
A similarity-aware multiversion concurrency control and updating algorithm for
up-to-date snapshots of data∗

Thomas Gustafsson, Hugo Hallqvist, and Jörgen Hansson

Department of Computer Science, Linköping University, Sweden
E-mail: {thogu,jorha}@ida.liu.se

Abstract

Real-time databases handle reading and writing of data
with time constraints on transactions. Normally, data items
in a real-time system have freshness requirements which
need to be guaranteed, and for many transactions it is im-
portant that accessed data items origin from the same sys-
tem state, which can be ensured by letting the transactions
read a snapshot of the database. In this context, a snap-
shot at a specific time represents values on data items that
were stored in the database at this time. Furthermore, simi-
lar values can be considered equal because values within
given bounds do not affect the results from calculations.
Previous work shows that using similarity among values
of data items greatly increases the performance because
there is a possibility to skip calculations. In this paper we
present the MVTO-S concurrency control algorithm, which
supports similarity and multiple versions of data and en-
sures that transactions read an up-to-date snapshot of a
database. Performance evaluations show that MVTO-S in-
creases the performance considerably compared to well-
established single-version concurrency control algorithms.

1. Introduction
The number of data items that are used in real-time

embedded systems has increased over the years. The rea-
sons are the availability of more powerful CPUs and larger
amounts of memory, and more advanced functions in the
software. A data item can have freshness requirements
and a calculation can have a deadline, i.e., there is meta-
information on data, e.g., its freshness and the maximum
time allowed for calculating it. One way to organize data
and its meta-information is to use a database system, where
data is stored centrally, which is in contrast to ad hoc so-
lutions where storage of data is spread out in the software.

∗ This work was funded by ISIS (Information Systems for Industrial
Control and Supervision) and CENIIT (Center for Industrial Informa-
tion Technology) under contract 01.07.

The benefit of having data stored centrally is that the soft-
ware becomes easier to maintain. Using a database it is pos-
sible to determine which data items are used in the soft-
ware and their meta-information. This can be difficult to de-
termine if the data is spread out in the software. Also, the
database system can be extended with algorithms that au-
tomatically maintain data, e.g., the freshness of data. This
is possible since the database system has a global knowl-
edge of all data.

For applications the required precision for input data
might vary and where the maximum allowed tolerated de-
viation between, e.g., two consecutive readings of a data
value, can be specified. If some tolerance is accepted, then
exact values of data items are not important. This can be
formalized by assuming an upper bound on how old the
value of a data item may be. Ramamritham gives a defini-
tion of data freshness using the time domain [16]. Another
way to define data freshness of a data item is to use its val-
ues. Similarity is a formalization by Kuo and Mok on how
to determine if two values of a data item can be considered
equal [11]. A value needs only be recalculated if at least
one of the values it depends on are dissimilar to the val-
ues used deriving the value. Thus, data freshness can be de-
fined in the value domain of data items. Performance evalu-
ations have shown that using similarity can improve the per-
formance of the system [5,6,8,15,21].

In this paper, we use an engine electronic control unit
(EECU) in a car as an example (this is one of our target ap-
plications). Control loop calculations need to base their re-
sults on up-to-date data values. Also, the EECU has a di-
agnosis subsystem that executes with the lowest priority.
Hence, it is likely that the diagnosis task in the worst case
gets interrupted frequently. These interruptions cause the di-
agnosis task to read values from different states of the exter-
nal environment giving untrustworthy diagnosis results. By
a snapshot at timet we mean that the values of data items
in the database are frozen att, and these values are read by
a transaction. By an up-to-date snapshot at timet we mean
a snapshot att where all values are up-to-date, i.e., all data
items that are affected by changes in values of other data

items are updated. Sundell and Tsigas have developed wait-
free snapshot algorithms that guarantee a calculation uses
values on data items from the same state of the system [20].
However, current snapshot algorithms do not consider sim-
ilarity or that values need to be updated when a snapshot
of data items is derived. Single-version concurrency control
algorithms, e.g., high-priority two-phase locking (HP2PL)
and optimistic concurrency control (OCC), need restarts to
guarantee to give a snapshot to a transaction [4].

We have built a real-time database that can be used in the
EECU software. The data in an EECU is derived from sen-
sor readings or from derived data items. This means that
an algorithm deriving snapshots must take into considera-
tion that additional data items, to those read by a transac-
tion, need to be updated to have an up-to-date snapshot.

In this paper we contribute by introducing a new multi-
version timestamp ordering with similarity (MVTO-S) con-
currency control algorithm that ensures transactions see an
up-to-date snapshot of the database. By using multiple ver-
sions of data items it is possible to drastically decrease the
number of conflicts between transactions. In single-version
concurrency control, every conflict results in a restart of a
transaction.

Performance evaluations are conducted using a real-time
database and well-established single-version concurrency
control algorithms: HP2PL and OCC, a similarity-aware
implementation of OCC denoted OCC-S, and three dif-
ferent implementations of MVTO-S (each implementation
uses different techniques to store data versions). The eval-
uations show that the number of transactions committing
within their deadlines compared to single-version concur-
rency control algorithms can significantly increase using
MVTO-S. Transactions read an up-to-date snapshot of the
database whereas this cannot be guaranteed using a single-
version concurrency control.

The outline of the paper is as follows. A data and trans-
action model is given in section 2. The multiversion times-
tamp ordering using similarity (MVTO-S) algorithms and
three implementations of it are described in section 3. Sec-
tion 4 contains performance evaluations. Section 5 contains
related work, and section 6 concludes the paper.

2. Data and Transaction Model

In this section we shortly describe a real-time system,
namely EECU which is our target application, a data model
suited for such a system, a transaction model, and an updat-
ing algorithm.

2.1. Engine Electronic Control Unit

The task of the EECU is to control the engine such that
the fuel consumption and the pollution are low, and that the
engine is not knocking. The EECU has sensors to monitor
the external environment and values are sent to actuators to

Symbol Denotes
dj

i Versionj of data itemi
V (di) Set of all versions ofdi

R(di) Set of data items read when deriving
di

G Data dependency graph
dl(τ) Relative deadline of transactionτ
ts(τ) Unique timestamp of transactionτ
wt(dj

i) Write timestamp of versionj of di

vt
di

Value ofdi at timet
pa(di) Timestamp when latest version ofdi

was affected by anydk ∈ R(di)
fixedintdi

(vt
di

) Interval number ofdi at timet

Table 1. Notation.

respond to changes in it. The software consists of tasks that
are triggered either by crank angles or clock ticks. The tasks
perform calculations based on read data, and store the result
in main memory. Control loop calculations are the most im-
portant calculations; they should finish before a given time
and use data that is fresh at the same time, thus, giving a
snapshot of the external environment. The snapshot should
be from a time that is sufficiently close to the calculation,
e.g., the start time of the calculation.

The engine control software handles real-life entities,
such as air pressure, engine temperature, fuel amount, and
injection times. Changes within known bounds can be con-
sidered negligible to the derived results. For instance, an
engine temperature of 80◦C or 81◦C does not matter for
calculating control variables as the temperatures are close
enough, implying that a value which has been calculated us-
ing 80◦C can also be used when the temperature is 81◦C.

2.2. Data Model

Data items are divided into base itemsB and derived
itemsD, where the base items are given by sensors and the
derived items are derived from base items or other derived
items. The read set of data itemdi is denotedR(di), and
contains all data items that are read when updatingdi. The
relationships among data items are described in a data de-
pendency graphG = (V,E), whereV is the set of all data
items andE is a set of edges where every edge connects a
read set member inR(di) with di. The notation used in this
paper is summarized in table 1.

Further, a data item has one or several versions and the
set of versions of data itemdi is denotedV (di). Each ver-
siondj

i of data itemdi has a write timestampwt(dj
i). A ver-

sion is said to be valid during a time interval starting from its
timestamp until the timestamp of the following version, i.e.,
[wt(dj

i), wt(dj+1
i)]. If dj

i is the newest version it is assumed
to be valid until a newer version is installed. Hence, the time

interval is [wt(dj
i),∞]. A proper version with respect to a

timestampt is the latest version with a write timestamp less
than or equal tot, i.e., a proper version ofdi at t has the fol-
lowing timestamp:max{wt(dj

i)|∀d
j
i ∈ V (di), wt(dj

i) ≤
t}.

As described above, a real-time system can benefit from
handling data items that have similarities. The following
definitions give two ways of reasoning about similar val-
ues. Definitions 2.1 and 2.2 define the freshness of a data
item with respect to one read set member, and the value of a
data item is fresh if the value of the read set member is sim-
ilar to the previously used value.

Definition 2.1 (Data Freshness using Flexible Data Valid-
ity Interval). Each pair(di, dk), wheredi is a derived data
item anddk is an item fromR(di), has a data validity in-
terval, denotedδdi,dk

, that states how much the value ofdk

can change before the value ofdi is affected. Letvt
dk

and

vt′

dk
be values ofdk at timest and t′ respectively. A ver-

sionj of di readingvt
dk

is fresh, with respect to the version

of dk valid at t, for all t′ fulfilling |vt
dk
− vt′

dk
| ≤ δdi,dk

.

The interval is flexible because the value ofdk is the ori-
gin of a data validity interval. The value ofdi is unaffected
by changes indk when they are within the interval. Using
fixed validity intervals, the freshness of a data item with re-
spect to one of its read set members is as follows:

Definition 2.2 (Data Freshness using Fixed Data Validity
Interval). Letfixedintdk

be a function mapping values of a
data itemdk to natural integers, i.e.,fixedintdk

: D → N,
whereD is the domain of values of data itemdk. All val-
ues ofdk mapping to the same interval are similar. Letvt

dk

andvt′

dk
be values ofdk at timest andt′ respectively. A ver-

sion j of di readingvt
dk

is fresh, with respect to the ver-
sion ofdk valid at t, for all t′ fulfilling fixedintdk

(vt
dk

) =
fixedintdk

(vt′

dk
).

One example of the function fixedint is:

fixedintdk
(vt

dk
) =

⌊
vt

dk

64

⌋
, where the value do-

main of data itemdk is divided into intervals of size
64. As long as the value ofdk maps to the same num-
ber as the value ofdk being used to derivedj

i , the value
changes ofdk do not affect the value ofdj

i .
As discussed earlier it is important for many calculations

that all used values are derived from the same state of the ex-
ternal environment. Values that are correlated in time, i.e.,
the values are derived from the same state, are said to be rel-
atively consistent. In this paper we adopt the following view
of relative consistency [10].

Definition 2.3 (Relative Consistency). Let the time inter-
val when versionj of data itemdi is valid be defined as
V I(dj

i) = [start, stop] ⊆ R, andV I(dj
i) = [start,∞] if

dj
i is currently the latest version. Then, a set of versions of

data items, denotedRS, is defined to be relatively consis-
tent if ⋂

{V I(dj
i)|∀d

j
i ∈ RS} 6= ∅. (1)

The definition of relative consistency implies a derived
value fromRS is valid in the interval when all versions in
the setRS are valid.

2.3. Transaction Model and Updating Algorithm

Every data item is associated with a transaction that de-
rives the value of the data item. A transaction updating a
base item is denoted a sensor transaction (ST). A transac-
tion issued by a task is denoted user transaction (UT), and
a transaction issued by the database system to update a data
item is denoted triggered update (TU). Transactions have a
begin of transaction operation (BOT), read operations (sen-
sor transactions do not have any read operations), one write
operation, an end of transaction operation (EOT), a unique
timestamp,ts(τ), a release timert(τ), a priority, and a rel-
ative deadlinedl(τ). The active transaction with the high-
est priority is executing. The timestamp is monotonically
increasing for every new base and user transaction. Trig-
gered updates inherit the timestamp of the UT that gener-
ated the update. The timestamps on transactions relate the
order they were started, i.e., if transactionτ1 started before
τ2 then ts(τ1) < ts(τ2). The most current version of ev-
ery data item has a timestamp, denotedpa, set to the latest
logical time a transaction found the data item being poten-
tially affected by a change in any of its read set members.

The database system has a global knowledge of all data
and its meta-information. This allows for an updating algo-
rithm deciding which data items that need to be updated. A
schedule of data items required to be updated is constructed
as a response to the arrival of a user transaction. There are
two problems to address: (i) which data items should be
scheduled, and (ii) which scheduled updates need to be ex-
ecuted. These problems are addressed by using an updating
scheme, denoted affected updating scheme (AUS), which is
described next.

AUS consists of three steps: AUS_S1, AUS_S2, and
AUS_S3. The first step, AUS_S1, keeps base items up-to-
date. Base item updates are executed periodically.

Step AUS_S2 determines if a change in a data item af-
fects the values on any of its children inG. The freshness of
a childdi is checked by checking its data freshness with re-
spect to one parent—the one being updated. Ifdi is found
to be stale it is marked as affected with the timestamp of the
latest transactionτ producing a value that affected the data
item, i.e.,pa(di) = max(pa(di), ts(τ)).

Step AUS_S3 is an on-demand step, andG is traversed
top-bottom meaning that only those data itemsdi with

pa(di) > 0 are affected and need to be updated. In AUS_S3,
when the latest version of a data itemdi is updated,pa(di)
is set according to the following equation

pa(di) =

{
0 if ts(τ) ≥ pa(di)
pa(di) otherwise,

(2)

whereτ is the transaction updating data itemdi. Note, data
items affected byτ are marked according to step AUS_S2.

The ODTB algorithm is an implementation of step
AUS_S3. The details are covered in [5]. When a UT us-
ing data item di arrives, pregenerated schedules of
all members ofR(di) are checked for a data itemdk

with pa(dk) > 0 and the remainder of the schedule is
copied to a schedule of needed updates. The pregener-
ated schedule ofdm ∈ R(di) contains the depth-first or-
der of data items in the branch originating indm. The
pregenerated schedule is traversed from base items to-
wardsdm. Hence, the checkpa(dk) > 0 finds the first data
item that is stale and its descendants are potentially af-
fected by the stale data item.

Definition 2.4 (Staleness of a data item). Let a value of
data itemdi be derived at timet using values of data items
in R(di). The value ofdi is denotedvt

di
. The valuevt

di
is

stale at timet′ if there exists at least one elementdk in
R(di) such that|vt

dk
−vt′

dk
| > δdi,dk

or fixedintdk
(vt

dk
) 6=

fixedintdk
(vt′

dk
) depending on which definition of fresh-

ness is used.

Proposition 2.1. Letdi be a data item andpa(di) the times-
tamp set in steps AUS_S2 and AUS_S3. If data itemdi is
stale according to definition 2.4 then its timestamp is larger
than zero, i.e.,pa(di) > 0.

Proof. Proof by contradiction. Assume a data itemdi is
stale. Thepa(di) timestamp has been set by AUS_S2 oth-
erwisedi is not stale. Thepa(di) timestamp is determined
by takingpa(di) = max(pa(di), ts(τ1)); further, assume
τ1 is the latest update affectingdi, thus,pa(di) = ts(τ1). If
pa(di) = 0, thendi has been updated by a transactionτ2,
implying ts(τ2) ≥ pa(di) andts(τ2) > ts(τ1). Hence,τ2

arrived afterτ1 since timestamps on transactions increase
monotonically, anddi is up-to-date which is a contradic-
tion. Thus, a stale data itemdi impliespa(di) > 0.

Proposition 2.1 shows that it is possible to find stale data
items, and, thus, ODTB schedules the necessary updates.

3. Multiversion Concurrency Control us-
ing Similarity

In this section we describe the MVTO-S concurrency
control algorithm that stores several versions of each data
item, and makes versions up-to-date before they are read by
transactions.

3.1. The MVTO-S Algorithm

We first discuss the outline of the MVTO-S algorithm in
the context of one UT. Assume one transaction,τ , is about
to start, and its read operations should perceive values as
originating from the same system state. The read operations
must then read correct versions of data items, and these ver-
sions must be up-to-date. Hence, there should be a way of
mapping the readings by read operations inτ to updated
versions.

The mapping from transaction to versions is done via
logical time. It is sufficient to read versions that were valid
whenτ started, becauseτ then perceives versions from the
same state that also are sufficiently close in time to the cal-
culation. A proper version of a data item is the version with
latest timestamp less than or equal tots(τ). If the ODTB
algorithm atomically generates a schedule of updates when
τ starts, then we know which updates are needed to make
data items up-to-date. Due to similarities some of the up-
dates might be possible to skip. MVTO-S is divided into
two sub-algorithms: arriving transaction (AT) that creates a
schedule, and executing transaction (ET) that checks simi-
larities and writes new versions.

The AT sub-algorithm executes when a transactionτ ar-
rives. The steps are:
AT1: A global virtual timestamp gvts is assigned
the timestamp of the oldest active transaction, i.e.,
gvts = min∀i,τi∈activeT {ts(τi)}, whereactiveT is the set
of all active transactions.
AT2: If τ is a UT then a schedule of needed updates is con-
structed atomically, i.e., uninterrupted by other transactions,
by ODTB.

The steps of the ET sub-algorithm are:
ET1: When a transactionτ enters its BOT operation the fol-
lowing steps are taken:
ET1.1: Calculate the write timestamp of versionj of data
itemdi thatτ derives,∀dm ∈ R(di):

wt(dj
i) = max

{
max{wt(dl

k)|∀dl
k ∈ V (dm)}

}
(3)

ET1.2: Find a proper version at timewt(dj
i) and denote it

dn
i . If wt(dj

i) = wt(dn
i), then the update can be skipped

since the version already exists. Otherwise continue with
ET1.3.
ET1.3: Check the relevance of executing transactionτ by
using similarity. The value of read set members ofdj

i is
compared to values of read set members ofdn

i . A read set
member is denoteddm. The check is done as follows us-
ing flexible validity intervals:

∀dm ∈ R(di), |v
wt(dj

i)
dm

− v
wt(dn

i)
dm

| ≤ δdi,dm , (4)

and as follows using fixed validity intervals,∀dm ∈ R(di):

fixedintdm

(
v

wt(dj
i)

dm

)
= fixedintdm

(
v

wt(dn
i)

dm

)
. (5)

If all checks in equations 4 or 5 evaluate to true this means
thatτ can be skipped. Otherwise start executingτ .
ET2: Every read operation ofτ reading a data itemdi reads
a proper versionn of di.
ET3: Handling of write operations ofτ .
ET3.1: If ts(τ) > gvts, then an operation writing data item
di creates a new version if enough space can be accommo-
dated for such a version (otherwise go to step ET3.2). If
ts(τ) = gtvs then no transaction is interrupted and might
need the old version, and, thus,τ overwrites the current ver-
sion of the data item. The timestamp of the new version is
the maximum of the write timestamp of read values, i.e.,
wt(dj

i) = max{wt(dn
k)|∀dn

k ∈ RS}. Also in this step, all
versions older thangvts are pruned from the memory pool
to free memory.
ET3.2: If there is not enough space for a new version, the
transaction with timestamp equal togvts is restarted and
gvts is recalculated. Versions with a write timestamp less
than the newgvts are purged to free memory. In this way
the oldest active transaction gets restarted, and this is also
the transaction with the lowest priority (note that transac-
tions are executed according to priority). Thus, MVTO-S
is aware of transaction priorities and restarts low priority
transactions before high priority transactions.

Next an example is given on how the MVTO-S algorithm
works.
Example 3.1: Consider that an arriving UT,τ1, using data
item d5 is assigned timestamp 8. Step AT1 assigns 8 to
gvts. Step AT2 creates a schedule of needed updates, e.g.,
[τd1 , τd3 , τd2 , τd4], whered5 directly depends ond3 andd4

and indirectly ond1 andd2. Assume two STs arrive updat-
ing base itemsd8 (thatd1 reads) with timestamp 9 andd9

(thatd2 reads) with timestamp 10. Step ET3.1 creates new
versions ofd8 andd9 since both STs had larger timestamps
thangvts.

Next arrivesτ2 with timestamp 11 using data itemd6.
It has higher priority thanτ1 since it is not yet finished.
Thus,gvts is 8, and step AT2 creates the following sched-
ule [τd2 , τd4]. The TUsτd2 andτd4 are executed with times-
tamp 11. In step ET1.1 ofτd2 , the write timestamp of a pos-
sibly new version ofd2 is calculated by looking at read set
members ofd2. In this case it is 10 since a ST with times-
tamp 10 updatedd9. Step ET1.2 finds a proper version of
d2, say with timestamp 5. In step ET1.3 a similarity check
is done for each read set member. Hence, a similarity check
is done between a version ofd9 with timestamp 5 and the
version with timestamp 10. If these two versions are simi-
lar, then transactionτd2 can be skipped, and transactionτd4

would read the version ofd2 with timestamp 5. �
Next we give theorems and proofs on the behavior of

MVTO-S.

Lemma 3.1. Using MVTO-S, a proper version of a data
itemdi at timet = ts(τ) represents an up-to-date value.

Proof. Assumedn
i is a proper version but it is stale. Now

assume step ET3.1 of a TU installs a version since an up-
date was scheduled in step AT2 which schedules all
needed updates. Denote the new versiondn+1

i . The times-
tamps are ordered as followswt(dn

i) < wt(dn+1
i) ≤ t

since by step ET1.1 and ET2 the write timestamp of
dn+1

i is the maximum of all accessed read set mem-
bers but limited byt, i.e., ∀dm ∈ R(di), wt(dn+1

i) =

max
{

max{wt(dj
k)|∀dj

k ∈ V (dm), wt(dj
k) ≤ t}

}
≤ t,

andwt(dn
i) < wt(dn+1

i) sincedn
i was taken for a proper

version and is stale. Versiondn+1
i is an up-to-date proper

version, and it is valid at timet.
When versions are removed from the pool by step

ET3.2, they are removed according to earliest times-
tamp first. Thus, if versiondn+1

i is removed, versiondn
i

has been removed beforedn+1
i and therefore a proper ver-

siondn+2
i of data itemdi at timet is up-to-date.

Theorem 3.2. MVTO-S ensures that a transactionτ reads
up-to-date versions of read set members (ET2) such that the
start time ofτ is in the time intervalI =

⋂
{V I(dj

i)|∀d
j
i ∈

RS}.

Proof. We only consider transactions that commit. An in-
terval I is built iteratively for each read operation. We
have that for any versionj of data itemdi, V I(dj

i) =
[wt(dj

i), wt(dj+1
i)]. A proper versionn has by definition

wt(dn
i) ≤ ts(τ). For every read versiondn

i (ET2) it holds
thatwt(dn

i) ≤ ts(τ) since by lemma 3.1 there cannot ex-
ist a not yet updated version in the interval[wt(dn

i), ts(τ)].
We must show thatts(τ) < wt(dn+1

i) for all read ver-
sionsdn

i , i.e., an up-to-date proper version is alway chosen.
Since a version to read is chosen such thatwt(dn

i) ≤ ts(τ)
andwt(dn+1

i) > wt(dn
i) as step ET1.2 forces unique times-

tamps on versions, thenwt(dn+1
i) > ts(τ) otherwisedn+1

i

would have been chosen in step ET2. Thus, we have shown
that read operations executed byτ choose versions such that
they are relative consistent (definition 2.3) andts(τ) is in-
cluded in the interval where these versions are valid.

The effect of theorem 3.2 is that MVTO-S guarantees
that transactions read an up-to-date snapshot of the database
that was valid when the transaction started. This is an im-
portant property of the algorithm. Some transactions need
to read values of data items that are correlated in time, e.g.,
diagnosis transactions. Next we describe three versions of
MVTO-S that differ in the amount of meta-data every ver-
sion has.

3.2. MVTO-SUV

This implementation is denoted use values (UV), be-
cause each version stored in the database also holds the val-
ues of the read-set members. Hence, the relevance check
in step ET1.3 of MVTO-S is easy to implement. First, the

proper version needs to be found, then the value of each read
set member in the proper version is compared to the corre-
sponding value a new version would read. If all compar-
isons involve similar values, the new version is not needed
and the update can be skipped.

3.3. MVTO-SUP

This implementation is denoted use pool (UP), because
finding the values used for deriving a version might be
found in the memory pool. The proper version needs to be
found (step ET1.2), and based on its timestamp the read set
members might be found in the memory pool. If any of these
versions cannot be found, it is impossible to succeed in step
ET1.3. If all read set member versions can be found, and
values are similar, then the update can be skipped.

The MVTO-SUP is an implementation where the old sim-
ilar version is duplicated but with a new timestamp calcu-
lated from the read set members. The reason is that in step
ET3.1, old versions can be removed, but installing a new
version makes it more likely to find it in the relevance check
of step ET1.

3.4. MVTO-SCRC

Clearly we want a combination of MVTO-SUV , where
values of read set members can always be found, and
MVTO-SUP, where each version has less memory overhead
than using MVTO-SUV . Thus, the same information stored
in the values of read set members in MVTO-SUV versions
should be stored in less space.

If values are represented as fixed validity intervals, a
value can uniquely be represented as a number given by the
fixedint function. Since similar values are always mapped
to the same number, the read set member values in MVTO-
SUV could instead be interval numbers. Let us denote a num-
ber from thefixedint function as an interval number. It is
possible to combine the interval numbers of read set mem-
bers into one single value by using a checksum or CRC.
We have done an investigation on how robust checksums
and CRCs are in mapping a few numbers to a unique num-
ber [4]. The CRC algorithm (a CRC-32 algorithm) produces
unique values in our evaluations, meaning that two equal
CRCs have similar read set members, and, thus, the two ver-
sions are similar.

In summary, MVTO-SCRC works in the following way.
The proper version of a data item is fetched. This version
has a CRC attached to it which is the CRC of the interval
numbers of its read set members. A relevance check of an
update is done, and interval numbers on all read set mem-
bers are derived and a CRC is calculated. If the CRC of the
proper version is the same as for the update, then these two
versions would use similar read set members. Thus, the up-
date can be skipped. If the CRCs are unequal then some
read set members are dissimilar and the update is needed.

3.5. Memory Consumption

Versions are allocated from a memory pool with a pre-
defined size. Assume the following sizes: four bytes for a
pointer, four bytes for a data value, two bytes for the times-
tamp, four bytes for a CRC, and a data item has on average
three parents. The storage requirements for a memory pool
holding 200 versions are200× (4 + 2 + 3× 4 + 4) = 4400
bytes for MVTO-SUV , 2000 bytes for MVTO-SUP, and 2800
bytes for MVTO-SCRC. We now compare these results to
the HP2PL algorithm, where every data item need to have a
semaphore. InµC/OS-II it takes 10 bytes [12]. For 150 data
items, the storage requirements are150 × (10 + 2 + 4) =
2400 bytes. Hence, depending on the needed pool size the
MVTO-S implementations are not using considerably more
memory than other concurrency control algorithms.

4. Performance Evaluations
The performance evaluations are conducted using a

database system running on a real-time operating sys-
tem. The database can be configured for using one up-
dating algorithm and one concurrency control algorithm
from a range of updating algorithms and concurrency con-
trol algorithms.1 The database system can, out of the
box, be compiled together with the engine control soft-
ware.

The results show that using implementations of MVTO-
S greatly improves performance and the number of transac-
tions that commit within their deadlines, compared to using
single version concurrency control algorithms.

Five tasks are executing periodically, and they invoke
UTs that execute with the same priority as the task. The
tasks are prioritized according to rate monotonic (RM),
where a task gets a priority proportional to the inverse of
its frequency. The base period times are: 60 ms, 120 ms,
250 ms, 500 ms, and 1000 ms. These period times are mul-
tiplied with the ratio32/arrival_rate, where 32 is the
number of invoked tasks using the base period times, and
arrival_rate is the arrival rate of UTs. The data item a UT
derives is randomly determined by taking a number from
the distribution U(0,|D|). In the experiments, a database
with 45 base items and 105 derived items has been used.
The graph is constructed by setting the following param-
eters: cardinality of the read set (|R(di)|), ratio of R(di)
being base items, and ratio being derived items with only
base item parents. The cardinality ofR(di) is set randomly
for eachdi in the interval 1–8, and 30% of these are base
items, 60% are derived items with only base item parents,
and the remaining 10% are other derived items. These fig-
ures are rounded to nearest integer. The number of derived

1 The database system is running on a simplistic real-time operating sys-
temµC/OS-II [12] that runs in a DOS command window in Windows
2000 Professional with servicepack 4. The computer is an IBM T23
with 512 Mb of RAM and a Pentium 3 running with 1.1 GHz.

items with only base item parents is set to 30% of the to-
tal number of derived items. We believe a database of 150
data items represents the storage requirements of a hotspot
of an embedded system, e.g., in the EECU 128 data items
are used to represent the external environment and actua-
tor signals. Further, we believe the data dependency graph
G is broad (in contrast to deep), and that a data item does
not depend on many other data items.

Every sensor transaction executes for 1 ms and every
user transaction and triggered update executes for a time re-
peatedly taken from a normal distribution with mean 5 and
standard deviation 3 until it is within[0, 10]. A simulation
runs for 150 s with a specified arrival rate. Every simula-
tion is executed 5 times and the showed results are the aver-
ages from these 5 runs. The user transactions are not started
if they have passed their deadlines, but if a transaction gets
started it executes until it is finished.

Every write operation creating the most recent version
is adding a value from the distribution U(0,350) to the
previous most recent version. The data validity intervals
are set to 400 for all data items, i.e.,δdi,dk

= 400, and

fixedint(vt
dk

) =
⌊

vt
dk

400

⌋
. The creation of versions by the

multiversion concurrency control algorithm involves taking
values of the two closest versions, one older and one newer,
and then randomly derive a value that is between the ver-
sions. The memory pool for storing versions holds 300 ver-
sions where 150 versions are reserved for the current value
of each data item. Base item updates have a priority higher
than UTs and execute on average every 100 ms, i.e., the pe-
riod time is 50 ms and for every base item there is a 50%
chance that the item is updated. The updating algorithm
used is the ODTB algorithm except in the OD-HP2PL sim-
ulation.

Next we describe the concurrency control algorithms
that are used in the evaluations. MVTO is MVTO-S where
step ET1.3 is not used, i.e., no relevance check is done.
OCC-S is OCC where the validation phase has been ex-
tended with a check whether the conflict involves similar
values or not [4]. The RCR versions of OCC and OCC-S
are restarting transactions until they are able to read a snap-
shot of the database [4]. The on-demand updating and using
HP2PL for concurrency control (OD-HP2PL) algorithm [1]
triggers updates based on time instead of similarity, and in
our test platform setup the allowed age on data items is set
to 400 ms which is a good estimate on how long time a sen-
sor value lives, since the average period time of sensors are
100 ms and it requires, on average, 3 updates to change out-
side a validity bound giving that values live 300-400 ms.

4.1. Experiment 1: Committed User Transactions

In this experiment, the number of committed user trans-
actions within their deadlines is evaluated. The no concur-

rency control scheme is used as a baseline. Figure 1 shows
the performance of the algorithms.

First the benefit of using similarity can be seen in fig-
ure 1(a) studying the difference in performance between
HP2PL and OD-HP2PL. In figure 1(b), MVTO-SUV out-
performs the single-version concurrency control algorithms
at all arrival rates. The difference is most notable at higher
loads where MVTO-SUV performs significantly better than
HP2PL, OCC, and NOCC. MVTO-SUP cannot perform as
good as MVTO-SUV because less transactions are skipped
in step ET1.3. MVTO-SUP performs better than single-
version algorithms at high arrival rates, but for small arrival
rates, OCC-S, HP2PL, and OCC perform better.

Using multiple versions there are in total fewer restarts
of transactions, i.e., less unnecessary work of transactions
is done, compared to algorithms using restarts as resolving
conflicts. Moreover, more transactions can be skipped since
updates do not overwrite each others results because old val-
ues are stored in new versions. A transaction that derives an
old version of a data item can benefit from versions from al-
most the same point in time that might exist in the database,
because a relevance check checks against such a version
and not the most recent version as in single-version con-
currency control algorithms. Table 2 shows the percentage
of the total number of UTs and TUs that restart and can be
skipped. The multiversion timestamp ordering algorithms
have considerably fewer restarts than single-version algo-
rithms. Every restart for MVTO, MVTO-SUV , MVTO-SUP,
and MVTO-SCRC is due to a full memory pool, whereas for
single-version algorithms restarts are due to conflicts among
concurrent transactions. The multiversion algorithms that
use step ET1.3 are successful in skipping transactions.

In figure 1(a), we see that using OCC-S gives that the
same number of UTs can commit as for NOCC. However,
NOCC cannot guarantee the consistency of results produced
by transactions since transactions read and write uncontrol-
lably to the database, but OCC-S produces consistent re-
sults. Table 2 shows that using similarity in OCC-S com-
pared to using no similarity as in OCC, the percentage of
restarts drops from 9.03% (OCC) to 0.96% (OCC-S). This
indicates that conflicts among transactions often involve
similar values since many of these conflicts cause restarts
in OCC but not in OCC-S. Thus, a considerable amount of
conflicts that do occur do not need any concurrency con-
trol. This is in line with observations made by Graham [3].

The implementations of MVTO-S guarantee that a trans-
action reads an up-to-date snapshot of the database. The
single-version concurrency control algorithms can guaran-
tee this by restarting transactions until they read data items
that are from the same external state. These algorithms are
prefixed with RCR for relative consistency restarts. Fig-
ure 2 shows the performance using restarts to enforce rela-
tively consistent read sets. The MVTO-S implementations

15 20 25 30 35 40 45 50 55 60
500

1000

1500

2000

2500

3000

3500

4000

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

HP2PL
NOCC
OCC
OCC−S
OD−HP2PL

(a) Single-version algorithms.

15 20 25 30 35 40 45 50 55 60
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO
MVTO−SCRC

MVTO−SUP

MVTO−SUV

NOCC
OCC

(b) Multiversion algorithms.

Figure 1. Experiment 1: Performance evaluations of single-version and multiversion concurrency
control algorithms.

Alg. Restarts Skipped transactions
HP2PL 9.32% 16.2%
OD-HP2PL 9.46% 0%
OCC 9.03% 16.0%
OCC-S 0.96% 15.0%
NOCC 0% 14.5%
MVTO 0.24% 7.03%
MVTO-SUV 0.039% 55.7%
MVTO-SUP 0.15% 38.5%
MVTO-SCRC 0.23% 39.6%

Table 2. Experiment 1: Percentage of total
number of UTs and TUs that restarts, and per-
centage of skipped transactions.

are performing better than the single-version algorithms
with restarts since values needed for deriving snapshots for
transactions are stored in memory, therefore new updates to
data items cannot destroy a snapshot for a transaction. Us-
ing a RCR algorithm, an update to a data item can be read
by a preempted transaction which may destroy the deriva-
tion of a snapshot.

4.2. Experiment 2: Memory Pool Sizes

In this experiment, the number of committed user trans-
actions within their deadlines is investigated for different
sizes of the memory pool holding versions. The memory
pool size affects the performance of the system since trans-
actions are restarted only when the memory pool is full. The
smaller the memory pool the higher the probability that it

15 20 25 30 35 40 45 50 55 60
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO
MVTO−SCRC

MVTO−SUP

MVTO−SUV

RCR−NOCC
RCR−OCC
RCR−OCC−S

Figure 2. Experiment 1: Performance of rela-
tive consistency restarts algorithms.

is full. Figure 3 shows the performance for different pool
sizes, and the number after the name of the algorithm is the
pool size.

The plots show that all implementations of MVTO-S
suffer when using smaller pool sizes since the number of
restarts is increasing. However, MVTO-SUP suffers the most
of a small pool size since the ability to check similarity de-
pends on how often old versions are purged from the pool,
and they are purged more often when the pool size is small.

MVTO-SCRC has worse performance than MVTO-SUV

because values on data items are, in this experiment, always

20 25 30 35 40 45 50 55 60
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO−SCRC170
MVTO−SCRC300
MVTO−SUP170
MVTO−SUP300
MVTO−SUV170
MVTO−SUV300

Figure 3. Experiment 2: Investigation on how
the pool size affects performance.

increasing and fixed validity intervals are used. For fixed in-
tervals, a new value on a data item might be located some-
where inside a new interval, meaning that, on average, a
smaller number of updates is required to land outside an
interval compared to flexible intervals where a new value
is the origin of a new interval. Thus, fewer updates can be
skipped, which affects the performance of the system. Fig-
ure 4 shows the performance of the implementations using
fixed intervals. We can see that MVTO-SCRC has the same
performance as MVTO-SUV , and they perform better than
all the other algorithms. This means that when fixed validity
intervals are used then MVTO-SCRC is as good as MVTO-
SUV .

5. Related Work

In this section we discuss related work on concurrency
control algorithms for real-time databases in embedded sys-
tems [2,7,9,13,14,17–19,21].

Two-phase locking and optimistic concurrency control
have been evaluated for real-time systems [2, 7, 9]. We
have found that HP2PL and OCC give similar performance
when they are executed in a database system on a simplistic
real-time operating system, where transactions execute with
fixed unchangeable priority, and it is impossible to restart a
currently executing transaction. To the best of our knowl-
edge, no evaluation of the performance of HP2PL and OCC
on such system has been documented elsewhere.

Multiversion concurrency control algorithms have also
been evaluated [17–19]. It has been found that 2PL per-
forms better than MVTO and the single-version timestamp
ordering concurrency control algorithm [19]. Song and Liu
evaluate the 2PL and OCC multiversion algorithms in a hard
real-time system [18]. In their work, a set of data items is

15 20 25 30 35 40 45 50 55 60
1000

1500

2000

2500

3000

3500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO−SCRC

MVTO−SUP

MVTO−SUV

NOCC
OCC
RCR−OCC

Figure 4. Experiment 2: Performance using
fixed validity intervals as data freshness.

said to be temporally consistent when they are absolute and
relative consistent. The evaluation results show that tempo-
ral consistency is highly affected by the transaction con-
flict patterns and also, OCC is poor in maintaining tempo-
ral consistency in systems consisting of periodic activities.
The implementations of MVTO-S are free of restarts un-
til the memory pool gets full, and, thus, the conflict patterns
should not affect these algorithms at all or to a much smaller
extent compared to algorithms using restarts for conflict res-
olution.

The proposed multiversion concurrency control al-
gorithms, MVTO-SUV , MVTO-SUP, and MVTO-SCRC

use similarity. To the best of our knowledge, using mul-
tiversion concurrency control and similarity is a novel
approach. The main reason to use multiversion concur-
rency control is to be able to guarantee relative consistency.
This can also be guaranteed by using a snapshot tech-
nique using wait-free locks [20], but these algorithms
are not using similarity and, thus, cannot skip transac-
tions.

6. Conclusions and Future Work

Real-time databases have many applications, and for
some systems, e.g., diagnosis and control applications in ve-
hicular systems, it is important to have up-to-date snapshots
of data. Further, the exact values of data items may be unim-
portant and, thus, small deviations in values do not require
updates on dependent data items.

Our contribution is a multiversion concurrency control
algorithm (MVTO-S) that gives an up-to-date snapshot of
the database to transactions. The algorithm uses similar-
ity, which gives conditions for skipping unnecessary cal-
culations. Using a history of versions allows more trans-

actions to be skipped compared to single-version concur-
rency control algorithms without sacrificing data quality.
Furthermore, the number of restarts of transactions can be
reduced since conflicts among concurrent transactions are
not resolved using restarts, but are instead avoided by stor-
ing new versions of data items. Thus, the overall perfor-
mance of the system is greatly improved using implemen-
tations of MVTO-S compared to single-version algorithms.
Moreover, transactions are guaranteed to read an up-to-date
snapshot of the database using MVTO-S, and this is not
guaranteed using single-version concurrency control algo-
rithms. Hence, using MVTO-S the performance is increased
and valid snapshots are given to transactions.

We have implemented three variants of the MVTO-S al-
gorithm. In memory-constrained systems, MVTO-SUP and
MVTO-SCRC are the best choices since the memory over-
head for each version of a data item is small. MVTO-SUV

has the best performance, but its memory requirement is
also larger than MVTO-SUP and MVTO-SCRC.

The performance evaluations show that many of the con-
flicts between concurrent transactions involve similar val-
ues, i.e., using optimistic concurrency control with similar-
ity (OCC-S) give similar performance as not using concur-
rency control.

For future work, we plan to investigate quality of data
and how overloads can be handled by changing the qual-
ity of data transactions perceive.

References
[1] Q. N. Ahmed and S. V. Vbrsky. Triggered updates for tem-

poral consistency in real-time databases.Real-Time Systems,
19:209–243, 2000.

[2] A. Chiu, B. Kao, and K.-Y. Lam. Comparing two-phase lock-
ing and optimistic concurrency control protocols in multipro-
cessor real-time databases. InProceedings of the Joint Work-
shop on Parallel and Distributed Real-Time Systems, 1997.

[3] M. H. Graham. How to get serializability for real-time trans-
actions without having to pay for it. InProceedings of the
Real-Time Systems Symposium 1993, pages 56–65, 1993.

[4] T. Gustafsson. Maintaining data consistency in embedded
databases for vehicular systems. Linköping Studies in Sci-
ence and Technology Thesis No. 1138. Linköping Univer-
sity. ISBN 91-85297-02-X.

[5] T. Gustafsson and J. Hansson. Data management in real-time
systems: a case of on-demand updates in vehicle control sys-
tems. InProceedings of the 10th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS’04),
pages 182–191. IEEE Computer Society Press, 2004.

[6] T. Gustafsson and J. Hansson. Dynamic on-demand updat-
ing of data in real-time database systems. InProceedings
of the 2004 ACM symposium on Applied computing, pages
846–853. ACM Press, 2004.

[7] J. R. Haritsa, M. J. Carey, and M. Livny. On being opti-
mistic about real-time constraints. InProceedings of the 9th

ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 331–343. ACM Press, 1990.

[8] S.-J. Ho, T.-W. Kuo, and A. K. Mok. Similarity-based load
adjustment for real-time data-intensive applications. InPro-
ceedings of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97), pages 144–154. IEEE Computer Society Press,
1997.

[9] J. Huang, J. A. Stankovic, and K. Ramamritham. Experi-
mental evaluation of real-time optimistic concurrency con-
trol schemes. InProceedings of the 17th International Con-
ference on Very Large Data Bases, pages 35–46, September
1991.

[10] B. Kao, K.-Y. Lam, B. Adelberg, R. Cheng, and T. Lee.
Maintaining temporal consistency of discrete objects in soft
real-time database systems.IEEE Transactions on Comput-
ers, 52(3):373–389, March 2003.

[11] T.-W. Kuo and A. K. Mok. Real-time data semantics and
similarity-based concurrency control.IEEE Transactions on
Computers, 49(11):1241–1254, November 2000.

[12] J. J. Labrosse.MicroC/OS-II The Real-Time Kernel Second
Edition. CMPBooks, 2002.

[13] K.-Y. Lam, T.-W. Kuo, B. Kao, T. S. Lee, and R. Cheng.
Evaluation of concurrency control strategies for mixed soft
real-time database systems.Information Systems, 27:123–
149, 2002.

[14] K.-Y. Lam and W.-C. Yau. On using similarity for concur-
rency control in real-time database systems.The Journal of
Systems and Software, (43):223–232, 2000.

[15] R. Majumdar, K. Ramamritham, R. Banavar, and
K. Moudgalya. Disseminating dynamic data with qos
guarantee in a wide area network: A practical control theo-
retic approach. InProceedings of the 10th IEEE Real-Time
and Embedded Technology and Applications Synmpo-
sium (RTAS’04), pages 510–517. IEEE Computer Society
Press, May 2004.

[16] K. Ramamritham. Real-time databases.Distributed and Par-
allel Databases, 1(2):199–226, 1993.

[17] L. Shu and M. Young. Versioning concurrency control for
hard real-time systems.The Journal of Systems and Soft-
ware, (63):201–218, 2002.

[18] X. Song and J. W. Liu. Maintaining temporal consistency:
Pessimistic vs. optimistic concurrency control.IEEE Trans-
actions on Knowledge and Data Engineering, 7(5):786–796,
1995.

[19] R. Sun and G. Thomas. Performance results on multiversion
timestamp concurrency control with predeclared writesets.
In Proceedings of the sixth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 177–
184. ACM Press, 1987.

[20] H. Sundell and P. Tsigas. Simple wait-free snapshots for real-
time systems with sporadic tasks. InProceedings of the 10th
International Conference on Real-Time and Embedded Com-
puting Systems and Applicatins (RTCSA04), 2004.

[21] H. F. Wedde, S. Böhm, and W. Freund. Adaptive concur-
rency control in distributed real-time systems. Technical re-
port, University of Dortmund, Lehrstuhl Informatik 3, 2000.

