approaches+o r
compatible experimental environment. The comparison gesu source allocation in multihop wireless networks [11], [1Rjao
on convergence properties and performance measured i8 ®rmet 3| [11] provide a utility fair max-min allocation for wikess
accumulated utility for different levels of mobility. Théwsulation networks. A distributed allocation scheme is used, ancbplaal
results show that our algorithm adapts better to the chaimgesiea|iocations keep the consistency. We believe, howevat,aim-

a dynamic ad hoc network. Furthermore, our algorithm emibiing for equal utility can be counterproductive during oveds,
far better behaviour when the intervals between allocatioints 55 it will degrade all flows to a lowest acceptable level. Atays
are increased, thus being able to decrease the controlllsigna that addresses resource allocation in a wireless/wiredirzess
overhead with only small decreases in the overall perfoo@an network is the “TIMELY architecture” proposed by Bharghawet

The paper is organised as follows: Section Il discusseseglay) [12]. Maximising the revenue based on max-min fairnessis
work and Section Il presents utility functions, the networ of the criteria used during allocation and adaptation. Téraploy
model and the LP formulation of the problem. The distributeg 4-tuple revenue model (revenue function, terminatiorditre
utility-based allocation scheme is described in Section IV adaptation credit and an admission fee), where the samaniest

Section V we evaluate our allocation scheme in comparisowdo of the 4-tuple is used globally. While simplifying allocati, this
other baseline schemes, and also compare its two versioes, Brevents an accurate differentiation between flows.

with synchronous, the other with asynchronous allocatmmds.  pyring recent years several works have addressed the proble

Finally, Section VI introduces the gradient projectionalthm ¢ maximising network utility and have proposed distrilsite

and compares it to our allocation algorithm. Section Vlldades approaches to achieve this [5], [3], [13], [14], [15], [18p our

the paper and outlines future work. knowledge they all derive their solution from a decompositi

method presented in the seminal work of Kelly [17] and solved
Il. RELATED WORK by employing gradient/subgradient projection algorithfsr the

Work in resource allocation for ad hoc wireless networkeeminder of this section we continue discussing charastiesi

has been addressed either at the MAC-level, as an extersiorand examples of this class (to which we refer as the GPA class)

routing, or at an optimisation policy level. Like our approach, these works also use concave utility-func



tions and aim to maximise the aggregated utility of the flows i In the context of wireline networks, Lin and Shroff [15]
the network. However, there are some fundamental differencexplicitly include the QoS routing part in their utility aptisation
between the two approaches. The GPA class formulation wonoblem by allowing a flow to use multiple paths and optingsin
only with twice differentiable continuous functions whileur the routing probability over the different paths. By indhgl flow
formulation works with piecewise linear ones. The expresséss arrival and service time probabilities the authors opténfer
of the latter is important to us as we aim to capture the real-usaverage network conditions thus decreasing the frequehtyeo
perceived utility of the flows, while in the GPA class the itiil control loops. Multipath routing optimisation is also aelslsed by
functions are used to enforce a certain rate-fairnessrierite Han et al.[16] where it includes stability conditions for engric

In our case we allocate the constrained resource in expliiulti-path TCP implementation. In our work we do not include
allocation rounds, with flows admitted according to the siz@uting in the optimisation loop. However, we use the resoft
of their bid (following an admission control paradigm). Thdhe allocation optimisation by choosing the route whichl wée
gradient/subgradient projection algorithm on the othemhaacts the least congested path. Thus, we expect multipath routing
based on the congestion level of the resource and moves stfgvide an advantage only for very large long-lived flowseTh
wise in the direction of the gradient (following a congestio Opportunity for multi-path routing needs also to be tradéd o
control paradigm). Thus, if the step-size is large, thecallon against the overhead of maintaining the multiple paths.
will overshoot the optimum and may lead to oscillative bétan A preliminary version of our distributed allocation scheme
If the step-size is small the algorithm will converge but gnanand a comparison with Xue et al. algorithm have appeared in
allocation iterations are needed to reach the equilibriwhile ~conference proceedings [19], [20].
this works for flexible flows, it is unacceptable for inflexbl
flows needing a guaranteed resource level once it is alldcate I1l. PROBLEM FORMULATION
In addition, networks with a high grade of mobility and iratay
flow arrival rates could spend little time in an optimal statad
flows would suffer frequent oscillations in their allocatidn our
scheme we attempt to allocate close to the optimum in onartry,
(re)allocation is considered only to account for sizealblanges
in the network state. Note also that in our case the allocatén
change only to clearly defined resource amounts (specified by
the pieces of the utility function) and we take into considien A. Utility functions

how/if reallocation affects the utility that has alreadgebeccrued Many types of mobile applications support different QoS:lsv
for the flow. For example, multimedia services can decrease audio aireict
The work by Xue, Li and Nahrstedt [5], is an example of thguality to meet some bandwidth or delay restrictions, while
GPA class that addresses a formulation that is very sinilauts. applications like e-mail or file sharing can usually adapt to
Both works use shadow prices of the bandwidth clique regsurcanything available. The changes in application utility eegp
on the end-to-end path of the flow for steering allocationeyTh on the amount of allocated resource, and can be captured by
use an iterative algorithm where a) the network adapts to theé associated utility function. By using utility functioms the
rate of flows by changing the resource price, b) the flow adapifocation process a clear quantitative differentiatian be made
to the new price by modifying the transmission rate. In a mogmong competing applications. Thus, the system can optimis
recent work [3], Xue et al. consider a mobile environment an@oS by lowering the allocation for the least efficient apgtiiens
use AODV as a routing algorithm. AODV routes over the sharteguring overload periods, and increasing the allocatiornefrhost
path (in number of hops) and this might overload inner netwokfficient ones when resources become available. Moreontineo
paths while resources will go unused towards the margiregsar negotiations are not needed as they are intrinsically fuithe
Our work uses a price-based approach even for routing @esisi utility functions.
A further description of the Xue et al. work together with a In our work we employ a user-centric utility view. Utility
comparative study is presented in Section VI. functions do not act only as internal parameters for theesyst
Other works attempt to directly include the MAC scheduling ipolicy, but also reflect the “contract” between the user amel t
the optimisation problem. Eryilmaz and Srikant proposelatmm service provider. Graphical tools with built-in examplesuld
based on a queue-length centralized scheduler and a plimbl- help the user easily construct such utility functions [2A% a
distributed congestion controller [13]. Another solutiomhere starting point these tools could suggest to the user vakient
the MAC scheduling is also distributed does rate allocatign from quality assessment studies [22], such as evaluatiovideo
changing the transmission persistence probability ofsliskd codecs [23]. Note that the unit used for measuring utilityds
nodes. However, due to the MAC inclusion only utility fureets  important, as long as we use the same unit globally for alllow
with enough curvature can be used [14]. An overview of crosand for all resource prices. A straightforward way to uses thi
layer optimisation in wireless networks is provided in theotial utility model in a commercial system is by directly linkinget
by Lin et al. [18]. In our work we use clique resources, whiclutility of a certain service level to the price the user isde#o
allow us to decouple our allocation optimisation problerondr pay. For instance, if a user prefers a fixed price rate, a simpl
how MAC scheduling is performed. The disadvantage is that tlone-step utility function can be used.
number of clique resources a link traverses can be consigera Let us denote withi;(b;) the momentary utility accrued for an
higher compared to the number of traversed links, and thaira mallocated bandwidth df;. Furthermore, for ease of representation,
conservative estimation of capacity is needed (due to blessiand to keep complexity low, we use quantised utility funasio
scheduling interdependencies). similar to the ones used in the QRAM project [1]. Thus, we

In this section we first outline our utility and network model
followed by the LP formulation of the allocation problem. We
then present the notion of shadow prices and highlight some
properties of the optimal solution that will be used as a gling
when constructing the distributed algorithm.



can represent the function as a short list of bandwidtfigutil to®. In constructing the cliques we use a similar approach to the

pairs, u; — ((U1)7 i (U)] , Where s is the number of utility one used by Xue et al [5], [3]. Section IV-D details how cligue

1) (5 . | cligy
levels of flow i, and u;(b;) — UF is the accrued utility for taarlfec;))lr{;scteructed and on which nodes the clique-relateditaesiv

an allocated resource; € [BF, BFf!), wherel < k < s.
Utility functions could take any shape, which makes theropti
allocation problem NP-complete even for a single resouasec
Nevertheless Lee et al [21] obtained results very close & th
optimum when approximating general utility functions witteir
convex hull frontier. We too use convex hull frontier apgroa-
tion and our simulations presented in Section V-G confirnt tha
the imperfection in allocation is small even in our settifigne
utility functions for the different application types uséud our
experiments can be found in Section V-A, Figure 6.

Finally we would like to emphasise that utility functions dot
inherently reflect application flexibility with respect tesource
reallocations. An application that can function at sevezaburce  In Figure 1 we present an example of a network topology (the
levels may be nevertheless quite sensitive to changes amceMpbile nodes are represented as squares) and two ongoirgy flow
initial resource level is chosen and allocated to it. Outesyscan Using this network. Figure 2 presents the link contentiompbr
treat rigid applications (e.g. real-time) differently finoflexible ~Where vertices represent the links (identified by corredjyan
applications (e.g. file transfer). This is done by changheyuser- numbers) of the network in Figure 1. We can identify three
provided utility functions at run-time for allocation purges. For maximal cliques representing resources. Note that a siitmie
example, a real-time flow’s utility function will increasdttvage, C€an span over several links belonging to the same cliqueireso
expressing the importance of not losing invested resources
earlier work we have illustrated the benefits of this differation
mechanism in a cellular setting [10], [2].

Fig. 1. Network example

B. Network model

We consider a wireless ad hoc network withnodes. Two
nodes that are in transmission range of each other are exard
as connected by a wireless link. Nodes communicate with each
other by means of multi-hop bidirectional end-to-end flowis,
between an originator (source) node and a destination node.

In ad hoc wireless networks, we have a location-dependent
contention between the transmissions on the wireless. [ifrkss-
missions over a link can be bidirectional, thus two linkstema Fig. 2. Link contention graph for network example
with each other if one of the end-nodes of a link is within the

transmission range of an end-node of the other link [S], M]. | gt q;; represent how many links of clique are used by flow
link contention graph can be constructed, where vertie®sent ;. Transmissions on the links belonging to a clique are miytual
links, and an edge connects two vertices if the correspgritiks  exclusive, which means that the bandwidth used up by a flow is
contend with each other. Each maximal clique in such a gragh times the flow's transmission rate. Let be the total number

represents a distinct maximal set of mutually contendingsh. ¢ flows, andb; a certain allocation to flowf;. Then we can
A necessary condition for fasiblebandwidth allocation is that reyyite the constraint in Equation 1 in relation to the baiuttiv

for each maximal clique the bandwidth allocated over aksdin 5ocated to then flows in the network:

forming the clique is less than or equal to the maximum chianne .

capacity. In practice, the choice of transmission schaduilgo- Vj Zq” % b, < BMaT @)
rithm and additional interference can impose a tighter biaian v =
the channel capacity. That is,

i=1

‘ . mas Note that when a flow does not traverse a clique we ljave=
Vi, Z b < Bj @ 0. Table | presents the values @f; for the example in Figures 1
ler; and 2.

where b! is the allocated bandwidth over wireless link and
Bj*** is the achievable capacity of the maximal cligte Note
that B"“* is less than or equal to the wireless channel capacity.

TABLE |
FLOW-RESOURCE USAGE FOR NETWORK EXAMPLE

Hence, each maximal clique can be regarded as an independent gij |11 r2 r3
clique resourcewith capacity B;"“*. Since only links close to i3 3 2
each other contend for the same bandwidth, local informaso 212 3 2

sufficient for constructing the cliques that a certain lirddmgs
2We assume that the communication range is the same as tisentsaion
1A maximal clique is a subset of vertices, of which each pafinds an range. Otherwise, bandwidth estimation has to be used: siv nodes could
edge, that cannot be enlarged by adding any additionalxverte interfere but not be able to communicate.



C. The optimisation problem and its linear programming form variables are denoted by} .

For the wireless multi-hop network, having computed all the Mamimise g AE ok @
cligue resources, and assuming that routing has already bee Pleori ‘ !
done, at any allocation moment we can formulate the follgwin s ’
allocation problem. Letu; be the utility function andz; the subject to Z gij x o¥ < B @)
allocation to be determined for flow(we usez; to represent the Pyt
allocation to be found, whilé; represents an allocation example). ' 0 < gk < pkmas ©)
— T —= 1

Let p be the number of clique resources apg the usage count
of clique resourcg by flow . Then the optimal allocation for all  Constraint ;) is linear and directly used in the above form.
x; over all cliques;j can be obtained from: Moreover, an optimal allocation automatically respectssta@int

(Cs), as the linear segments of the convex hull are ordered sighe
®) efficiency first. This is proven by the following lemma.

m
e Zuz () Lemma 3.1:The results of the maximisation problem in Equa-

m = tions (7) to (9) satisfy constraint).
subject to Z% x x; < BT (4) Proof: Let's assume the opposite, which means that there
i=1 are two subflows] andk, [ < k, of a flow Wherebﬁ < bﬁ max
0 <z < b (5) andb¥ > 0. Let v = min(bl ™** — b bF). We denote the utility

generated by subflowsand k by U, = AL x bl + AF x bF.
where B;*** is the maximum bandwidth available for cligye Since both subflows belong to the same flow, one can imagine
andb*** is the maximum bandwidth required by flow subtractingy from subflowk and allocating it to subflow. Let

Ul = A5 x (b +7) + AF x (b —~). ThenU},;, > Uy, because

o] AL > XF for a concave function. Other allocations being equal,

us this means tha!, b* are not optimal. Contradiction. [ ]
Uy Obviously, a centralised algorithm that implements the bRey
= requires large computational and signalling overheadsinmga
it infeasible for online allocation in an open and dynamic ad
hoc network. However, we use it as an upper bound baseline

0 B/ B? B:

Bandwidth to evaluate the performance of the distributed, low coriplex

algorithm we propose in Section IV.
Fig. 3. Linear segments of a convex hull

) ) D. Worst case error introduced by convex hull approximation
To make the previous general problem solvable in polynomial

time, we first approximate the original utility functions;,
with their convex hull frontiersy, which are piece-wise linear
and concave. To completely linearise the objective fumctice
conceptually split a flow in several parallel subflows (sam#se,
destination, and path), each corresponding to a linear segm
of the utility function. For a subflow: of flow 7 the allocation
is constrained through the utility function level$® as follows,

k
bk < BF — BF1. Theuutility efficiencyof the subflow (utility/bity U — 21 %i(bi) = 22 w2 b7). N .
C o gkt eutlity efficiencyof the subflow (utility/bit) Let U,y denote the optimal attainable utility. Obvioudly <

IS A = Fr—prT- In Figure 3 we have an example of a convex; , |ets; denote the maximum difference between the convex
hull with 3 linear segments corresponding 3csubflows. Then, hull of a utility function and the utility function itself,dr any
givens segments in the convex hull, for allocatichfsto subflows of the flows involved. For instance in Figure 6(a) the maximum

Next we give a theoretical worst case difference between the
optimal solution to the original maximisation problem (BEtjons

(3) to (5)), and the solution given by the above LP formulatio
(Equations (7) to (9)) that uses convex hull approximatishgn
deciding allocation. Note that even though we use the cohudix
approximation to reach an allocation decision, sgythe utility
accounting is done using the original utility functions:

of flow ¢, we have: difference between the convex hull (the thick dashed limg) a
s the utility function (the continuous line) is just beforeeth.5
i (by) = Z/\f x b (6) bandwidth point. Let¢ be the largest; among all the utility
= functions of the involved flows¢ = maz!™ ;. Let b be an

allocation as obtained by solving the LP problem of Equatitf)

where b; = Y7, bf. However, not every allocation to theto (9), and letp be the number of clique resources. Then we can
subflows is consistent. In order to use the right side of Hqu#s State:

as a function, the following two constraints must be satisfie Lemma 3.2:Uppt — p x § < U < Uppt.

o) E k-th subflow h . location limit. That Proof: First we define an additional variable, an upper

@) is vb(?cry< Z;k mili W(k)]v(;/rebaksrimmalegrgumB%_olca ion Aimit. That ound utility, Uswp. It denotes the optimal value for the objective
V=i i A . function in Equations (7) to (9), i.e. the utility that woudatcrue

(C3) The order of the segments in the R-U function must b d (7) to (9) y

) ) ¢ the convex hulls were the real utility functiond/s.p =
respected when allocating (i.e. “gaps” are not allowedpntTh , s koik Qi / an i
o (b;) = _ 1 A¥xb¥. Sinceu; > u,; for all allocation instances,
is, if b¥ > 0 then for alll < k, b = b} ™", ui(0i) = 2 Ai xb; i

Uopt < Usup. Now, let's see how large the difference betwéén
Given that the constraints above are satisfied, we can gresandU,,: can become. Regarding the allocation of subflaisjf
the following LP form of the problem. The subflow allocatiorb? = 0 or b = b¥ ™9 the subflow has the same contribution to



U and Usup. So the difference betweeti and Usy, is given ;. The secondz¥, represents “loss per bit” for subflofif (zF =

by the number of subflows with partial allocation, i.e. wherep; + vf - )\f, i.e. the difference between the cost of resources
0 < b¥ < bF™ar These partial allocations can result only duen the path and the utility yield of the subflow). Using theckla
to the constraints in Equation (8). Due to Lemma 3.1, for eaclariables, the inequalities of the primal and dual problemn t

of the p constraints in Equation (8), at most one segment mighito equalities:

result in a partial allocation. ThuSs., — U < p x £, which leads

m,s
to Uppt —p x § < U < Uppt. . - | gij X xic ;= B}naz (13)
Note that both and Us., are easily computable at runtime, and P
sinceU < Uypt < Usup We Can compute at runtime a “better”
worst case bound for a particular system instance. In Sewti@, Z 4ij X yj + oF — k= \b (14)

Table V we present such a worst case runtime result.

—

)=

) o ] ) According to LP theory [24], the optimal solutions for the
E. Dual formulation and characteristics of optimal solutio primal and dual problems fulfil the following constraints on
In the distributed allocation algorithm we use the conceptllocations and resource prices. Constraint (17) is simdd16),
of shadow prices In order to introduce shadow prices, webut applies to the above mentioned maximum subflow bandwidth
next present a dual LP formulation together with some useftdsources.
characteristics of the optimal solution.

ko _k
The following problem is the dual of the LP problem presented zi X zg =0 (15
in Equations (7) to (9). It aims to put a price on the resources y; xwj =0 (16)
(i.e y; andwl) by solving: oF x (B ™ By a7

P m,s
Minimise Y B xy;+ > bf " xvf (10)  From Equations 13-17 we can identify the following charac-
j=1 i=1,k=1 teristics of the optimal solution:

P (O1) Either a resource is underutilised( > 0) and then its

subject to Z Qij X Yj + of > AF 11)

— shadow price is zeroyf = 0), or it is fully contended (with
j=

. some subflows receiving no allocation) and its price is great
0<y;, 0<u; (12) than zero.

(O2) For subflows where! > 0, we havez? = 0. Note also that
sincez? = 0, we have alsa¥ = 0. This is in accordance to
>0 g X Y; > A¥ meaning that the path-price (accumulated
price of resources along the path) is higher than the subflow
utility efficiency, and the subflow is not profitable enough to
get an allocation.

p) For subflows where? =0, andvf =0, we havey”; ¢;; x
y; = AF. This means that the subflow is at the allocation

The shadow pricey; of a resourcej, shows the marginal
increase of total utility if the resource amount could bed¢ased
with one more unit. Conversely it can be interpreted as the
marginal decrease in utility (per resource unit) if les®tese was
available. We can imagine a new subflow requesting a marginal
amount of bandwidth along its end-to-end path. In order tkema
space for the new flow, the system has to ensure a margiﬁg
amount of available bandwidth on all the resources the new flo

traverses (potentially rejecting other subflows). Accogdio the edge given the resouries it uses. . R
above definition of shadow prices, the utility/bit lost by kig (©4) For subflows Wr_‘ere%i > 0, we havez; = b ’
room for the new flow ispp; = 3, 4;; x y;j, Wherepp; stands that in turn impliesz = 0. Th]is is in accordance to

. g 217 ) kE _ k o i
for path-price of flow i. The utility/bit gained by accepting the 2 ij * Yj v o= A Thu§, v; represents a "pricing
new subflow is given byA¥. Intuitively, in order to maximise slack’, i.e. the amount by which the accumulated prices of
utility, the network should only accept subflows wheve> oD the used resources could increase, and the flow would still

. ' ;

otherwise the total utility of the system will decrease. &ltiat be profitable.
both A\; and y; have the same unit (utility/bit), and that both Note that in the last three casg¥ plays the role of a “pricing
parameters measure utility, albeit from different persipes. The budget”. As long as the subflow is able to “pay” for all the
first one directly measures the utility of the flow, while tleeend used resources (by the path-prige,) without overshooting the
one measures the utility of the clique resource, generated abudget, it is accepted, otherwise it is rejected. For a malct
consequence of the flows contending for it. interpretation of\; andpp; as part of a user-to-provider payment
For a complete definition of the dual problem, we need tmechanism both the following modes are supported: 1) Fayeve
model the fact that each subflow is restricted to a maximuadmitted flow, the user pays the actual path prige, The budget,
allocation ofb¥ ™%, Thus we introduce artificial resources that;, signals to the provider the maximum amount the user is
are exclusively used by a corresponding subflow, with the onWilling to pay. In this mode, the optimisation scheme assuhe
purpose to limit allocation té? ™%, The shadow price of theseuser that the price he is paying is the minimum price given the
resources is denoted hy . competition he is facing. To ensure profit for the provideerev
Here we present some important characteristics of sokiion when the network is underloaded, a minimum price/bit should
the primal and dual LP problems, characteristics that gweau be demanded from the users. 2) The user always pays the full
better insight into the allocation problem and help us devie budget,);, as specified by the utility function. In this mode, the
distributed allocation algorithm. Out of constraints (8Ylg11) we optimisation scheme will ensure that higher paying custsraee
can derive the non-negative slack variablesand z¥. The first, always accepted first, which also means profit maximisation f
w;, represents the amount of unused capacity at clique resoutize provider.



IV. DISTRIBUTED RESOURCHRE)ALLOCATION slkF =10—2—2—3 = 3 is divided uniformly for each resource.

The ad hoc network considered in this work is an open dyhus the new bids aréidi, = 3, bidi, = 3, bidj; = 4.
namic system where resource request and availability arayal ~ Puring allocation, if all bids are large enough, the sqbflow
changing. Therefore our scheme employs periodic realtueat IS accepted, and corresponds to either categog) or (O4) in
to keep the resource usage optimised. As end-to-end caomect Section IlI-E.
span several nodes and clique resources, it is importarit tha )
(re)allocations are well coordinated along the path. Meeeo B- Independent allocation
reallocations imply a “mode” change for applications soirthe After all the bids have been placed, every clique resourde-in
number should be strictly controlled. In this section wespré pendently allocates the bandwidth to the subflows in detrgas
an algorithm that uses allocation rounds that are syncbednior order of bids until bandwidth is depleted. Then tiewv shadow
all clique resources. The use of periodic, synchronisestation price of the resource is set to the price of the lowest bid among
rounds guarantees that flows will enjoy a fixed allocationdor the accepted subflows. Note that all the bandwidth is reziiémt;
least one period. It also puts a bound on the reallocatieniimghe and some subflows might get this time an allocation different
system, even if the rate of events (traffic and topology chapg from last period.
is much higher. Later, in Section IV-F, we propose a new versi If contention at a certain resource is greater than durirgy th
of the algorithm that works also when the allocation roundgrevious allocation, its price will increase. If some suaf®bid
are not synchronised among the clique resources. Choosingcannot accommodate this increase, the subflow will be esgedt
appropriate period size implies a tradeoff. The shorteptgod, contention decreases, the price of a resource will decrdase
the better the system is at keeping the utility optimised,the means that some subflows that bid less than the previouswhado
larger the computation and signalling overhead. price (i.e. have a negative price slack) are accepted, ingnipe

We will now proceed to describe the synchronised versigerice down accordingly. If a resource does not allocate tall i
of the allocation algorithm that will be referred ashoc-TARA bandwidth, it is underloaded and its shadow price becomes ze
henceforth. Assume for now that a route for a flow is alreadgase Q1) in Section III-E).
established (we will come back to how this route is found in
Section IV-E). Conceptually, at each period the (re)aliocawill C. Discussion

proceed like this: Note that if the real shadow prices (the solutions of the dual
« Every flow calculates a bid for all clique resources it traproblem) were known, perfect bids could be constructedutrhs
verses, based on their associated shadow prices. a case, a subflow would consistently be accepted or rejedted a

« Each clique resource independently evaluates the bids, padl the cliques that it traverses. As we do not know the new
poses a certain bandwidth allocation to the flow and recalhadow price beforehand, we use the shadow price from the las
culates its shadow price. allocation as an estimate. At a certain clique resource néve

« The flow chooses the lowest bandwidth proposal from all th@ice could become higher than the bids of some flows (i.e the
cliques it traverses as the new bandwidth for the new periagew contention level was underestimated at bid constmictio

such a case, some flows that with hindsight could have offered

a proper bid are rejected. Conversely, overestimating eures

price unnecessarily increases its bid to the detriment dé for

other resources.

As a consequence of over/underestimation, the allocated-ba

§th could be different at different cligue resources, ahd

w can use only the minimum allocation over the end-to-

end path. Hence, one could use several consecutive itesatio

of the algorithm to better balance the bids. Nevertheless, a

'the algorithm is intended for online allocation we use onhe o

Steration per reallocation period, and any mis-allocateddwidth

A. Bid construction

As already mentioned, the utility efficiency,’, represents
the maximum “budget” available for “paying” for the traveds
resources. Note that a subflow needs to be accepted at all q
traversed resources in order to be established. We asswahe
the contention level of a resource will not abruptly changenf
one period to the next, so we start with a preliminary bid étpa
the shadow price of the resource in the previous period. Now,

we add all these preliminary bids, we end up with the pathepri
of the previous periodpp; = >_; ¢ij x y;. Then, if we subtract - omain unused for that period. Since during an optimal

the path price from the budget, we can computprige slack allocation the amount of this mis-allocated bandwidth iz
stkE = AF — pp;. So, how should this slack be included in the o . 'S mi wiath 17
i

. X ; L#I’ experiments we use the mis-allocated bandwidth as enoth
bids? As we do not make any assumptions on the evolution

\ . - . easure of how close to optimal allocation the performarfce o
the resources’ congestion, we divide the slack uniformlyoam our algorithm is

the used resources. The number of resources used by a flow '?igure 4 presents a pseudo-code of the two parts of the dis-

glv_ﬁ:' by thhe l;;l(;que-countem(; N Xf:.anqij' _ tributed algorithm that run synchronously at every cligegaurce
us, the bids are created as follows: and at every node respectively. For every clique resourdieaee

pids — g M PP AL =20 XY (19) Iegder n_ode, whlt_:h is uset_:i to perform tl_1e (r_e)allocat!onpm)m
Mg =T T T T TS i tations, is determined at clique-construction time (sectiGe IV-
J
D)

where bz‘dfj is the bid of subflow) for resourcej. The sum of  The clique-leader gathers information about the flows utiieg
a subflow’s bids always amounts to its maximum budgét,As clique resource and then runs the allocation algorithm. Meter
a simple example, imagine a subflofi{ with budgetAl = 10, a flow starts/stops using a wireless link, the link’s endenotbser
that uses three clique resources with the shadow priceshéof to the clique-leader registers/deregisters the flow wighdlique-
previous allocation periody; = 2, yo = 2, y3 = 3. The slack leader. This applies to all cliques containing the givetk.lihe



Allocation algorithm run at every clique-leader j,
at every period 7:
Let F; be the set of flows using resourge
avb; = B"*®  [finitialise available bandwidth
V subflows ff € F;
bid¥; = y; + (\¥ — ppi)/cc;  Ilcompute bid
while F; # @ //allocate for highest bidder first:
selectfF e F; with highest bid
if avb; > qf; x b me”

k — bi@ max

avb; = avb; — qzkj X m’fJ
else
Fj=F; — ff
y; = min(bid}; | x; > 0)  //recompute resource price

Vi where f; € Fj

k
Tij = D p Tij )
sendz;; and pricey; to source off;

Flow adaptation algorithm run at every node n,
at every period 7:
V flows f; sourced at node
V resourceg that f; traverses
wait for allocationz;; and pricey;
x; = min(z;;)  /lset bandwidth off;
ppi = Z]. gij X y;  llrecompute its path price
V resourceg that f; traverses
sendpp; to clique-leader of resourcg

Fig. 4. The distributed allocation algorithm

cligue-leader can be chosen such that the distance to the €
nodes of the links belonging to the clique is at mashops
away. Therefore, inside-clique signalling could use the®Ayer
signalling (e.g. piggyback RTS, CTS, ACK packets).

The natural place for running the flow-adaptation part of th
algorithm (i.e. adjusting transmission rate to the newcaltion) is
at the flow’s source node. Note also that the signalling imftion

between clique resources and the source nodes of the flows

sent only along established routes, and thus can be pigggtac
on existing packets. Packets belonging to any flow usingla li
in the clique will pass through a node that is at meshops
away from the clique-leader (with which it communicatesngsi
in-clique signalling).

The flow's source node must receive the new bandwidth de
sion from all the clique resources on the end-to-end pathhef t
flow and choose the minimum allocated. The larger the symihro
sation error between the clocks of the clique-leaders, therihe

source-node has to wait until it can set the new rate of the. flopyy. 5. Clique-construction and topology-related alguris

assume a collaborative approach. Nevertheless, one idirefor
accommodating selfish nodes could be to reward the nodes of
a clique proportionally to the advertised clique-price ahe
guantity of the flows traversing the clique, combined witings
signature mechanisms when gathering statistics. Thuglyals
decreasing the clique prices would decrease the revenueeof t
cligue. Falsely increasing the clique prices would resulthe
cligue being avoided and underutilized (due to flows routimgy
other, lower-priced paths), which will also result in dinsimed
returns.

D. Mobility and clique construction

Due to mobility, a node might enter or exit the communication
range of another one, thus creating a new wireless link, or
alternatively breaking one. Discovery of topology changes
be implemented either event-based (using MAC feedback) or
periodically (local broadcast of hello messages).

As mentioned previously, only local information is needed t
construct the maximal cliqgues. We know that only links adjac
to nodes that are at most hops away might contend with
each other (see Section llI-B). Thus, if all nodes send their
neighbourhood list3 hops away, every node will be able to
identify all the cliques containing any adjacent link [3].

Addressing detected neighbourhood changes at every node
if the neighbour set changed
notify sources of broken flows to reroute
two-hop broadcast theew and brokenlinks

n@lique construction at every noden
if notification of newand/orbrokenlinks received
update local topology view
reconstruct clique resources
v newly identifiedclique resources;
identify the clique-leader node
V r; wheren is clique-leader
establish initial pricey;
. iV flows f; traversingr;
sendg;; andy; to source of flowf;

e

' Flow adaptation to topology at every noden
v flows f; sourced at node
if f; is broken
reroute
if ¢;; andy; from a cliquer; is received
recompute path pricesp; = ZJ. Qij X Yj
recompute its clique-countetg; = Zj Qij
sendpp; andcc; to clique-leader of-;

Ci-
9

Thus a flow could set an increased rate some time before anothe

flow finishes its allocation round and decreases its ratelirga
to short-lived congestions at certain points. Regardimgkel
synchronisation protocols in wireless (sensor) ad hoc odsy
Romer et al. [25] give precision results of less th&0usec for

Information from packets that traverse any link belongiogat
cliqgue should reach the clique-leader node. To minimiseitthe
clique signalling, the clique-leader is chosen as the ndosest
to all the links in the clique (i.e. the aggregated hop-cdorihe

nodes five hops away. These clock skews are small comparedtlissest end-nodes of the links in the clique is minimal) sTéan

the envisioned reallocation periods, and thus we assumse th
congestions to be easily mitigated. Nevertheless, synded
allocation generates bursty signalling in the network, amd
Section IV-F we present modifications to the allocation atgm
to study the potential for asynchronous allocation roundsray
the clique resources.

Finally we would like to point out that in this work we

Be broken using node addresses. Note also that the “peaipher
nodes (i.e. those that are adjacent to only one link belangin
the clique) are neither candidates for clique-leader nermtbdes
that communicate with the clique-leader on behalf of thd lin
(i.e. the node closer to the clique-leader). Thus, for a @rop
cligue construction it suffices to send neighbourhood imfation
only 2 hops away. Similar to Xue et al [3], we use the Bierstone



algorithm [26] for clique identification. The Bierstone atdhm F. Extending adhoc-TARA for asynchronous allocation

has a complexity of0(i7), where; is the number of links in  The version of adhoc-TARA presented in the previous sestion
the local analysed subgraph, which contains only nodes at mgsjies on synchronous allocation at all clique resourcgscrony
2 hops away from the computing node. is required since the source of the flow has to receive all new
In conclusion, for clique (re)computation, every node sfioug|iocations (from all traversed clique resources) befdreain
only broadcast adjacent new and broken links (i.e. charmés t choose the lowest allocation as the new rate for the upcom-
neighbourhood set) to all nodes as farzawops away. Thus, after jng period. Implementing this in an open ad hoc environment
network initialisation, the signalling overhead involvedclique s problematic due to the following two factors. 1) Network-
computation greatly depends on network mobility. wide synchronisation of allocation rounds is needed duehéo t
If a link breaks, all the flows that use this link should be reinterweaving of flows and resources. This implies a netweide
routed. Some old clique resources will disappear and some ngonsensus on allocation time points, good clock synchatiois,
ones will be created. To set an appropriate starting pricéhen and fast and reliable transmission of the packets contgittie
new cliques, we perform a “dry allocation” at creation tinm® ( new allocations and clique-prices from the clique leadeth
bandwidth is actually reallocated) based on the inheritedsl source nodes of the flows. 2) Bursty control traffic must bdtdea
After a topology change all the affected flows must updaté theyith. The information exchange between flow source node and
path price for the next allocation round. clique-leaders can be seen in Figure 4. The source transmits
Figure 5 shows the three independent algorithms used at eagld pp; to all the traversed cliques. This information is the same
node for adapting to topology changes. No related syncsatioh  for all cliques, and can be naturally piggybacked on the fow’
amongst nodes is needed. In the second algorithm, the &eliqyackets. The dissemination is not time-critical (as it Hesentire
leader” node is determined as the node in the clique thatheas period to reach the relevant clique-leaders). In the otirection,
largest address, and is adjacent to at least two links bielgrig  however, the clique-leaders transmit all the new allocatie; ;
the clique. and clique-priceg; to all the source nodes of traversing flows (a
much larger information size). This transmission is timigaal
. and might thus need special prioritised packets. Sincehall t
E. QoS routing clique-leaders transmit this information synchronisée, network
Traditional QoS routing algorithms typically use eithepgbst has to deal with bursts of control information.
path (respecting minimum constraints), or widest pattoyétg By using an asynchronous allocation scheme we could elim-
a better QoS for that flow). However, these are two extremescaghate both the network-wide synchronisation maintenance a
and do not optimise global utility. Shortest path might éwad the bursty control traffic. To this end we propose the follmyvi
some routes. Widest path may produce too long routes, isioiga solution. At every source node of a flow, we maintain a list of
total network load. Therefore, as part of adhoc-TARA we psgp all the proposed allocations from all the clique resourdest t
a new routing algorithm based on the shadow price of reseurdbe flow is traversing. Whenever the flow’s source is receivin
introduced above. Given the allocation algorithm preskrite @ new bandwidth allocation, we update the value in the list
Section IV-C the best chance for a flow to receive the higheitat corresponds to the originating clique. Then we chedkéf
QoS is by routing it along a path with the lowest path priceug,h minimum value of all the allocations in the list has changiéd.
we use an on-demand, shortest path first (SPF) routing tiigori yes, then we set it as the new rate of the flow. Note also that wit
that uses the path price as distance metric (i.e. it choogmtha a new allocation, a new clique-price is received too. Whenev
that yields a minimapp; = >°; gi; x y;))- This lowest path price a new cligue-price is received, the path-prige is immediately
routing algorithm takes into account both less contendekisli recomputed by the source and disseminated with the flow.
(lower link prices), and shorter topological paths (lowemnber Using the previous mechanism, a flow’s source need not wait
of links). for results from other cliques to arrive in order to decide if
Once chosen, keeping a route fixed is important for deted-rate change is opportune. Thus, the allocation moments for
ministic resource allocation. For this we employ the sourcélifferent clique resources may occur asynchronously. Mg
routing principle. In source routing the source specifidsttaé  care has to be taken for new and rerouted connections. We have
intermediate relays, and routing tables are not neededd&es to wait until all the traversed clique resources have detide
providing load balancing capabilities, source-routingevents the first allocation (i.e. wait for the duration of one alltoa
route and load oscillations when, for instance, the besterouound), before setting a flow's first transmission rate. Tisat
changes. we accept a subflow only if it accepted by all clique resources
We perform flow rerouting only when a link in the end-to-endilong the path. Note that for a particular clique resourcestite
path breaks due to m0b|||ty Topology events are indepand‘bn have a fixed period between two reallocations. As we assume
network load, and there might be enough bandwidth availagfe allocation time points of the different clique resousrte be
to reroute the flow. On the other hand, rerouting should not b@iformly spread, control traffic will also be uniformly sad
used in the case of a decrease in allocation. In this situdtie in time, in contrast to the periodic bursts of control traffic
network is most likely too loaded to accommodate that flow, 98 the synchronised approach. In Section V-1 we compare the
an alternative route will not help. Moreover, rerouting irck a Synchronous and asynchronous versions of the scheme.
case would create an oscillating allocation pattern wheyesfl
constantly chase a better route. In our experiments in @ed# )
H we compare the performance of our price-based routing tofa Evaluation setup
hop-based SPF routing in both a uniformly loaded network andTo evaluate the behaviour of our resource allocation scheene
a network with hotspots. use a traffic mix representative for future mobile commutiica

V. EVALUATION



networks [27], [2]. Table Il summarises the traffic charsstes. _I_ o
To create a diverse traffic mix, the maximum required bantdwid o9
follows a geometric distribution with the given minimum, xia g

mum and mean values. Sos
0.4 /," 04
TABLE II N o0
0.2] 0.2] rd
TRAFFIC MIX USED IN THE EXPERIMENTS o L oal
. 0.167 0.333 0.5 0.667 0.833 1 0.167 0.333 0.5 0.667 0.833 1
Bandwidth Bandwidth
Applic.| Max. Bandwidth | Connection Duratio Examples Clasg Utilit a) A roup 1 and 5 b) A roup 2
Group | Requirement (Kbps| (sec) Scaling (@) App. group (b) App. group
min  Max avg min max avp Factpr 1 —== 1
1 30 3 3 6 600 180 Voice Serviced | 1 0.9 09
Audio Phone 08 Lo 08|
2 64 254 12B 60 1890 3p0  Video-phone & Il 1/3 07] ,,r" 07|
Video-conference 08 L 06
3 2000 1000 s50p 3do 72p0 €00 Interact. Multimddial | 1/10 2,4 EM
& Video on Demandl > e i > s
4 10 3d 2 1 120 0  E-Mail, Paging] I 1/2 od . o
& Fax K
5 64 514 25p 3P 7200 1P0 Remote Logink I | 1/5 N o
Data on Demand Ty T
6 128 200 51p 30 1200 10  File Transfer I 1/7 o167 03% 05 T os7 083 1 oi67 o3 o8 TosT 08w 1
Retrieval Service oo e

(c) App. group 3 (d) App. group 4 and 6

The second column from the right presents the flexibilingsla iy utiiity functions for the six application groups
which shows the flexibility of the applications to bandwidth
reallocations.

« Class | represents rigid applications, e.g., for a reabtinRuben et al. [28] who performed a study at Ericsson Cyberlab
application once the “mode” is set by the initial allocationin Singapore and had access to conceivable business mauels.

any allocation increase is useless, and any decrease fdf#§. graphs in Figure 6 the solid line corresponds to the raigi
That is, the utility accumulated in time for this flow isutility function (the one that defines the “contract” betwegser
Complete|y lost if resources are decreased. and proVider), while the dashed line is the convex hull ﬁEmt

« Class Il is semi-rigid, where the lowest allocation pointised for the allocation decision.
is used to compute the utility for the whole duration (i.e. A Simulator was built on top of the J-sim component plat-
if resource is decreased a proportional chunk of alread§m [29], and packet level simulation was not considerethist
accumulated utility will be lost). Examples could be sensditage. The experiments us&00 x 1500m” area wheres0 mobile
flows with different accuracy, or sensitive multimedia. ~ Stations are uniformly, randomly deployed. The commuricat
« Class Ill represents fully flexible applications that havéange is250m and considered equal to the interference range.
no problem to adapt (for every new allocation period thEnvironmental perturbations are not considered, and eslérye
accumulated utility of the flow grows with the utility of the resource has théMb/s channel bandwidth at their disposition.
given allocation). Examples are non-real-time data temssf Mobility is implemented using a modified random way-point
(FTP, email). model (RWP), with a random speed between zero and a maximum
The allocation scheme accommodates the class | and I ty;pessgeed' A_s_p0|r_1ted out by Yoon _et "?"- [30] RV.VP mobility modgls
have deficiencies, and real applications may indeed shoffeg-di

gnILE(Z gslzi;ﬁt?galc;rl]sotrci)trme #Egg;ﬁ%%:gg;{ing;rtg g:e]l sa! ?: ent behaviour (see the work by Kuiper and Nadjm-Tehrani [31]
y 9 ) for example). Thus, to avoid the slowdown of the original RWP

the allocation scheme presented here, and are presentadiér e . L . I
work [10], [2]. in our model we change the destination waypoint periodjcall

The shapes of the utility functions for the different apation (regardless if the destination waypoint has been reacheuwipr

groups distinguished in the first column in Table Il are pnésd Moreover the nodes haye no pause tl_me. This provides for
.an average speed that is constant in time. To ensure a good

in Figure 6. On the x-axis we plot the normalised bandwidtthwi s . .

. o connectivity and stop the mobile nodes from clumping togeth
respect to the maximum requested by the application (Col2mn

. . o .. we make nodes move away from each other when they come

of Table Il). On the y-axis we have the normalised utility hwit . o . .

- - S : : closer than a third of the communication distance. We believ
respect to the maximum utility, which is obtained by multipt S . L S

. . . " g this is a reasonable model in urban connectivity. The iatewval

the maximum requested bandwidth with thidity scaling factor

from the rightmost column of Table II. The utility scalingcfar is time .Of new “O_WS follows an _expo_nentlally dlstnbu_tl_on, aall
. . ) L7 the six application groups arrive with equal probabilitp Jolve
important, as it provides a means to determine importanaeagm

o o . . the linear programming part, we have used a Java package from
application types. It represents the utility per bit asated with : . . Ak
the maximum required bandwidth, and scales the shape of {HS operation research objects collection (OR-Objectg).[3

utility function accordingly. For example, even though anight . .
be ready to pay roughly three times more for a video-phorie Comparison of allocation schemes
conversation (bandwidth demand of 256 Kbps), the utility pe In this section’s experiments we compare the behaviour f th
bit is almost three times higher for an audio-phone appticat following routing and allocation schemes for different doand
(which requires only 30 Kbps). mobility scenarios.

Assigning utility values is always a subjective problem, so « As a baseline algorithm we use a non-utility routing and
we chose some common sense values and also consulted with allocation scheme denoted bimplein the experiments. The



routing is on-demand shortest path first (hop-based). After
a route is chosen, the minimum of the bandwidth available
at all clique resources on the end-to-end path is allocated
to the flow. Actually, if enough bandwidth is not available
to accommodate the minimum then the flow is rejected. If
the path breaks, the flow is rerouted, and new bandwidth
allocated. If a clique resource becomes overloaded due to
mobility, flows will be dropped on a last-accepted first-
rejected basis.
« To represent best possible solution, we usePasolver to

optimally solve the global allocation problem as defined in I Tl
. . 21| == simple ;
Section [lI-C. The formulation of the LP problem does not -¢ Ip
include routing, so we use the price-based routing algorith 1f| —e~ adhoc-tara
described in Section IV-E. This serves to compare our o altbid
distributed allocation algorithm with the optimal alloicat. % 2 4 8
« Next we show the results of runs for thedhoc-TARA average speed

scheme. It uses the distributed allocation algorithm dleedr Fia. 7. Utility for rtmix traff
in Sections IV-A to IV-C and the routing algorithm presented'g' ' lity for rt-mix traffic
in Section IV-E.

o Finally, we compare with a variant of our distributed al- . .
location scheme, denotedltbid, where a different formula allocation (recall that LP uses the same routing as adhd@/JA

is used to construct the bids. In this alternative the bydge oth the "flexible” and the “rt-mix” scenarios suffer from ity

[ . . . in a similar way. The simple scheme cannot properly difféete
g‘_id’kls propc:}zt;okr;ally divided based on shadow prices. Thu%étween flows and is trailing at around half of the utility oétLP
7 ij = 3 L

: DT The intuition i.s that resources with g150rithm. The altbid algorithm performs constantly bekaghoc-
higher shadow prices are more disputed, and thus havergRA (at worst 72% of the LP). This is because the bid is too
higher chance of getting even more disputed. However, biggased towards high-priced resources, while low pricedusses

for low priced resources become very small, and in the caggn also quickly become more congested. Adhoc-TARA, on the
of a zero priced resource, all bids become null. In this casgther hand, creates a more balanced bid.
ties are broken based otk? = \F — pp;.

For all the four schemes, the main evaluation metric is the x 10°
accumulated utility. Note that irrespective of how allooas are 8
determined, utility accounting is performed using the o
utility functions and the extended utility model briefly debed
in Section V-A. According to the model, a class | flow is drogpe
if the initial bandwidth cannot be maintained. A class Il flow is
dropped if theminimumbandwidth cannot be maintained. A class
Il flow is never dropped (unless there is a network partition
If a flow is dropped, no utility is gained for the flow, and the
bandwidth invested during its lifetime is wasted.

2| - =+= simple
C. Network-wide utility and mobility influence =% Ip
o . . L 1r| —e— adhoc-tara
As utility is our main performance metric we will first show .0 altbid
how the four schemes behave when subjected to scenarios with % 5 7 8
different mobility. Thus in Figures 7 and 8, on the X-axis we average speed

have the average speed of the nodes (m/s), and on the Y-axis th

time-accumulated system utility. Every plotted point esgmts Fig. 8. Utility for flexible traffic

an average of 8 different experiments. Each experiment was r

over a period 0600sec, with a (re)allocation period af seconds.  Figure 8 shows the achieved utility as an average of eight

All the experiments were run with a moderate overload (ayeradifferent topologies/traffic scenarios for every plottazin. Since

inter-arrival rate ofl/200s~1). measuring confidence intervals for utilities achieved aiferent
The experiments in the two figures are differentiated by thepologies would be meaningless, we compute them on a elifer

type of the applications used. In Figure 7 (“rt-mix” sceogri basis. That is, we compute a relative performance by digidie

we consider a mix of rigid and flexible application groups asesults ofadhoc-TARAandsimpleto the optimal results dfP that

presented in Table Il. In Figure 8 we consider that all the &re achieved on the same traffic/topology setup. Only thegave

application groups are fully flexible (their class is set tass on and compute statistical confidence. As exemplified infeigu

[11). In this case no flows will be dropped due to zero allooati for “flexible” traffic, the 90% confidence intervals have thegest
We can see that the results of adhoc-TARA come surprisinghyze of +0.015 (around a0.93 point) for adhoc-TARA while

close to the optimal LP allocation. Even at the lowest pdi t being roughly double, max-0.035 (around a0.63 point), for

distributed allocation algorithm is at almost 90% of theimat simple Though not shown as a graph, the confidence intervals for



Figure 7 are comparable; i.e. with the 90% confidence intervaesources along the flow’s path. If allocations are differenme
for adhoc-TARAaving max+0.04 (around &.97 point), and for bandwidth is wasted. The LP solution is using global knogted

simplemax £0.05 (around a0.61 point). and thus has no such problem. Nevertheless, the differance i
bandwidth usage (as an average over all clique resourceegdre

D. Network-wide utility and offered load dependency LP and adhoc-TARA is only around 15% as presented in Tahle Il
The next set of experiments, presented in Figure 10, show how

utility depends on the offered load. In all experiments therage TABLE IlI

speed isdm/s, we plot results for light, moderate and heavy BANDWIDTH USAGE OF ADHOG-TARA COMPARED TOLP

offered load, and each point is an average of 8 experiments.

Both “flexible” and “rt-mix” scenarios have similar trendé/e mobility | 0 2 4 8

usage(%)| 92 84 80 87

can observe that the utility of aB schemes increases almost
proportionally with load, preserving the superior perfarme of
adhoc-TARA. The 90% confidence intervals for the relativttyit
performance ofadhoc-TARAhave max=+0.06 (around a0.94 F. Running time comparison

int d ofsimpleh ax+0. d ao. int). . . . .
point), and ofsimplehave max+0.06 (around &0.60 point) Besides signalling overhead, computational complexity liég

drawback of the LP solution and one of the strengths of adhoc-

1 "\\ TARA. Table IV gives a comparison of the average time (sespnd
ool — —| on a 1GHz P Ill) needed to reach an allocation decision, @seuxif
' load is increased. The running times of the experiments give
good indication of the relative merits of adhoc-TARA congzhr
208 1 to optimal LP.
=}
£o7} ] TABLE IV
Eﬂj I\ _______ _. AVERAGE RUNNING TIME OF ALLOCATION DECISION
06 ~"'~,,I_.-~-""I' interarrival rate| 17400 17200 1/100
LP 541 173.8 8909
0.5t - 1 adhoc-TARA | 0.179 0.265 0.476
== simple /Ip
— adhoc—tara/ Ip
0.44 * * *
0 2 4 8

average speed G. Run-time bound for convex hull related error

Fig. 9. The 90% confidence intervals for relative utility foemance in the I'f‘ Figures 7 and 8, .We have presented the LP .30|u“0n as
“flexible” traffic scenarios optimal. Nevertheless, it uses the convex hull frontier rapp

imation of the utility functions in its decision making, vahi
may introduce an error compared to the true optimum, as shown

10xlf‘J8 by Lemma 3.2, in Section IlI-D. In this section we calculate a
=+~ simple X runtime bound of how large this error could be.

ol =¢ Ip ,/' 1 In Section llI-D we definedJ, Uswp, and U,y and showed

g/ =8 adnhoc-tara -7 4 that U < Uppt < Usup. As we can easily computé and Usup

for every allocation round, we can compute a run-time diffee
bound betweert/ and U,:. Let's denote it asAUypt = Usup —
U > Uppt — U.

During an experimental run300 allocation rounds are per-
formed in a simulated half hour. We experiment for different
offered loads, as shown in Table V. We show the average number
of connections in the system, together with the averageevafu
AU,pt /U during the300 allocation rounds. We can observe that
the potential error introduced by using the convex hull fiem
in the allocation decision is not larger than 5%, even thotigh
flows used in our experiments are quite large compared to the
capacity of the wireless channel. In networks populated it
Fig. 10. Utility as function of traffic load for “rt-mix” trafc large number of small sized flows we expect even better bounds

Utility

mean interarrival rate (load) x 1072

. . I TABLE V

E. Bandwidth mis-allocation in adhoc-TARA APPROXIMATION BOUND FORLP ALGORITHM
In Table Il we present the bandwidth utilisation of adhoc- _ _

TARA as compared to the utilisation of the LP algorithm. The g‘\}graﬂ“’gf‘ izfns 1/432 1/2205 1/16%0

mobility row shows the average speed of nodes (m/s). Our dis- avg. AUopt/U | 0.043 0.047 0.040

tributed algorithm independently allocates bandwidthatdlique




H. Isolating the performance of price-based routing 1o X 10

In this section we measure the utility improvement due to the Nihe spf .
price-based routing algorithm presented in Section IVabélled -9 price -7
aspricein the forthcoming curves) instead of a hop-based shortest 101 _:_ ;ﬁ;h_shs ot
path first routing algorithm (labelled aspf). We simulate two F >
different load scenarios, one in which the load in the nekwor '
is uniformly distributed, and the other one containing aspot
region. The hotspot has a radius Bfom and is created in the
middle of the1500 x 15002 simulation area. Contention in the
hotspot is increased by setting the capacity of the cliqnethe
hotspot range td Mb/s instead of thedMb/s of the rest. The
experiments with the hotspots scenarios are labelled witis a
suffix on the curves. In both cases the allocation is perfdrine
adhoc-TARA, only the routing is different. 2l — : 10

Figure 11 presents the network-wide utility and its vaoati mean interarrival rate (load) 10°
with increasing mobility for a moderate overload (interhal X
rate 1 /2005‘1). The results for of the scenario with uniformlyFig. 12. Utility with different routing algorithms as furieh of load
distributed load show only marginal difference betweercepri

based and hop-based SPF routing. This is expected, as in a )
uniformly loaded network, the shadow prices are similar tmgs  SPf divided by price are small; they have max0.02 (around a

the path length largely determines path price. Basicallyhis 0-98 point), and ofspf-hsdivided by price-hshave max+0.045
case price-based routing degenerates to a hop-based Sitfgrou(@round 20.86 point).

The hotspot scenario on the other hand shows a clear dif-
ferentiation among the routing algorithms. In this caseaehe | Evaluating asynchronous allocation
a real advantage for some flows to avoid the hotspot and taken the previous sections we evaluated a synchronous version
a longer route. This is visible in the mobility-independen®s of adhoc-TARA. As presented in Section IV-F, however, imple

Utility

utility gained by using the price-based routing algorithm. menting an asynchronous version has several advantagas, Th
in Figure 13 we present the comparison of both the synchnou
8xlo8 and asynchronous versions of the algorithm, as a function of
- spf both mobility and offered load. The suffixes of the labelsvgho
TERs L -0 price | the interarrival rate of new connections. Intuitively, wavl no
A TN —6- spf-hs || reasons to expect a different achieved utility by the asyorbus
o ~a- price-hs allocation algorithm, and this is confirmed by the experitaen

As future work we intend to theoretically prove that there is
no difference among the two versions with respect to their
convergence towards optimality. Each point is an averag8 of
different experiments, and the confidence intervals furtioafirm

the similarity of asyncand synch For any of the mobility/load
combinations the 90% confidence intervalsasfyncdivided by
synchhave max+0.013 (around al1.02 point).

—— synch-1/100
=0~ async-1/100
-6— synch-1/200 |
=-eo- async-1/200
—— synch-1/400
10} = = async-1/400 ||

average speed

Fig. 11. Utility with different routing algorithms as funeh of mobility

Figure 12 shows the performance dependency on offered load,
at an average mobility ofm/s. When the network is only lightly . s
overloaded (inter-arrival rate/400s 1) best paths are the shortest % 84 ?
paths and the difference is marginal. As already presentsdker
moderate overload the hotspot scenario shows the benefits of 6 E
price-based routing. Note also that for heavy overloadterin

arrival rate1/100s1), even for the scenario with no hotspots al b
there is a difference between price-based and hop-bas¢idgou \\
This is due to the topology, that makes more connectionsutero

through the centre of the area in the hop-based routing case. 0 2 4 8
For both Figure 11 and 12 each point is an average of 8 average speed
experiments with different initial topology/traffic. We mputed Fig. 13. Utility comparison between the synchronous anchaspnous
confidence intervals in a similar manner to Section V-C. Thglocations
90% confidence intervals of the relative utility performancf




VI. COMPARING ADHOC-TARA TO THE GRADIENT
PROJECTION ALGORITHM

In this section we compare adhoc-TARA to another utilitiger

based resource allocation algorithm proposed by Xue etjl. [

[3]. As presented in the introduction, this algorithm bejsrto a
class based on the seminal formulation by Kelly et al. [3B7]]
and uses gradient projection method to reach optimal altota

concave, then an optimal solutigjf to (22), and the optimal
solutionz; to the main problem (3)-(5) satisfy:

max  L(z;, y;)

<a;<bjor

:c;F € argo (23)
In other words we can obtain a solution to our initial probléy
(5) by solving the problems (21) and (22). Furthermogg,
represents thehadow priceof clique j.

The algorithm, to which we refer to as the gradient projectio Xue, Li and Nahrstedt [3] proposed the application of the GPA

allocation (GPA), addresses a maximisation problem thaeig
similar to ours, as presented by Equations (3)-(5). It afapleys
an iterative allocation algorithm that estimates the shagoces
of cligue resources. The concepts of link contention andueli
resources are identical in both works. Nevertheless, theisos
expose fundamentally different concepts, that also requiility
functions with different characteristics. While concsnig needed

for utility optimised allocation. To use this method thelityi
functions must be twice differentiable. It is further assahthat
the utility functions are strictly concave, and hence thebjgm
has a unique optimal solution. The gradient projection wetis
an iterative method to find an extreme point of a constrained
function. It approaches an extreme point by taking from the
current position a step with a fixed length in the direction of

in both cases, the GPA needs continuous, twice differeletiaihe (negative) gradient. If outside, the obtained pointrggzted
utility functions as an input. In the next two subsections wkack onto the feasible region.

introduce the GPA algorithm and present how we construdted t

utility functions in order to make both schemes comparabten

In GPA, a gradient of Subproblem (22) for every resource
dimensionj is given by Y™ ¢;; x x; — B"**, and thus each

we compare the two allocation methods focusing on convemgercomponent can be calculated separately on a given cligue
properties and performance measured in terms of accurdulatequiring only knowledge of the flows traversing the clique.

utility.

A. The gradient projection algorithm

Similarly, the allocated bandwidth can be determined by the
source nodes, given the prices of the cliques that the floxetsas
(since for all other cliques;; = 0). Hence, like for adhoc-
TARA, the problem can be solved in a distributed manner witho

Starting from the optimisation problem presented in Equaesorting to any global information about the network. Isli®wn

tions (3)-(5) we introduce a set of multipliess and relax the
constraints to obtain the Lagrangian objective function:

m

P m
L(z,y5) = Z ui(w;) — Z yj(z qij X x; — Bj"T)
j=1  i=1

=1

m m p » (19)
= Zui(%‘) - Z%‘( qij X Yj) + Zyj x B
i=1 i=1  j=1 j=1
Now we can define the Lagrangian dual function:
DL(y;) = | S e L(xi,y5) (20)
and the dual problem accordingly:
min DL(y;). (21)

0<y;

The multiplier y; can be interpreted as the price a flow has sendy; to all flows traversing cliqug

to pay for accessing cligug. Remember, the quantityp; =

Z?:l gij % y; in (19) corresponds to the accumulated price of Bandwidth allocation algorithm run at source of every flow ¢
all resources a flow uses, and is referred as the flow's path

price. We observe that the last term in (19) is constant feergi

in [3] that for a given set of prices, a unique optimal solntio
is obtained by lettingy; = [Lu;]"!(pp;). The algorithm in
Figure 14 summarises the basic steps for the rate allocébiypn
[...]T we denote that negative values are set to 0, so the pyices
remain in the feasible region). The clique part calculatew n
resource prices given the bandwidth allocations, and the flo
part sets new bandwidth allocations as a function of traekrs
resource prices. By iteratively executing the two partghltbe
allocation and prices converge towards the optimum, givest t
the right~ is chosen, and both topology and traffic configuration
is static [33], [3]. As we will see in the experiments sectiona
mobile environment the period between two iterations wiitlyp

a big role with respect to the performance.

Price update algorithm run at leader node of every cliquej
update pricey; = [y; — y(B"*" — 37" qij x )]

calculate path pricepp; =
calculate allocationg; =

;ﬁ;l Gis X Ys
(2wl (ppi)

y; and does not influence the optimal allocation solution. We c§ig 14. The gradient projection algorithm (GPA)

therefore neglect it without changing the problem. Foritlawe

restate the Lagrangian dual function in its new form:
DL(y;) =

max  L(xz;,y;
ngigb;naw ( 7,7y_])

m

m
= oma > ) = 3w x
ST =1 i=1

(22)

On a conceptual level we can differentiate GPA and adhoc-
TARA by noting that the GPA algorithm is eongestion control
algorithm. We can observe that the price of a resource isesea
(and subsequently the rate of the flow decreases) only as a
consequence of an overload. Moreover, as all the flows take
independent rate change decisions, an underload in a oesour

Thus, the optimisation problem is decomposed into two sepiggers a rate increase of all the traversing flows, whiah lead
arate problems, the Subproblem (22), which aims at finding &men to an overload, and so on. Adhoc-TARA on the other hand

optimal allocation given the clique pricag and the Subprob-

can be labelled as aadmission controlalgorithm, since every

lem (21) for finding the optimal prices for the cligues. Frontligue employs explicit allocation rounds. Thus flows do aapt

optimisation theory it is known that if the utility functisnare

independently, and resources do not get overloaded.



Another difference is that the GPA can adapt only in small The GPA algorithm cannot accommodate rigid and semi-rigid
steps, so in the case of severe over/underload the algoritiows (as the ones presented in Section V-A), and for a fair
needs several iterations to allocate the real amount ofureso comparison, we treat all six application classes as fullyilile
In comparison, adhoc-TARA always attempts to fully allecatconnections for both algorithms.

according to the right resource capacity. Furthermore, during overload situations, the GPA migho-all
cate more bandwidth than it is available at a resource. |h rea
‘ ‘ ‘ ‘ ‘ ] networks this would lead to packet drop and retransmissige.

simulate the packet drop by granting all connections therated
bandwidth until the resources at a clique are exhausted. The
remaining connections will then be allocated zero bandwidt

uar-

U3

Lt ] The possible overhead that frequent retransmission irsdnc@al
5 S networks is not accounted for.
g | For the experiments presented in the next sections we eedend

our J-sim-based simulator to perform allocation using tHAG
algorithm. We used the synchronous version of the simulatio
environment. For routing we used the on-demand shortest pat
o Y SR = e algorithm where the length of a path corresponds to the nuofbe
hops. Packet-level simulation is not implemented and tlauket-

Fig. 15. A logarithmic utility function is interpolated tabtain a piecewise |eye| gverhead are not studied in this context.
linear function

C. Convergence properties

B. Utility functions and accounting To illustrate the basic functioning of the algorithms we lgtpp

The gradient projection method requires the utility fuord them to the simple, static scenario depicted in Figure 1#h wi
to be continuous and differentiable while for adhoc-TARAh logarithmic utility functionU(z) = In(z). It is linearly interpo-
have to be piece-wise linear. We adopt the following stiaieg lated at 7 points to obtain a piecewise linear function fanaad
order to perform comparable evaluation. For GPA we usetytili TARA, as shown in Figure 15. The required bandwidth of both
functions that are specified 8§z) = alog(bx +c), wherea,b,c  flows is 3Mbps. The resource capaciti;"** is set to4Mbps.
are arbitrary parameters that control its shape. For adAGtA
these functions are linearly interpolated at 7 equidistaints
SO as to get a piecewise linear utility function consistirigéo E__l @ 2 @ 3 ‘@, 4 E
segments, say.(z) (cf. Figure 15). T fl

The utility accounting is based on each algorithm’s utility
function. More precisely, given a period length af the utility \\
for allocationz! for period|t,t + 7] is given byu! = 7 L(z!) for
adhoc-TARA andu! = 7U(x!) for GPA. The system utility is
then simply>>, S, u. Although L(z) is slightly lower than
U(z) our experiments showed that this difference is negligible.

Fig. 17. A simple network configuration and its contentioagdr

35000 ‘
Voice service
Video phone ------

Wiaida Figure 18 illustrates how the two algorithms allocate baidthw
O e to cligues and flows in this situation. We observe that once
both algorithms have converged, the allocation is quiteilaim
but not exactly the same. The reason is that adhoc-TARA can
20000 |- 1 only allocate at a discrete number of points. We also see that
GPA needs a few iterations to converge to the optimal salutio
while in this simple scenario adhoc-TARA is able to reachrnea
optimal allocation at once. In GPA the allocation oscitlat are a
consequence of the flows adapting independently to theadail
1 bandwidth. Right in the beginning both flows observe an empty
[ resource and move to occupy it, then they observe the oxkrloa
0w 2w 30&:::“@:gfg;mh(bsp:‘t;w s000 70000 o000 and SO on. Ip Figu_re 18(b), where the bandwidf[h aIIO(_:a_timmm

two cliques is depicted, we also observe that in the initfege
Fig. 16. The traffic mix used for subsequent experiments the GPA allocates more bandwidth than is actually availalil
it converges to a feasible allocation. In real networks thisild

To run the comparative analysis we have modified the utilifgad to packet loss and retransmission. Figure 18(a) shuatsrt
functions of the six application groups in the traffic mix €sean optimal solution the allocated bandwidth for flow 2 is tvic
Section V-A) to the ones depicted in Figure 16. Projectioraxth as small as for flow 1 despite the fact that both flows have the
curve’s end point on the x-axis shows the average bandwidth tsame utility function. This allocation makes sense, as flavs@s
is used by a connection of this class. two links in clique R1 while flow 1 uses only one.

30000 [

25000 4

Utility

15000 B 4
10000 I 4

5000




: —me 4 experiments with different initial topology/traffic. Wemputed

the relative performance of botldhoc-TARAand GPA divided
fffffffffffffffffffffffffffffff by LP as we did Section V-C. The 90% confidence intervals are
8 small, for adhoc-TARAthey have max+0.013 (around a0.98
A point), and forGPA max +0.035 (around a0.94 point).
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Fig. 19. Influence of mobility on the performance
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1072 = ‘ E. Influence of period length on the performance
. As we have already mentioned, the period timg in our
] mobile simulation is of crucial importance for GPA. The larg
the period, the longer the GPA stays in suboptimal allocegifber
] a traffic or topology change. And these changes occur quigs of
‘ ‘ ‘ ‘ ‘ ‘ ‘ in a mobile scenario, with important consequences. Thus it
CE B o clear that the accumulated utility is monotonically insieg as

(b) Clique bandwidth 7 moves closer to zero. Figure 20 shows how the accumulated
utility is affected by the interallocation period lengthadh point
is an average of 4 experiments, and the relative performahce
GPAdivided byadhoc-TAR/Astable. The 90% confidence intervals
have max+0.013 (around a0.98 point).

Allocated bandwidth (bps)

Fig. 18. Bandwidth allocation for the flows and cliques in u¥ig 17

D. Performance comparison and mobility dependency

For the experiments that follow we use the same simulation x 10
parameters as the ones presented in Section V-A, with two
differences. First, the comparable utility functions gmred in
Section VI-B, Figure 16 are used. Second, we introduce &y st
length parametety, which is particular to the GPA, and unless
otherwise specified has the following valug=1e-10.

We proceed by studying the influence of mobility on the
accumulated utility. Nodes join and leave the interfereracege of
other nodes, hence changing the clique’s load abruptlyebiar,

a route can be lost forcing the connection to take anotheerou
As already discussed, it may take quite a few iterations feA ®

adapt yvhen facing ;uch abrupt. changes, whereas adhoc-SARA 74l — Gradient projection

allocation reflects this change immediately. We therefoqgeet - - Adhoc TARA

that the performance of GPA deteriorates quicker than adhoc 735 05 1 15 2
TARA. Figure 19 clearly confirms our expectation. Similarthe period time (s)

results in Section V-C we can observe that the performance m{§. 20. Influence of the period time on the performance

adhoc-TARA is very close to the optimal LP-based algorithm.

There are two important factors that influence the perfocaasf We observe that a short period time is vital for GPA to show
the GPA in highly dynamic environments. These are the perigibod performance, while adhoc-TARA is less sensitive t@éon
between iterations;, and the step-length, and we look closer at dissemination times. The less sensitive behaviour of adi#drA
them in the next sessions. Note that in this graph’s experisne is explained by two facts. First, in adhoc-TARA the flows dd no
we usedr = 0.02 s andy =1e-10. For every point we performedadapt independently, and a clique never allocates morenidtid



than available. Second, if a change in the network demands it 305 X10
adhoc-TARA can operate large changes in a flow's allocation
(from max to zero, or vice versa). In GPA on the other hand,
flows need to adapt in steps, the size of which depends.on

In a real network, the period is lower-bounded by the end-to-
end transmission time of the packets, and regulates how ofte
the control information is transmitted. Thus, there is @ldraff
between signalling overhead and the time GPA needs to agaver
to an optimal solution.

%
NS

only filetransfer
— — — mixed traffic

Utility
Utility

F. Influence of step-length on GPA

Choosing the right step-length, is crucial for the performance 27 02 04 06 08 1°®
of GPA. Xue et al. [3] show that convergence is guaranteed if sieprienath (gamma) x107
v satisfies0 < v < 2/RY Z, where, informally speakingsz is Fig. 22. Influence of step-length in GPA on the accumulatéityufor two
a bound on the curvature of the utility functions, the length different traffic mixes
of the longest path for a flow and the number of sub-flows
at the most congested clique. In our experiments we note t%(ta
% is the dominating factor, and it turns out to be of the San}ﬁat
order of magnitude as the requested bandwidth of a conmecti%e U
If we have a good idea about the peak traffic in our network, the
above formula helps us to choose the step-length small denouﬁ’e
Unfortunately such information is rarely available.

then propose adhoc-TARA, a distributed allocation afigor
bids for resources depending on thsiradow pricesand
tility efficiencyof the flows. Simulations show a very good
rformance of the distributed allocation algorithm, cenable
an optimal LP based global allocation, and with a much fowe
overhead. Furthermore, in hotspot scenarios price-basgihg

s shows its benefits as compared to hop-based SPF routing.

10 . . . . .
46" ‘ ‘ Since synchronous allocation might be hard to implementin a
a5} — %idie”TtAPF;OAJeC“O” ad hoc setting, we then present an asynchronous versioreof th
i oe algorithm and show that its performance is not affected liy th

change.

Finally, we compare adhoc-TARA to another type of distréalit
price-based allocation algorithm, which is based on theligra
projection method. The simulations show that adhoc-TARA is
much more robust with respect to both mobility and length of
the allocation period. On the other hand, the GPA has been
\ " theoretically proven to converge towards the optimum [{3]],

I As a future work we aim to study convergence conditions
and properties of adhoc-TARA, and theoretically prove that
3800 1500 1600 1700 1800 1900 @t converges towards the opti_n_1um. Current_ yvor_k includes the
allocation point () implementation of needed additions and modifications tinout
Fig. 21. Allocated bandwidth at a sample clique (intenvairate1/200s—1) ~ the protocol stack of an ad hoc network, to test it using teai
packet-level simulations. We aim to study and compare the

Choosing a too large step length can result in oscillatifepcket-level overheads introduced by our allocation étgor
allocation behaviour, as shown in Figure 21, starting adouromplementary simulation studies are needed for testigg th
allocation point 1800. This figure shows the bandwidth ated resilience of the algorithm to loss of control packets, djieg
by GPA to an arbitrary clique with =1e-10. Being conservative guidelines on how we can better trade-off signalling ovache
and choosing the step-length too small will ensure converge against control accuracy.

This, however, is done at the cost of convergence speedhasd t Wireless networks face a paradigm shift. They intend to com-
the system spends more time in suboptimal states. plement the Internet with its different services and appians,

Optimal step-length depends on the traffic type, as illtstra With much less available resources. Thus, we argue thabutith
in Figure 22. The simulations were performed for two differe quantitative measure for the importance of the flows, thevor
traffic models, namely the mixed traffic presented in Sectigh cannot provide resource assurance and allocation fleyikali
with an inter-arrival rate ofi/600s~!, and a traffic setup where overloads. Under these conditions, combining utility fimes
all the connections are of “file transfer” type (see Figury The With a lightweight distributed implementation could prdei a
inter-arrival rate in the latter case ig1000s . very strong argument to get rid of the old performance metric
and optimise the QoS as perceived by the user.
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VIl. CONCLUSIONS AND FUTURE WORK
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