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Abstract

In this paper we consider data freshness and overload
handling in embedded systems. The requirements on data
management and overload handling are derived from an
engine control software. Data items need to be up-to-date,
and to achieve this data dependencies must be considered,
i.e., updating a data item requires other data items are up-
to-date. We also note that a correct result of a calculation
can in some cases be calculated using a subset of the in-
puts. Hence, data dependencies can be divided into re-
quired and not required data items, e.g., only a subset of
data items affecting the fuel calculation in an engine con-
trol needs to be calculated during a transient overload in
order to reduce the number of calculations. Required data
items must always be up-to-date, whereas not required data
items can be stale. We describe an algorithm that dynami-
cally determines which data items need to be updated tak-
ing workload, data freshness, and data relationships into
consideration. Performance results show that the algorithm
suppresses transient overloads better than (m, k)- and skip-
over scheduling combined with established algorithms to
update data items. The performance results are collected
from an implementation of a real-time database on the real-
time operating system C/OS-I1. To investigate whether the
system is occasionally overloaded an offline analysis algo-
rithm estimating period times of updates is presented.

1 Introduction

Embedded systems are commonplace and can be found
in many different applications and domains, e.g., domestic
appliances and engine control. The software in embedded
systems is becoming more complex because of more func-
tional requirements on them. Thus, the vast number of em-
bedded systems being developed and the complexity of the
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software makes it important to have methods to handle spe-
cific software development issues of embedded systems. In
this paper we look into data management in embedded sys-
tems, in particular maintaining data freshness and handling
transient overloads.

We have found the following in a case study with two
industrial partners, Mecel AB and GM Powertrain Sweden
[10]:

e Development and maintenance costs of software is in-
creasing, and one large part of this cost is data han-
dling. This is also mentioned in [4,20]. The main
reasons are that the number of data items can be high,
data storage is usually decentralized, data items must
be up-to-date, and data items being used in a calcula-
tion should be derived from the same system state.

e A majority of the calculations are required to be fin-
ished before a given deadline otherwise the system suf-
fers degraded performance, but it is acceptable to miss
deadlines occasionally. Thus, we are focusing on soft
real-time systems in this paper.

e These embedded systems become overloaded, and the
software must be designed to cope with it, e.g., at high
revolutions per minute of an engine the engine con-
trol software cannot perform all calculations. Few of
the data items used in a calculation are compulsory to
derive a usable result (we denote such data items as
required and other data items as not required). For in-
stance, in the engine control software, the calculation
of fuel amount to inject into a cylinder consists of sev-
eral variables, e.g., temperature compensation factor,
and a sufficiently good result can be achieved by only
calculating a result based on a few of these compensa-
tion factors. Thus, at high revolutions per minute, only
a few of the compensation factors are calculated.

In our previous work we have addressed the first two bul-
lets by introducing a real-time database, Data In Embedded
Systems malntenance Service (DIESIS), with support for



maintaining data freshness. We showed that updating data
items on-demand and measuring data freshness in the value
domain increase performance compared to measuring data
freshness in time domain [9, 10]. The third bullet above de-
scribes a need to incorporate overload handling in DIESIS
and in this paper we extend our previous work by an over-
load handler that considers workload, data freshness, and
data relationships. The general problem of maintaining data
freshness and considering data relationships is NP-hard in
the strong sense (see section 2.3) and in this paper we de-
scribe a plausible specialization of the problem that results
in an efficient algorithm. We also present an off-line algo-
rithm that can derive the CPU utilization of a system for our
algorithms.
Our contributions are:

e The Admission Control Updating Algorithm (ACUA)
algorithm that determines which data items that should
be updated to make their values up-to-date before a
transaction can commence its execution. ACUA takes
data freshness and data relationships into considera-
tion and inserts into a schedule either all stale data
items or only required data items. We say ACUA
has two modes where the required-mode corresponds
to scheduling required data items and the all-mode to
scheduling all data items. Switching between all-mode
and required-mode is triggered by using a utilization
check. The CPU utilization of scheduled updates plus
admitted transactions is compared to a bound denoted
RBound [18] (see section 3 for details). This algorithm
is referred to as the ACUA-RBound algorithm.

e An off-line algorithm that calculates the CPU utiliza-
tion of a system consisting of data items that get up-
dated by ACUA.

Performance results show that ACUA-RBound immedi-
ately suppresses a transient overload, and it also performs
better than (m, k)-scheduling [12] and skip-over schedul-
ing [16] of transactions updating data according to the OD
algorithm [2]. Both (m, k)- and skip-over scheduling can
be used to handle transient overloads.

The outline of the paper is as follows. Section 2 de-
scribes DIESIS. Section 3 describes ACUA-RBound. Sec-
tion 4 describes the off-line algorithm for calculating CPU
utilization. Section 5 gives the performance results, section
6 the related work, and finally, section 7 concludes the pa-
per.

2 Real-Time Database

This section describes the data and transaction model
used in DIESIS (section 2.1), a scheme for determining
which data items are stale (section 2.2), and ACUA (sec-
tion 2.3).

2.1 Data and Transaction Model

Embedded systems that monitor a natural environment
can represent the set of data items as base items, i.e., data
items that are read from sensors or communication links,
and derived data items, i.e., data items that are calculated
from a set consisting of base items and derived data items.
The set of base items is denoted B, and the set of derived
data items is denoted D.

The values a calculation produces depend on values de-
rived by other calculations. Hence, there are precedence
constraints on the calculations, and these can be described
in a directed acyclic graph (DAG), where every node repre-
sents a data item (and a calculation updating the data item)
and a directed edge from node n to n’ means that calcu-
lating the data item represented by n’ requires reading the
data item represented by n. The DAG is denoted data de-
pendency graph, GG, and an example of a data dependency
graph is given in figure 1 and it shows a subset of data in
an engine control software using DIESIS [9]. Base items
have zero in-degree, and nodes representing actuator val-
ues have zero out-degree; these nodes are denoted actuator
nodes. The read set of a data item d;, i.e., the data items that
are read and used when deriving d;, is denoted R(d;) and
constitute the immediate parents of d; in G. The read set of
a data item R(d;) can be divided into required data items,
denoted RR(d;) C R(d;), and not required data items, de-
noted NRR(dl) - R(dl), RR(dl) N NRR(dZ) = (). The
immediate children of d; represent the data items that are
derived from d;. The ancestors of a data item d; are the data
items that are on paths leading to d;.

We assume the value of d; is correct if at least all data
items in RR(d;) are up-to-date when deriving d;. We fur-
thermore assume that values of data items in RR(d;) can be
based on only up-to-date required data items. This means
that the system has still a correct behavior if all transactions
only use up-to-date values on required data items.

Transactions are divided into sensor transactions (STs)
that are periodically executed updating the base items,
user transactions (UTs) that are started by applications in
the software, and update transactions or triggered updates
(TUs) that are started by DIESIS to update data items be-
fore a user transaction starts to execute. Every transaction
updates one data item, and, thus, there exists a mapping via
the data dependency graph G and a function pointer to a
transaction.

In this paper, each UT is periodically invoked requesting
actuator nodes in GG. This resembles an embedded system
where actuator nodes represent actuator signals that are sent
periodically to actuators.



2.2 Determining Stale Data

We now discuss how data items can be determined to
need to be updated. Data freshness measured using similar-
ity is in this paper defined as follows.

Definition 2.1. Let vy and v} be two values of data item
d;. These two values are similar if the distance between
them is less than a bound denoted data validity bound, d4;.
Let a data item d; be derived by using vy . If [vy — vy | <
84, we say d; is up-to-date with respect to vy , otherwise d;
is stale.

Since similarity uses the value domain of data items to
define their freshness, the freshness of a data item, d;, only
needs to be reconsidered at an update of any of its ancestors,
i.e., a member of R(d;). Hence, the execution of calcula-
tions is data-driven, meaning that during periods when the
external environment is in a steady state fewer calculations
need to be executed compared to during periods when the
external environment is in a transient state. We show this
behavior in the performance evaluations in section 5.

Adelberg et al. showed that executing updates on-
demand uses the CPU resource most efficiently when com-
paring different updating algorithms [1]. We use on-
demand updating of data items in this paper, so there must
be a way to postpone recalculations of data items and start a
subset of them in response to the starting of a user trans-
action. In DIESIS there is a scheme, affected updating
scheme (AUS), that marks a data item as affected when any
of its immediate parents in the DAG changes to a dissimilar
value according to definition 2.1. Looking at figure 1, when
b7 becomes dissimilar data item dj5 is marked as affected by
this change. The AUS scheme does the following:

e keeps base items up-to-date by periodically updating
them, and

e marks immediate children of d; as affected when a re-
calculation of d; finds the new value to be dissimilar to
the old.

Another way to define data freshness is to use an absolute
validity interval (AVI) and the data freshness is defined as
follows [24].

Definition 2.2. Let x be a data item. Let timestamp(x)
be the time when x was created and avi(z), the absolute
validity interval, be the allowed age of x. Data item x is
absolutely consistent when:

current_time — timestamp(x) < avi(x). ()
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Figure 1. An example of a DAG.

Absolute validity intervals are, as can be seen from the
definition above, defining data freshness in the time domain.
AVIs are used in an updating algorithm, on-demand (OD),
described by Ahmed and Vrbsky [2]. In OD, every time a
data item is read by a transaction, the age of the data item’s
value is checked. If the value is too old, an update is trig-
gered that is executed before the triggering transaction con-
tinues to execute. A triggered transaction can also trigger
updates. Thus, OD has the effect of traversing G bottom-
up, i.e., in the reverse direction of the edges. OD is used in
the performance evaluations in section 5.

2.3 Admission Control Updating Algorithm

In this section we describe the Admission Control
Updating Algorithm (ACUA) algorithm that decides which
data items need to be updated when a transaction starts.
The decision is based on markings by the AUS scheme
and data relationships. The set-union knapsack problem
(SUKP) [15] can be reduced to the problem of scheduling
updates of data items to keep them up-to-date. The reduc-
tion is given in [11]. SUKP is NP-hard in the strong sense.
In this paper, we reduce this complexity to make ACUA
efficient to execute on-line by considering only two cases:
(i) schedule all updates and (ii) schedule required updates.
The computational complexity of ACUA is polynomial in
the size of G.

ACUA is implemented by traversing GG top-bottom in a
breadth-first approach. Data structures are used to keep in-
formation necessary to put updates in a schedule containing
possibly stale data items. The benefit of using a top-bottom
traversal with a data structure compared to the bottom-up
approach used by OD is that ACUA can be extended with
different functionality, e.g., in addition to schedule stale
data items it is possible to calculate probabilities that up-



ACUA(d, ancestors, allM ode)
1: for all x in ancestors do

2: status(z)

3: if x.marked == true then

4: put an update for x into schedule

5: end if

6: for all immediate children c of x do

7: if (c is required and allMode is false) or

(allMode is true) then

8: inheritstatus(c, x)

9: end if
10 end for

11: end for

Figure 2. The ACUA algorithm.

dates get executed [11], i.e., in one traversal of G a schedule
of updates and the probabilities that they get executed can
be generated using ACUA.

ACUA is described in figure 2. The parameter d is the
data item a user transaction requests, ancestors is the set
of all ancestors sorted by increasing level (see definition
2.3), and all M ode is true if all data items should be consid-
ered for being updated and false if only required data items
should be considered. A level is defined as follows:

Definition 2.3. Each base item b has a fixed level of
1. The level of a derived data item d is determined by
the longest path in a data dependency graph G from a
base item to d. Hence, the level of d is level(d) =
maxy,er(d)(level(z)) + 1, where R(d) is the read set of
data item d.

The set ancestors is generated off-line by depth-first
traversal of G from the node representing d, after the depth-
first traversal the visited nodes are sorted according to in-
creasing level. Line 7 of ACUA checks whether an imme-
diate child of an ancestor should be considered for being up-
dated. A data item that is required with respect to another
data item can be distinguished by marking the edge in G,
e.g., with number 2, in the adjacency matrix describing G.
The function status(x) (see figure 3) calculates the marking
of z based on the inherited markings from ancestors of z
(line 7). The inherited markings are traversed down G with
the help of function inheritstatus(c,x) (see figure 3). It is
easy to see that the data structure used in ACUA, status and
inheritstatus can be extended to calculate different proper-
ties of the updates, e.g., probability of being executed.

In summary, a marking by AUS is traversed down the
graph and updates are scheduled as they are found to be
needed (line 4 in figure 2). When ACUA has constructed
a schedule of updates as a response to an arrival of a user
transaction, DIESIS starts to execute the updates before the
UT commences. The updating scheme AUS is active when-

inheritstatus(c,x)
1: c.parents|c.parentnum|.marked = x.marked
2: c.parentnum + +

status(x)
1: if = is marked then

2: r.marked = true

3: else

4: x.marked = false

5: end if

6: for all p in z.parents do

7: r.marked = x.marked V p.marked
8: end for

Figure 3. Help functions.

ever a data item is written to the database. This means that
a data item might be in the schedule but it never becomes
marked because an update in an immediate parent never re-
sulted in a stale data item. Thus, only updates for the data
items that are marked by AUS are started by DIESIS. In this
way the workload is automatically adapted to how much
data items change in the external environment. The experi-
mental results presented in section 5 confirm this. Compu-
tational complexity of ACUA is polynomial in the number
of ancestors of a data item, i.e., O(|V]), where V is the set
of vertices of GG, because ACUA loops through all ancestors
of a data item which, in the worst case corresponds to the
whole graph G.

3 Admission Control using ACUA

The load represented by the admitted updates can be ex-
pressed as U = ZVieActiveUT % where ActiveUT is the
set of active user transactions, C; is the sum of execution
times of updates and UT 7;, and P, is the period time of UT
7;. In order to successfully execute all UTs, U always needs
to be below a specific bound. In this paper we choose to
use RBound [18] since it gives a bound tighter than RMA.
RBound says that if

C; 2
Y Hsm-nEdmhon S o1 @)
i€ ActiveUT i "

where m is the number of active UTs and r is the ra-
smallcstJ

. log, | Phighest .
tio P, oot / Prighest, Where Py, q1ies: is the small-
est period time of active UTs and Pjp;gnest is the highest
[18]. As with the well-known Liu and Layland bound [21],
RBound is sufficient but not necessary.

Admission control of updates in DIESIS using RBound
is done as follows. When a UT arrives to DIESIS, ACUA
using allMode set to true, i.e., all-mode of ACUA, is used
to generate a schedule of updates, i.e., required-mode is

used. If (2) is false, then a new schedule using ACUA with



allMode set to false is generated. The execution time of a
UT is estimated to the sum of execution times in the sched-
ule.

In practice only one execution of ACUA is needed, be-
cause the not required data items can be marked, and re-
moved from the schedule if (2) is false. Using ACUA to
schedule updates and the feasibility test RBound is denoted
ACUA-RBound.

4 Analyzing CPU Utilization

Since DIESIS executes only the updates of data items
that need to be updated, there is a need to determine off-line
the mean time between invocations of updates of data items
because the mean time between invocations of an update
(of a data item d;) cgn be used to calculate the CPU uti-
lization by taking MTgldi
ecution time of the update of d; and MT B1,, is the mean
time between invocations of the update of d;. There are
two things that determine the mean time between invoca-
tions of an update of d;: (i) the period times of UTs, and
(ii) the probability that a recalculation of a member of the
read set R(d;) results in a change in the value of d;. See
figure 5 for an example. Timeline 1 (the timeline to the left
of the encircled 1) shows the timepoints where sensors are
updated. We assume every time any of the sensors is up-
dated, data item dj, is affected by the change. Timeline 2
shows the time instances where an update of dy, is called
and these time instances come from the actuator nodes rep-
resenting periodic UTs. Timeline 3 shows which calls of
the update of dj, result in an execution of the update. An al-
gorithm, MTBIOfflineAnalysis, determining the mean time
between invocations of updates of data items in the system
is given below. We see that the algorithm above traverses G
top-bottom. In this paper, timelines have a length of 400000
time units which give accurate values on mean time between
invocations. In order to get an accurate mean time between
invocations, the length of the timelines needs to be equal to
the hyperperiod of period times of the read set and tasks.
To shorten the execution time of MTBIOfflineAnalysis, the
length of timelines can be fixed, but the length must be order
of magnitudes longer than the period times of elements in
the read set and of tasks in order to capture the arrival pat-
tern of execution of updates. Line 10 determines whether
an occurrence of an update of a read set member will make
the value of d; stale. The CPU utilization can easily be cal-
culated by calculating timeline 7'3 for each data item and
then derive the mean time between invocations on that time-
line followed by calculating Cy, /MT B1,,. The total CPU
utilization is the sum of Cy,/MTBI,, for each data item
d;. If the CPU utilization is below a threshold given by the
scheduling algorithm being used, then there should be no
deadline misses. A sensor network can be described as a

. Here Cy, is the worst-case ex-
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Figure 5. An example of invocation times of
updates.

graph and a sensor network database measuring data fresh-
ness in the value domain [25] can thus be analyzed using
MTBIOfflineAnalysis.

5 Performance Evaluations
5.1 Evaluated Algorithms

In the evaluations the deadline miss ratio is used as a per-
formance metric. We compare AUS, ACUA using all-mode
(denoted ACUA-AIl), ACUA-RBound to OD [2] in three
different settings: OD-All, OD-(m, k) and OD-Skipover.
When a UT arrives to the system, OD traverses G bottom-
up from the data items written by the UT and visited data
items are updated if they are stale according to AVIs (defi-
nition 2.2). Thus, using OD, data freshness is measured in
the time domain.

The algorithm OD-(m, k) executes updates of data items
according to OD and the priorities of UTs are set according
to the (m, k) algorithm where m = 1 and k = 3, thus,
four distances are possible (see [12] for details). The dy-
namic priorities of (m, k) are implemented in C/OS-II by
priority switches. Five priorities are set aside for each dis-
tance. When a UT starts its distance is calculated and its
priority is switched to the first free priority within the set
for that distance. OD-All uses OD from [2] and the UTs’
priorities are fixed. OD-Skipover uses OD to update data
items and the skip-over algorithm is red tasks only where,
in this paper, every third instance of UTs are skipped [16].
ACUA-RBound is the algorithm described in section 3.

The evaluations show that using ACUA-RBound a tran-
sient overload is suppressed immediately. OD-(m, k) and
OD-Skipover cannot reduce the overload to the same ex-
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: Assign period of tasks that can use an update of a data item

: for all levels of G starting with level 2 do
for all data items d; in the level do

p=0
for all Occurrences ot2; in T2 do

ifr € U(0,1) < p then
put 0t2; into a timeline 73
p=0
break

else

end if
end for
end for
end for
. end for

: Draw a timeline T'3 for each base item with each occurrence of an update of it

Merge all T'3 timelines of « € R(d;) and call the timeline 7'1
Create T2 with possible updates of d;, i.e., when derivatives of d; are called.

for all Occurrences ot1; in T'1 in the interval |ot2;, 0t2;11] do

increase p with probability that an update of a read set member affects the value of d;.

Figure 4. MTBIOfflineAnalysis algorithm.

tent as ACUA-RBound. Thus, constructing the contents of
transactions dynamically taking workload, data freshness,

an
to

5.

d data relationships into consideration is a good approach
overload handling.

2 Simulator Setup

DIESIS is implemented on top of the real-time operating

system pC/OS-II [17]." Five tasks are executing periodi-
cally to model five time-based tasks in an engine control

un

it, and they invoke UTs that execute with the same pri-

ority as the task. Other tasks in an engine control unit can

be

tasks that are triggered based on the speed of the en-

gine. The tasks are prioritized according to rate monotonic
(RM [21]), i.e., priorities are proportional to the inverse of
task frequencies. The base period times are: 60 ms, 120
ms, 250 ms, 500 ms, and 1000 ms. These period times are
multiplied with a ratio to get a specific arrival rate of tasks.
All tasks start user transactions that derive actuator nodes

an

d the tasks can use approximately the same number of

actuator nodes.

In the experiments, a database with 45 base items and

105 derived items has been used. A database of 150 data
items represents update intensive data items in an embed-

de

d system, e.g., in the engine management system 128 data

items are used to represent the external environment and ac-
tuator signals. Tasks have specialized functionality so data

IThe simulations run in a DOS command window in Windows 2000

Professional with servicepack 4. The computer is an IBM T23 with 512
Mb of RAM and a Pentium 3 running with 1.1 GHz.

items tend to seldom be shared between tasks, thus, the data
dependency graph G is broad (in contrast to deep). The
graph is constructed by setting the following parameters:
cardinality of the read set, |R(d;)|, ratio of R(d;) being base
items, and ratio being derived items with immediate parents
consisting of only base items. The cardinality of R(d;) is
set randomly for each d; in the interval 1-8, and 30% of
these are base items, 60% are derived items with a read set
consisting of only base items, and the remaining 10% are
other derived items. These figures are rounded to nearest
integer. The required data items are chosen by iteratively
going through every member of R(d;) and set the member
to be required with the probability 1/|R(d;)|. The iteration
continues as long as |RR(d;)| = 0. The number of derived
items with only base item parents is set to 30% of the total
number of derived items.

Every sensor transaction executes for 0.2 ms and has a
period time of 100 ms. Every user transaction and triggered
update executes for a time repeatedly taken from a normal
distribution with mean 5 and standard deviation 3 until it
is within [0, 10]. Every simulation is executed 5 times and
the results shown are the averages from these 5 runs. The
user transactions are not started if they have passed their
deadlines, but if a transaction gets started it executes until it
is finished.

To model changing data items, every write operation is
taking a value from the distribution U(0,350) and divides it
with a variable, sensorspeed, and then adds the value to the
previous most recent version. To get a load of the system at
an arrival rate of 20 UTs per second that shows the perfor-



Table 1. CPU utilizations.

Mode sensorspeed | pbase | pderived | U
all-mode | 1 0.20 0.20 1.38
all-mode | 10 0.02 0.20 0.72
required- | 1 0.20 0.20 0.28
mode

mance of the algorithms the data validity intervals are set to
900 for all data items, i.e., 4, = 900, and the absolute va-
lidity intervals are set to 500 because with a mean change of
175 and a period time of 100 ms on base items a base item’s
value is, on average, valid for at least 500 ms. The prob-
ability that an update must execute is 175/900=0.2 where
175 is the mean value change. Table 1 shows the CPU uti-
lization, calculated using MTBIOfflineAnalysis in section
4, where sensorspeed is 1 and 10. We see that the system
should be overloaded when ACUA-ALll is used in a transient
state (sensorspeed = 1, i.e., sensors change much) and not
overloaded when required-mode is used. In a steady state,
i.e., sensorspeed = 10, the system is not overloaded.

The concurrency control algorithm that is used is High-
Priority Two-Phase Locking (HP2PL). We have shown in a
previous work that using OCC gives the same performance
as using HP2PL [8].

5.3 Experiments

Figure 6(b) shows the performance of the algorithms
where sampling periods are 500 ms. We show the mean
deadline miss ratio for the intervals where sensorspeed is
set to the same value, which is periods of 5 seconds, i.e.,
10 sampling periods. The max mean deadline miss ratio is
shown in table 2. The sensors change as showed in figure
6(a) . The deadline miss ratio of OD-All, OD-(m, k), and
OD-Skipover is unaffected of the sensor changes which is
expected because using AVIs for data freshness makes up-
dating unaware of values of data items. The miss ratio drops
using ACUA-AIl when the number of sensor changes per
time unit is small as in the interval 15-40 sampling periods
and 70-80 sampling periods. This is also expected since the
entry sensorspeed = 10 in table 1 says the system should
be not overloaded.

The data consistency achieved by skip-over scheduling is
worse than the consistency achieved by ACUA-AIl, ACUA-
RBound, OD-All, and OD-(m, k), because using skip-over
scheduling every third instance of a task never updates any
data items. For ACUA-All and ACUA-RBound data items
are always updated such that transactions use up-to-date
values on required data items. OD-All and OD-(m, k) also
use up-to-date values on data items.

Using skip-over scheduling improves the performance
compared to OD-All. However, ACUA-AII has similar per-

Table 2. Max mean deadline miss ratio
(MMDMR) for transient and steady states.

Algorithm MMDMR transient; steady
OD-All 0.146;0.146

OD-(m, k) 0.178;0.146

OD-Skipover 0.090;0.080

ACUA-All 0.109;0.02
ACUA-RBound | 0.029;0.002
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Figure 6. Performance of overload handling
algorithms.
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Figure 7. Deadline miss ratio for task with
second highest priority.

formance as OD-Skipover. Thus, ACUA-AIl has similar
deadline miss ratio compared to OD-Skipover and the data
consistency is higher. OD-(m, k) does not perform, overall,
better than OD-All and that is because the task having the
highest priority according to RM gets a dynamic priority
that might be lower than other running tasks with the same
distance. Thus, the task with shortest period time misses
more deadlines but other tasks meet more deadlines, and
this is for instance showed in figure 7 where the deadline
miss ratio for tasks with second highest priority is lower
for OD-(m, k) compared to OD-All. However, the perfor-
mance of OD-(m, k) cannot be better than OD-Skipover be-
cause task instances are skipped using OD-Skipover which
they are not using OD-(m, k).

Skip-over gave the best effects on deadline miss ratio us-
ing the OD algorithm. Figure 8 shows the performance of
ACUA-AII using skip-over to skip every third task instance.
The deadline miss ratio drops by introducing skip-over, but
it is not affected much by the skips. Hence, to reduce work-
load in an overloaded system other means must be used than
skipping invocations of tasks. The ACUA algorithm can
generate schedules containing data items that might need to
be updated, which can be seen in figure 6(b). To improve
the performance of ACUA-ALIL the schedules’ lengths must
be varied depending on the workload. However, data rela-
tionships must still be considered. One way to shorten the
length of a schedule is to use the required-mode of ACUA.
Switching to required-mode when the RBound feasibility
test fails gives the performance denoted ACUA-RBound in
figure 6(b). As can be seen ACUA-RBound decreases the
deadline miss ratio better than any of the other algorithms
and suppresses the deadline miss ratio when the system goes
from a steady to a transient state, e.g., sampling period 80,
where number of sensor changes from low to high. The
mean deadline miss ratio is at maximum 0.029 in the inter-
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Figure 8. ACUA-AII using skip-over.

val 100 to 110 where sensors change much, i.e., the system
is in a transient state, compared to OD-Skipover that has its
maximum mean at 0.09. Using ACUA-RBound, the dead-
line miss ratio can be above zero because if the utilization
bound (2) (section 3) is false, required-mode of ACUA is
used, but (2) can still be false due to admitted UTs that have
used all-mode. One way to resolve this is to reschedule up-
dates of active UTs, and this is our future work.

6 Related Work

The research on admission control in real-time systems
has been extensive [5,6,12—-14,16]. However, the work that
has been done primarily focuses on admission control of
independent tasks, whereas we in this paper focus on ad-
mission control where data has relationships.

Work on maintaining data freshness can be classified into
(i) off-line algorithms determining period times on tasks
[19,26,27], and (ii) on-line algorithms [2,7,9,10, 14,23]. In
our previous work we showed that maintaining data fresh-
ness on-line measuring data freshness in the value domain
can use the CPU resource more efficient compared to if data
freshness is measured in the time domain [9, 10]. However
the on-line algorithms might not work properly in the case
of overloads, because they cannot guarantee that data items
are updated, before a transaction starts, in such a way that
the transaction can produce an acceptable result. The reason
is that the general problem of choosing updates and consid-
ering data relationships is NP-hard in the strong sense (see
section 2.3) and previous on-line algorithms are simplified
to reduce computational complexity in such a way that they
reject updates when the updates cannot be fitted within the
available time. Let us assume dg in figure 1 is about to be
read in a transaction and ds and d5 are marked as potentially
affected by changes in the external environment. An on-
demand updating algorithm traverses d7 and dg followed by
dg and ds. Let us assume there is time available for d; but



not d3 and for dg but not d5. Thus, updates are executed for
d7 and dg and they will read old values on d3 and d5 since
they were not updated. In this paper we choose to divide
data items into required and not required data items which
is justified by examples in industrial applications, and this
gives a polynomial time algorithm without the exemplified
problem.

Tasks in the imprecise computation model can be de-
scribed with one of the following approaches [22]. Mile-
stone approach: The result of a task is refined as its execu-
tion progresses. A task can be divided into a mandatory and
an optional part, where the result after executing the manda-
tory part is acceptable, and the result after also executing the
optional part is perfect, i.e., the error of the calculation is
zero. Sieve approach: A task consists of operations where
not all of them are compulsory [3]. A typical example is
when a data item’s value can be updated or used as is, i.e.,
the update is skipped. Primary/alternative approach: The
task can be divided into a primary task containing function-
ality to produce a perfect result. The alternative task takes
less time to execute and the result is acceptable. One of the
primary and the alternative task is executed.

ACUA is consistent with the imprecise computation
model because ACUA can construct a schedule that gives
an imprecise but acceptable result. The result is acceptable
because required data items are always updated. The ap-
proach of dividing data items into required and not required
data items has industrial application as was discussed in sec-
tion 1, e.g., a subset of fuel compensation factors must be
updated in order to get an acceptable result. In this paper,
we have focused on on-line constructing the content of user
transactions by considering workload, data freshness, and
data relationships to get acceptable results. To the best of
our knowledge this is the first time such an approach is eval-
uated.

Kang et al. describe a flexible data freshness scheme
that can reduce the workload by increasing the period times
on updates of data items [14]. A feedback approach is used
where a monitoring of changes in deadline miss ratio results
in changing period times of updates within given bounds.
The work in [14] does not consider data relationships nor
data freshness measured in the value domain. Moreover,
using a feedback approach introduces a settling time, i.e.,
it takes a time before the system stabilizes after a workload
change. Some systems need fast reactions, and our evalua-
tions show that using ACUA with a feasibility test lets the
system react immediately on a workload change.

Ramamritham et al. developed algorithms for data dis-
semination of data on the web and data freshness is mea-
sured in the value domain of data items [7,23]. Their work
considers the problem of refreshing data values on clients
when values dynamically change on a server, which can be
mapped to when derived data items in level 2, i.e., immedi-

ately below base items, should be refreshed. Push and pull
techniques are combined meaning that on-demand and time
triggering of updates of data are combined. In our work, we
consider, on a single CPU embedded system, data relation-
ships in several levels.

7 Conclusions and Future Work

This paper has described an algorithm that handles over-
loads by determining, on-line, which calculations should be
performed such that up-to-date data items are used. Data
relationships are taken into consideration when deciding
which calculations to perform. An overload is due to too
many concurrent calculations updating data items, and a re-
sponse to the overload is to reduce the amount of concurrent
calculations. The updating algorithm has two modes. The
required-mode considers a subset of the data items when
determining which should be updated. This subset consists
of required data items that have to be up-to-date. The all-
mode considers required and not required data items. This
is the default behavior of the updating algorithm. A utiliza-
tion check denoted RBound [18], which is an enhancement
to the Liu and Layland RM bound, is used to decide when
to switch between all-mode and required-mode. Simulation
results show that the algorithm can successfully be used for
reducing the effects of overloads. Overloads are immedi-
ately suppressed using the updating algorithm and they are
suppressed to a larger extent compared to using (m, k)- and
skip-over scheduling with an established algorithm that up-
dates data items. Moreover, we also present an off-line al-
gorithm to derive the CPU utilization of a system using our
overload handling algorithm.

Future work is to develop an on-line version of the CPU
utilization algorithm where it can be used as an estimator in
a feed-forward control-loop.
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