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Abstract— This paper proposes a scheme for bandwidth allo-
cation in wireless ad hoc networks. The Quality of Service (QoS)
levels for each end-to-end flow are expressed using resource-utility
functions, and our algorithms aim to maximise the aggregated
utility of the flows. The scheme differentiates between applica-
tions with flexible resource requirements and rigid (real-time)
requirements. As an abstract notion of resource, we use maximal
cliques of mutual interfering links.

Using concave piece-wise linear utility functions we present a
linear programming (LP) formulation of the problem that can
serve as an optimal though unrealistic solution. Then we replace
this centralised approach with a distributed low complexity
solution. A key concept, borrowed from the dual of the optimal
allocation problem, is the shadow price of a resource.

The contributions of the paper are twofold: (1) a distributed
algorithm that allocates the bandwidth based on bids that are
calculated using the shadow price of the resources and the flow’s
utility function, (2) a utility-aware on-demand ”shortest” path
routing algorithm in which the shadow prices are used a natural
distance metric.

We compare the performance of the distributed allocation
scheme with the centralised, optimal linear programming solu-
tion. We also compare with a non-utility-based QoS allocation
scheme, that uses hop-based shortest path routing followed by
highest possible bandwidth accommodation of the flow.

I. INTRODUCTION

Mobile ad-hoc networks are formed by wireless nodes that
move freely and have no fixed infrastructure. Each node in the
network may act as a router for other nodes, and flows follow
a multi-hop path from a source to a destination.

The infrastructure-less flexibility makes ad-hoc networks a
strong complement to cellular networks, making them ideal
for many novel scenarios, including cooperative information
sharing, defence applications and disaster management. Mo-
bile ad hoc networks will aim to provide a wide range of
services in which soft real-time (multimedia), and high priority
critical data, should seamlessly integrate. These could further
be integrated into core communication networks and Internet.
As society becomes dependable on provision of such services
the availability of these services under overloads becomes a
critical issue.
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Wireless networks will always be more resource constrained
compared to their wire-line counterparts. In comparison with
wire-line networks, wireless multi-hop networks present two
fundamental differences. The first major issue is the shared
channel with spatial reuse capabilities. Neighbouring nodes
could interfere and cannot transmit independently. The second
major difference is the mobility of the nodes and its effect on
the established paths. This means that paths are constantly
created and destroyed (requiring flow rerouting in the latter
case). Network resources such as bandwidth and power have
to be dealt with in fundamentally different ways compared to
the wireline or centralised cellular networks. Resource avail-
ability can quickly change, and therefore continuous resource
reallocation is needed to provide graceful degradation during
overloads.

An ad hoc network that is designed for adaptive and auto-
nomic reaction to failures and overloads should take advantage
of the flexibility in the nature of a service that it provides. If
every service is associated with multiple levels of acceptable
quality, the current flows in the network can be regularly
adapted to achieve optimised quality of service (QoS) in
the light of resource changes. Our paper presents resource
allocation algorithms that provide differentiation among flows
and enforce resource assurance for each flow (subject to
system-wide optimisation).

Our approach is based on utility functions that can be
used to capture the value assigned by the client to a flow’s
different resource allocation levels. This allows for flexible
allocations, without the use of online negotiations. Utility
functions provide the means for the network to revise its
allocation decisions on the fly and optimise resource usage,
for instance, by choosing an allocation that maximises the
aggregated utility of the flows in the network [1], [2]. This
has been shown to be a powerful mechanism for optimising
resource allocation instantaneously, but also in a time-aware
context – i.e. over the age of a given flow [2]. Reallocations
take account of the nature of a flow in terms of flexibility.
Best-effort connections are considered to tolerate any resource
reallocation whereas real-time flows might require a fixed
allocation, otherwise the so far accrued utility will be lost.

In order to deal with the problem of shared resources we
use the concept clique-resource [3], [4], that allows gathering
mutually interfering links in partially overlapping maximal
cliques. These deterministically account for bandwidth capac-



ity and interference.
The contributions of the paper are as follows. We present a

combined routing, admission control and resource allocation
scheme that aims to maximise the aggregated utility over flows
and time. For such a scheme to be feasible in a distributed
ad hoc setting we use the concept of “shadow price” for a
resource, based on the dual of the linear programming (LP)
formulation of the problem. Two novel, utility-based algo-
rithms are presented. The first one is a distributed QoS-aware
algorithm that allocates bandwidth, at each clique-resource on
the end-to-end path of the flow, using only local and flow-
related information. Secondly, we present a complementary
routing algorithm for choosing the most advantageous path
for the flow.

For experimental evaluation we have extended a subset of
the J-sim network simulator developed at Ohio State Univer-
sity [5]. We compare the performance of the distributed allo-
cation algorithms with a baseline allocation scheme (shortest
path first routing, followed by maximum possible bandwidth
allocation). We further study the effects of mobility at dif-
ferent speeds. To provide a comparison with the best possible
solution, we also formulate the utility-based optimal allocation
problem as an LP problem. Such an approach is infeasible for
an online allocation problem, since it needs global knowledge
and is too computationally demanding. However, it provides
an excellent measure of the upper bound to the performance.
Our distributed algorithms are shown to provide an accrued
aggregate utility that is merely 10% lower than the optimum
achievable by the (centralised) LP solution.

The paper is organised as follows: Section II discusses
related work and Section III presents utility functions, network
model and the LP formulation of the problem. Our distributed
utility-based routing and allocation scheme is described in
Section IV. Section V presents the experimental results and
Section VI concludes the paper and outlines future work.

II. RELATED WORK

Work in resource allocation for ad-hoc wireless networks
has been addressed either at the MAC-level, as an extension
to routing, or at an optimisation policy level.

For ad hoc networks bandwidth availability can be either
precomputed [3], [4], [6] or measured at MAC level [3]. Xue
and Ganz [6] compute the available bandwidth at a node as
the channel bandwidth minus the bandwidth consumed by
the traffic at all neighbours. While easy to implement, this
is too pessimistic, and better models can be created when
interference structures are built based on link interference [3],
[4]. In this work, we use the contention model based on
maximal cliques of contending links [3].

If no global optimisation is sought, resource allocation
can be attempted independently at every node by appropriate
MAC layer design. Luo et al [4] present a packet schedul-
ing approach to ensure a minimum weighted-fair scheduling
combined with maximising spatial reuse of channel.

Routing is an important component in multihop wireless
networks, and resource allocation/reservation is has been

treated as an extension of the routing protocol. For instance,
Chen and Nahrstedt [7] propose an on-demand distributed
routing algorithm that aims to avoid flooding the network.
They consider delay-constrained least cost and bandwidth
constrained least cost problems. The feature of the “bandwidth
routing” [8] protocol is that link-layer scheduling is directly
considered in the protocol. To calculate available bandwidth,
both free bandwidth must be known, and a schedule of the
free TDMA slots must be constructed.

QoS routing however, is usually not directly aimed at
optimal resource allocation but at finding the shortest path
that satisfies at least some minimum QoS requirements, or the
path that gives the largest margins for a QoS constraint. Karaki
et al provide a nice survey on QoS routing problems [9]. In
this work however, the routing algorithm is part of the global
allocation optimisation scheme.

A seminal work concerning optimal resource allocation and
usage of quantised utility functions is presented by Lee et
al [1]. Among others, the authors propose an algorithm that
uses the convex hull of the utility functions, and yields good
results despite computational simplicity. In our work we adopt
the same discrete utility function model.

A (re)allocation optimisation scheme for single-hop cellular
networks called TARA, has been proposed in earlier work [10],
[2]. By taking into consideration the flexibility of different
application types to resource reallocations TARA can consis-
tently treat both real-time and best effort connections.

Several other works describe utility-based approaches to
resource allocation in multihop wireless networks [11], [12],
[13]. Liao et al [12] provide a utility fair max-min allocation
for wireless networks. A distributed allocation scheme is used,
and periodical reallocations keep the consistency. We believe
however, that aiming for equal utility can be counterproductive
during overloads, as it will degrade all flows to a lowest
acceptable level.

A system that addresses resource allocation in a wire-
less/wireline access network is the “TIMELY Architecture”
proposed by Bharghavan et al [13]. Maximising the revenue
based on max-min fairness is one of the criteria used during
allocation and adaptation. They employ a 4-tuple revenue
model (revenue function, termination credit, adaptation credit
and an admission fee), where the same instance of the 4-tuple
is used globally. While simplifying allocation, this prevents an
accurate differentiation between flows.

Xue, Li and Nahrstedt [11], address a problem that is very
similar to ours. They too use concave utility functions that
represent user’s utility and aim to maximise the aggregated
utility of the flows in the network. Both solutions use “shadow
prices” of bandwidth resources on the end-to-end path of
the flow for steering allocation. However, there are some
fundamental differences between the two approaches. Xue
et al use non-linear functions while we use piecewise linear
ones. Their work builds upon a previous problem formulation
by Kelly [14], for wireline networks. The allocation problem
is split in two, where a) the network adapts to the rate of
flows by changing resource price, b) the flow adapts to the



new price by modifying the transmission rate. The iterative
algorithm continuously changes the flow’s allocation until it
reaches an optimal value, and this requires several hundreds
of iterations. While this works for long-life flexible flows,
it will be unacceptable for inflexible flows needing resource
guarantees. In addition, due to mobility and arrivals of new
flows, the system could spend little time in an optimal state
and flows would suffer frequent oscillations in their allocation.

In our allocation scheme, (re)allocation is considered pe-
riodically, and also takes into consideration the effects of a
reallocation on the flow’s accrued utility. At every decision
pont we aim to allocate close to the optimum in one try. Then
this allocation will be kept unchanged for at least one period.

In an extension, Xue et al [3] consider a mobile environment
and use AODV as a routing algorithm. AODV routes over
the shortest path (number of hops) and this might overload
inner network paths while resources will go unused towards
the marginal areas. Therefore, we use the price-based approach
also for routing decisions.

III. PROBLEM FORMULATION

In this section we first layout the network model, followed
by a LP formulation of the allocation problem. We then go
to present the notion of shadow price and some properties of
the optimal solution that will be used when constructing the
distributed algorithm.

A. Network model

We consider a wireless ad-hoc network with n nodes.
Nodes a and b that are in transmission range of each other
are connected by a wireless link, lab. Nodes communicate
with each other by means of multi-hop bidirectional end-
to-end flows (fi) between an originator (source) node and a
destination node.

In ad hoc wireless networks, we have a location-dependent
contention between the transmissions on the wireless links.
Transmissions over a link can be bidirectional, thus two links
contend with each other if one of the end-nodes of a link
is within the transmission range of an end-node of the other
link [11], [4]. A link contention graph can be constructed,
where vertices represent links, and an edge connects two
vertices if the corresponding links contend with each other.
Each maximal clique1 in such a graph represents a distinct
maximal set of mutual contending links.

A necessary condition for a feasible bandwidth allocation
is that for each maximal clique the bandwidth allocated over
all links forming the clique is less than or equal to channel
capacity. The channel capacity gives only an upper bound, as
in practice, the choice of transmission scheduling algorithm,
and even the topology of the cliques [15] can impose a tighter
bound. That is,

∀j,
∑

l∈rj

lbl ≤ Bmax
j (1)

1A maximal clique is a subset of vertices, each pair of which defines an
edge, that cannot be enlarged by adding any additional vertex.

where lbl is the allocated bandwidth over wireless link l, rj

is a given maximal clique, and Bmax
j is the achievable clique

capacity, that is less or equal to the wireless channel capacity.
Hence, each maximal clique can be regarded as an in-

dependent clique-resource with capacity Bmax
j . Since only

links close to each other contend for the same bandwidth,
local information is sufficient for constructing the cliques 2

that a certain link belongs to (details in Section IV-E). More
description and proofs are given by Xue et al [11], [3].
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Fig. 1. Network example

In Figure 1 we present an example of a network topol-
ogy (the mobile nodes are represented as squares) and two
ongoing flows using this network. Figure 2 presents the link
contention graph, where vertices represent the links (identified
by corresponding numbers) of the network in Figure 1. We can
identify three maximal cliques representing resources. Note
that a single flow can span over several links belonging to
the same clique-resource. Let qij represent how many links
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Fig. 2. Link contention graph for network example

of clique rj are used by flow fi. Transmissions over the links
in a clique are mutually exclusive, and this means that the
“effective” bandwidth used by the flow is qij times higher
than its nominal rate. Let m be the total number of flows, and
bi a certain allocation to flow fi. Finally we can rewrite the
constraints in Equation 1 in relation to the bandwidth allocated
to the flows:

∀j

m
∑

i=0

qij × bi ≤ Bmax
j (2)

Table I presents the values of qij for the example in
Figures 1 and 2.

2We assume that the communication range is the same as the transmission
range. Otherwise, bandwidth estimation has to be used, since two nodes could
interfere but not be able to communicate.



TABLE I

FLOW-RESOURCE USAGE FOR NETWORK EXAMPLE

qij r1 r2 r3

f1 3 3 2
f2 2 3 2

B. Utility functions

The utility of an application represents the value assigned
by the user to the quality of the application’s results, and
may relate to willingness to pay for the service. Utility is
therefore measured with an abstract unit that can be mapped
to other units according to billing models. We assume that
the utility of an application’s flow is set by its user and not
just an internal system parameter for steering allocation. In
this paper, we use quantised bandwidth-utility functions. Thus
we can represent the function as a list of bandwidth utility
pairs, ui =





(U1

i

B1

i

)

, ...,
(Uk

i

Bk
i

)



 where k is the number of utility
levels of flow i. For an allocated bandwidth bi, the momentary
accrued utility is denoted by ui(bi). Utility functions could
take any shape, which makes the optimal allocation problem
NP-complete even in a single resource case. Nevertheless Lee
et al [16] obtained results very close to the optimum when
approximating general utility functions with their convex hull
frontier. We also use convex hull frontier approximation and
thus, for the rest of the paper we assume utility functions to
be concave and piecewise linear.

Utilty functions do not inherently reflect application flex-
ibility with respect to resource reallocations. Nevertheless,
our system can treat rigid applications (e.g. firm real-time)
differently from flexible applications (e.g. file transfer). This
is done by changing the user-provided utility functions at run-
time (e.g. for a real-time flow its utility function will “grow”
with age, expressing the importance of not losing invested
resources). Note that these changes are orthogonal to the
allocation algoritm presented in this paper. The illustration of
the time and reallocation-aware approach (TARA) in a cellular
single hop setting, can be found in earlier work [10], [2].

C. Linear programming form of the optimisation problem

For the wireless multihop network, having computed all the
clique-resources, and assuming for now that for every flow
the path between source and destination is set (routing done),
at any (re)allocation moment we can formulate the following
problem. Let m be the number of flows, ui the utility function
and xi is the allocation to be determined for flow i. Let, p be
the number of clique-resources and qij the usage counter of
clique-resource j by flow i. Then the optimal allocation for
all xi over all cliques j can be obtained from:

Maximise

m
∑

i=1

ui(xi) (3)

subject to

m
∑

i=1

qij × xi ≤ Bmax
j (4)

xi ≥ 0 (5)

where Bmax
j is the maximum bandwidth available for clique

j.
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Fig. 3. R-U function example

Due to the use of convex hull, the resource-utility functions
in Equation 3 are piece-wise linear. To entirely linearise the
problem we conceptually split a flow in several parallel sub-
flows (same source, destination, and path), each corresponding
to a linear part of the utility function. For a subflow k of flow i
the allocation is constrained as follows, bk

i ≤ Bk
i −Bk−1

i . The

utility efficiency of the subflow (utility/bit) is λk
i =

Uk
i −U

k−1

i

Bk
i
−B

k−1

i

.

In Figure 3 we highlight the boundaries of the 3 subflows.
Then given s segments in the utility function, for allocations
bk
i to subflows of flow i, we have:

ui(bi) =

s
∑

k=1

λk
i × bk

i (6)

where bi =
∑s

k=1
bk
i . However, not any allocation to the

subflows is consistent. In order to use the right side of
Equation 6 as a function, we have to add two constraints:

(C1) Every k-th subflow has a maximum allocation limit, that
is any bk

i ≤ bk max
i where bk max

i = Bk
i − Bk−1

i .
(C2) The order of the segments in the R-U function must be

respected when allocating (i.e. “gaps” are not allowed).
That is, if bk

i > 0 then for all l < k, bl
i = bl max

i .

Constraint (C1) is linear and can be directly used in the
problem formulation. Due to concavity, the linear segments
of the utility function are ordered highest efficiency first, and
therefore an optimal allocation to the subflows will automati-
cally respect (C2). We will show this by first formulating the
subflow optimal allocation problem and then go on to prove
that any solution to the problem satisfies (C2).

Proposition 3.1: Consider the following formulation of the
maximisation problem, where xk

i are the allocation variables:

Maximise

m,s
∑

i=1,k=1

λk
i × xk

i (7)

subject to

m,s
∑

i=1,k=1

qij × xk
i ≤ Bmax

j (8)

0 ≤ xk
i ≤ bk max

i (9)

Then, the results of the maximisation problem satisfy con-
straint (C2).

Proof: Let’s assume the opposite, which means that
there are two subflows l < k of a flow i where bl

i < bl max
i



and bk
i > 0, where bk

i is the value allocated to xk
i , etc. Let

γ = min(bl max
i − bl

i, b
k
i ). We denote the utility generated by

subflows l and k by Ul+k = λl
i × bl

i + λk
i × bk

i . Since both
subflows belong to the same flow, there is no restriction to
subtract γ from subflow k and to allocate it to subflow l. Let
U ′

l+k = λl
i × (bl

i + γ) − λk
i × (bk

i − γ). Then U ′

l+k > Ul+k

because λl
i > λk

i for a concave function. The allocations
for other subflows being equal, this means that bl

i, b
k
i are not

optimal. Contradiction.
While solvable with LP, the following drawbacks make

the LP solution infeasible for online allocation in an open,
dynamic ad hoc network.

• Centralised allocation. The algorithm needs to centralise
and disseminate back information about all nodes and all
flows. This includes keeping track of the changing topol-
ogy and dealing with the generated signalling overhead.

• Time complexity. The computational overhead created by
the LP solver is prohibitive for an online allocation.

We aim for a distributed, low complexity allocation scheme.
Nevertheless, we will use the LP allocation as an “upper
bound” baseline to evaluate the performance of the distributed
algorithm.

The distributed scheme uses the shadow price concept so
we first present the dual formulation of the above LP prob-
lem together with some useful characteristics of the optimal
solution.

D. Dual formulation and characteristics of optimal solution

In economic terms the dual optimisation problem can be
explained as follows. Assume somebody would like to buy a
very small amount of a resource. The shadow (or marginal)
price should be the minimum price the owner should accept.
Obviously for offers lower than the shadow price the owner
would gain more using the resource in his own production.
Thus, the shadow price is a measure of resource contention
and shows the marginal increase in utility if more resource
would be available. The following is the dual of the previous
LP problem (Equations 7-9):

Minimise

p
∑

j=1

Bmax
j × yj +

m,s
∑

i=1,k=1

bk max
i × vk

i (10)

subject to

p
∑

j=1

qij × yj + vk
i ≥ λk

i (11)

0 ≤ yj , 0 ≤ vk
i (12)

The shadow price of clique-resource j is denoted as yj , the
number of all clique-resource being p. Note that the shadow
price is the price per unit of resource (i.e. price/bit). Since
subflows are by default constrained to a maximum bandwidth
bk max
i this is modelled as a limited resource, which is used

only by the respective subflow, and vk
i denotes the shadow

price of the “artificial” resource.
We now define the slack variable wj as the amount of

unused capacity of clique-resource j. For a given flow fi the

slack variable zk
i represents “loss per unit”, i.e. the difference

between “benefit per bit”, λk
i , and the sum of the shadow

prices of used clique-resources. Using the slack variables, the
inequalities of the primal and dual problem become:

m,s
∑

i=1,k=1

qij × xk
i + wj = Bmax

j (13)

p
∑

j=1

qij × yj + vk
i − zk

i = λk
i (14)

According to LP theory, the optimal solutions for the
primal and dual problems fulfil the following constraints [17]
(constraint 17 is similar to 16, but applies the above mentioned
“artificial” resources):

xk
i × zk

i = 0 (15)

yj × wj = 0 (16)

vk
i × (bk max

i − xk
i ) = 0 (17)

From equations 13-17 we can identify the following char-
acteristics of the optimal solution:

(O1) If a resource is underutilised (wj > 0) then its shadow
price is zero (yj = 0), otherwise its price is greater than
zero.

(O2) For subflows where zk
i > 0, we have

∑

j qij × yj > λk
i ,

meaning that the accumulated price is higher than the
subflow utility efficiency. Thus xk

i = 0, and so vk
i = 0.

(O3) For subflows where zk
i = 0, and vk

i = 0, we have
∑

j qij × yj = λk
i . This means that the subflow is at

the allocation edge given the resources it uses.
(O4) For subflows where vk

i > 0, we have
∑

j qij × yj <

λk
i . Also, xk

i = bk max
i and zk

i = 0. Parameter vk
i > 0

represents a “pricing slack”, i.e. the amount by which the
accumulated prices of the used resources could increase,
and the flow still be profitable.

IV. DISTRIBUTED ROUTING AND RESOURCE

REALLOCATION

The ad hoc network considered in this work is an open
dynamic system where resource requests and availability are
always changing. Thus, our scheme employs periodic real-
locations to keep the resource usage optimised. As end-to-
end connections span several nodes and clique-resources, it
is important that (re)allocations are well coordinated along
the path. Also, reallocations imply a “mode” change for
applications so their number should be strictly controlled. The
use of periodic, synchronised allocation rounds guarantees
that flows will enjoy an allocation for at least one period.
It also puts a bound on the reallocation rate in the system,
even if the rate of events (traffic and topology changes) is
much higher. The only disadvantage is that new and rerouted
flows must wait until the next allocation time to receive new
resources. Choosing an appropriate period will imply tradeoff
between a) utility optimisation and reducing the delay of path
establishment and b) the computation and signalling overhead
of allocation rounds.



The algorithm will be referred as adhoc-TARA in the rest
of the paper. Assume that a route for a flow is given (we will
come back to how this route is found shortly). Conceptually,
at each period the (re)allocation will proceed like this:

• Every flow calculates a bid for all clique-resources it
traverses, based on their associated shadow prices.

• Each clique-resource independently evaluates the bids,
proposes a certain bandwidth allocation to the flow and
recalculates its shadow price.

• The flow chooses the lowest bandwidth proposal from all
the cliques it traverses as the new bandwidth for the new
period.

Since a flow is constrained by the lowest available bandwidth
on its path, the allocations must be performed synchronised at
all clique-resources.

A. Bid construction

For each flow, the shadow prices (determined at the previous
allocation round) of all clique-resources on its end-to-end
path are used to calculate its path-price, ppi =

∑

j qij × yj .
Intuitively, the utility efficiency (λk

i ) represents the maximum
“budget” that could be “paid” to the traversed resources
keeping the flow still “profitable”. Note that both λk

i and ppi

measure utility and price per bit. Thus we can now compute
the price slack of every subflow as the difference between the
utility efficiency and the path price, slkk

i = λk
i − ppi. After

the new allocation, the price could increase for any of the
used resources, so we uniformly divide the slack among all
the cliques it traverses (cci is the clique counter for flow i,
cci =

∑

j qij ). Thus, for each clique-resource we create the
following bid:

bidk
ij = yj +

λk
i − ppi

cci

= yj +
λk

i −
∑

j qij × yj
∑

j qij

(18)

where bidk
ij is the bid of flow i, to resource j for subflow k.

The sum of a subflow’s bids amounts to its maximum “budget”
(λk

i ). Thus, if all bids are accepted, the subflow is accepted,
and corresponds to either category (O3) or (O4) in Section III-
D.

B. Independent allocation

After all the bids have been placed, every clique-resource
will independently allocate the bandwidth, to the subflows in
decreasing order of bids, until bandwidth is depleted. Then
the new shadow price of the resource is set to the price of
the lowest bid among the accepted subflows. Note that all the
bandwidth is reallocated, and some subflows might get this
time an allocation different from last period.

If the contention at a certain resource is greater than that
at the previous allocation, its price will increase. If the bid
could not accommodate this increase, the subflow will be
rejected. If the contention decreases, the price of a resource
will decrease. This means that subflows that bid less than the
previous price (i.e. have a negative price slack) are accepted,
bringing the price down accordingly. If a resource does not

allocate all bandwidth, it becomes underloaded and its shadow
price becomes “0” (case (O1) in Section III-D).

C. Discussions

Note that if we could use the solutions of the dual problem
as shadow prices when constructing bids, any subflow, at all
the cliques that it traverses, would consistently be accepted or
rejected. As we do not know the new shadow price beforehand,
we use the shadow price from the last allocation as an estimate.
If at a clique-resource the contention level has increased,
the price could increase more than the bid by some flows
(resource price was underestimated at bid construction). In
such a case, some flows that could have offered a proper
bid (with hindsight) are rejected. Conversely, overestimating
a resource unnecessarily increases its bid to the detriment of
others.

As a consequence of over/underestimation, for a flow,
bandwidth could be allocated in different amounts at different
clique-resources, and the flow can use only the minimum
allocation over the end-to-end path. As a remark, we want
to mention that in such cases one might use the algorithm
iteratively, to better balance the bids. Nevertheless, as the
algorithm is intended for online allocation, we do not iterate
and any mis-allocated bandwidth will remain unused. Since
in an optimal allocation, the amount of this mis-allocated
bandwidth would be zero, we will use it in our experiments
as another measure of how close to the optimal allocation our
algorithm performs.

Figure 4 presents a pseudocode of the distributed algo-
rithm that is run synchronised for every clique-resource and
respectively for every flow. For every clique-resource a clique-
leader node, which is used for performing the (re)allocation
computations, is determined at clique-construction time (see
Section IV-E). Whenever a flow starts/stops using a wireless
link, one of the end-nodes of the link registers/deregisters
the flow (i.e. its source node) with the clique-leaders of all
the cliques containing that link. The clique-leader gathers
information about the flows using the clique-resource and runs
the allocation algorithm. The natural place for running the
flow-part of the algorithm (and changing the transmission rate)
is at the flow’s source node.

Note that the signalling information (between clique-
resources and the flows’ source nodes) is sent only along
established flows, and thus can be piggy-backed on existing
packets. The clique-leader can be chosen such that the distance
to the end-nodes of the links belonging to the clique is
at most 2 hops (see also Section IV-E). Therefore, inside-
clique signalling could use the MAC layer signalling (e.g.
piggyback RTS,CTS,ACK packets). As reallocations occur
seldom (compared to flow dynamics) we envision a small
signalling overhead.

The flow’s source node must receive the new bandwidth
decision from all the clique-resources on the end-to-end path
of the flow and choose the minimum allocated. The larger the
synchronisation error between the clocks of the clique-leaders,
the more the source-node has to wait until it can set the new



Allocation Algorithm run at every clique-leader j,
at every period T :
Let Fj be the set of flows using resource j
awbj = Bmax

j //initialise available bandwidth
∀ subflows f k

i ∈ Fj

bidk
ij = yj + (λk

i − ppi)/cci //compute bid
while Fj 6= ∅ //allocate for highest bidder first:

select fk
i ∈ Fj with highest bid

if awbj > qk
ij × bk max

i

xk
ij = bk max

i

awbj = awbj − qk
ij × xk

ij

else
xk

ij = 0
Fj = Fj − fk

i

yj = min(bidk
ij | xk

ij > 0) //recompute resource price
∀i where fi ∈ Fj

xij =
�

k
xk

ij

send xij and price yj to source of fi

Flow adaptation algorithm run at every node n,
at every period T :
∀ flows f i sourced at node n

∀ resources j that fi traverses
wait for allocation xij and price yj

xi = min(xij) //set bandwidth of fi

ppi =
�

j
qij × yj //recompute its path price

∀ resources j that fi traverses
send ppi to clique-leader of resource j

Fig. 4. The distributed allocation algorithm

rate of the flow. As a consequence a flow might increase its rate
before another decreases it, leading to short-lived congestions
at certain points. Regarding clock-synchronisation protocols
in wireless (sensor) ad hoc networks, Römer et al. [18] give
precision results of less than 100µsec for nodes five hops
away. These clock skews are small compared to the envisioned
reallocation periods, and thus we assume these congestions
to be easily mitigated. Nevertheless, synchronised allocation
generate bursty signalling in the network, and our ongoing
work studies methods that potentially remove the need for
synchronised allocation rounds among the clique-resources.

D. QoS routing

Traditional QoS routing algorithms typically use either
shortest path (respecting minimum constraints), or widest path
(allowing a better QoS for that flow). However, these are two
extreme cases and do not optimise global utility. Shortest path
might overload some routes. Widest path may produce too
long routes, increasing total network load. Therefore, as part
of adhoc-TARA we propose a new routing algorithm based on
the shadow price of resources introduced above. Used with the
allocation algorithm presented in Section IV-C the best chance
for the highest QoS is along a path with the lowest path price.
So we use an on-demand shortest path first (SPF) routing
algorithm that uses the path price as distance metric (i.e. it
chooses a path that yields a minimal ppi =

∑

j qij × yj)).
The lowest path price comes from both less contended links

(lower link prices) and shorter topological paths (lower number
of links).

Once chosen, keeping a route fixed is important for de-
terministic resource allocation. For this we employ a source-
routing algorithm. In source routing the source specifies the
hops to destination, and routing tables are not needed. Besides
providing load balancing capabilities, it prevents load oscilla-
tions when e.g. the shortest path changes.

Rerouting is performed for flows only when a link in the
end-to-end path breaks due to mobility. There are two reasons
why not to perform rerouting in the case of a decrease in
allocation. First, this would create an oscillating allocation
pattern where flows constantly chase a better route. Second,
rerouting implies a big signalling overhead, and should be
used only if necessary. Routing or rerouting is asynchronous
to allocation, however the shortest paths are valid only until
next allocation round due to price change.

E. Mobility and clique construction

Due to mobility, a node might enter or exit the communi-
cation range of another one, thus creating a new wireless link,
or alternatively breaking one. Handling topology changes can
be implemented either event based (when MAC feedback is
used) or periodically (when hello messages are broadcast), and
should be independent of the allocation algorithm. For clique
(re)computation, new and broken links should be reported to
all nodes as far as 3 hops away. This will enable all nodes to
completely determine all the clique-resources containing any
of its adjacent links [11], [3]. Thus, the signalling overhead
involved in clique (re)computation greatly depends on network
mobility.

If a link breaks, all the flows that used this link should
be re-routed. Some old clique-resources will disappear and
some new ones will be created. The new cliques will have
an initial 0 shadow price. However, to set a better starting
price, we perform a “dry allocation” (no bandwidth is actually
reallocated) at the new clique-resources, based on the inherited
flows. After a topology change all the affected flows must
update their path price, to be used in the next allocation round.

In Figure 5 the clique-reconstruction algorithm is presented.
All the nodes identify all the relevant clique-resources inde-
pendently. Then, for each clique-resource the “clique-leader”
node is determined (e.g. the node in the clique that has
the highest identifier, and is adjacent to at least two links
belonging to the clique). The algorithm implies waiting for
results from other nodes, and thus runs synchronised with a
period T ′.

V. SIMULATION AND RESULTS

A. Evaluation setup

To evaluate the behaviour of our resource allocation scheme
we use a traffic simulating applications used in the Internet
and representative for a future mobile communication net-
work [19], [2]. Table II summarises their characteristics. To
create a diverse traffic mix, the maximum required bandwidth



Clique reconstruction algorithm at every node n,
at every period T ′:
local (one-hop) broadcast “hello” message
timeout-wait
if the neighbour set changed

notify sources of broken flows to reroute
three-hop broadcast the new and broken links

timeout-wait
(re)construct clique-resources due to new and broken links
∀ new resources j where n is clique-leader

establish initial yj

∀ flows f i traversing resource j
send qij and yj to source of flow f i

timeout-wait
∀ flows f i sourced at node n

if fi is broken then reroute
else

ppi =
�

j
qij × yj //recompute its path price

cci =
�

j
qij //recompute its clique-counter

∀ resources j that fi traverses
send ppi and cci to clique-leader of j

Fig. 5. The clique reconstruction algorithm

follows a geometric distribution with the given minimum,
maximum and mean values (columns 2 and 3).

The second column from the right shows the flexibility
class, which depends on the flexibility of the applications to
bandwidth reallocation. Next we shortly present the classifi-
cation. [10], [2].

• Class I represents rigid applications, e.g., for a real-
time application once the “mode” is set by the initial
allocation any allocation increase is useless and decrease
fatal. That is the utility accumulated in time for this flow
is completely lost if resources are decreased.

• Class II is semi-rigid, where the lowest allocation point
is used to compute the utility for the whole duration
(i.e. if resource is decreased a proportional chunk of
already accumulated utility will be lost). Examples could
be sensor flows with different accuracy, or sensitive
multimedia.

• Class III represents fully flexible applications that have
no problem to adapt (for every new allocation period the
accumulated utility of the flow grows with the utility of
the given allocation). Examples are non-real-time data
transfers.

The shapes of the utility functions are more or less similar,
and not presented due to space considerations. The “relative
importance” factor is important, and shown in the rightmost
column of Table II. It represents the utility per bit associated
with the maximum required bandwidth, and scales the shape
of the utility function accordingly. For example, even though
one might be ready to pay roughly three times more for a
video-phone conversation (bandwidth demand of 256 Kbps),
the utility per bit is almost three times higher for an audio-
phone application (which requires only 30 Kbps).

A simulator was built on top of the j-sim component

TABLE II

TRAFFIC MIX USED IN THE EXPERIMENTS

Applic. 
Group 

Max. Bandwidth 
Requirement (Kbps) 

Connection Duration 
(sec) 

Examples  Class  Utility 
Scaling 

  min  Max  avg  min  max  avg      Factor 
1  30  30  30  60  600  180  Voice Service & 

Audio Phone 
I  1 

2  64  256  128  60  1800  300  Video-phone & 
Video-conference 

II  1/3 

3  200  1000  500  300  7200  600 Interact. Multimedia 
& Video on Demand 

II  1/10 

4  10  30  20  10  120  30  E-Mail, Paging, 
& Fax 

III  1/2 

5  64  512  256  30  7200  180  Remote Login & 
Data on Demand 

III  1/5 

6  128  2000  512  30  1200  120  File Transfer & 
Retrieval Service 

III  1/7 

 

platform [5], however packet level simulation was not consid-
ered at this stage. The experiments use 1500 × 1500m2 area
where 60 mobile stations are uniformly, randomly deployed.
The communication range is 250m and considered equal to
the interference range. Environmental perturbations are not
considered, and every clique-resource has the 4Mb/s channel
bandwidth at their disposition.

Mobility is implemented using the random way-point
model, with a random speed between 0 and max speed. To
ensure a nice connectivity and keep the mobile nodes from
clumping together, we made nodes move away from each other
when they come closer than a third of the communication
distance. We believe this is a reasonable model in urban
connectivity. New flows arrive following an exponentially
distributed inter-arrival time. All the 6 application groups
arrive with equal probability. To solve the linear programming
part, we have used a Java package from the operation research
objects collection (OR-Objects) [20].

B. Comparison of allocation schemes

In our experiments we compare the behaviour of the fol-
lowing routing and allocation schemes for different load and
mobility scenarios.

• As a baseline algorithm we use a non-utility routing and
allocation scheme denoted by simple in the experiments.
The routing is on-demand shortest path first (hop-based).
After a route is chosen, the minimum of the bandwidth
available at all clique-resources on the end-to-end path is
allocated to the flow. Actually if not enough bandwidth
is available to accommodate the minimum then the flow
is rejected. If the path breaks, the flow is rerouted, and
new bandwidth allocated. If a clique-resource becomes
overloaded due to mobility, flows will be dropped on a
last-accepted first-rejected basis.

• To represent best possible solution, we use a LP solver to
optimally solve the global allocation problem as defined
in Section III-C. The formulation of the LP problem
does not include routing, so we use the price routing
algorithm described in Section IV-D. This serves to
compare our distributed allocation algorithm with the
optimal allocation.



• Next we show the results of runs for the adhoc-TARA
scheme. It uses the distributed allocation algorithm de-
scribed in Sections IV-A to IV-C and the routing algo-
rithm from Section IV-D.

• Finally, we compare with a variant of our distributed
allocation scheme, denoted altbid, where a different for-
mula is used to construct the bids. In this alternative
the “budget” (λk

i ), is proportionally divided based on

shadow prices. Thus, bidk
ij =

yj×λk
i�

j
qij×yj

. The intuition
is that resources with higher shadow prices are more
disputed, and thus have a higher chance of getting even
more disputed. However, bids for low priced resources
become very small, and in the case of a 0 priced resource,
all bidk

ij = 0. In this case, ties are broken by slkk
i =

λk
i −

∑

j qij × yj .

For all the four schemes, allocation is separated from utility
accounting. Utility accounting is performed using the extended
utility model briefly described in Section V-A. According to
the model, a class I flow is dropped if the initial bandwidth
cannot be maintained. A class II flow is dropped if the
minimum bandwidth cannot be maintained. A class III flow is
never dropped (unless there is a network partition) as it can
recover after zero allocation. If a flow is dropped, no utility
is gained for the flow, and the bandwidth invested during its
lifetime is wasted.

C. Experimental results

As utility is our main performance metric we will first show
how the total utility of the four schemes behaves when sub-
jected to scenarios with different mobility. Thus in Figures 6
and 7, on the X-axis we have the average speed of the nodes
(m/s), and on the Y-axis the time-accumulated system utility.
Every point represents an average of 3 different experiments.
Each experiment was run over a period of 600sec, with a
(re)allocation period of 2 seconds. All the experiments were
run with a moderate overload (average inter-arrival rate of
1/200s).

The experiments in the two figures are differentiated by the
type of the applications used. In Figure 6 (“rt-mix” scenario)
we consider a mix of rigid and flexible application groups as
presented in in Table II (see the “class” column). In Figure 7
we consider that all the 6 application groups are fully flexible
(their class is set to class III). In this case, no flows will be
dropped due to zero allocation.

We can see that the results of adhoc-TARA come surpris-
ingly close to the optimal LP allocation. Even at the lowest
point, the distributed allocation algorithm is at almost 90% of
the optimal allocation (note the LP algorithm uses the same
routing as adhoc-TARA). Both the “flexible” and the “rt-mix”
scenarios suffer from mobility in similar ways (i.e. the “rt-
mix” scenario is not affected more). The simple scheme cannot
differentiate properly between flows and is trailing at around
half of the utility of the LP algorithm. The altbid algorithm
performs constantly below adhoc-TARA (at worst 72% of the
LP). This is because the bid is too biased towards high-priced
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Fig. 6. Utility for rt-mix traffic

resources, while low priced resources can also quickly increase
their prices. Adhoc-TARA, on the other hand, creates a more
evenly distributed bid.
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Fig. 7. Utility for flexible traffic

In Table III we present the bandwidth utilisation of adhoc-
TARA as compared to the utilisation of the LP algorithm.
The mobility row shows the average speed of nodes (m/s).
Our distributed algorithm independently allocates bandwidth
at the clique-resources along the flow’s path. If allocations are
different, some bandwidth is wasted. The LP solution is using
global knowledge and thus has no such problem. Nevertheless,
the difference in bandwidth usage (as an average over all
clique-resources) between LP and adhoc-TARA is only around
15% as presented in Table III.

A more detailed view on the QoS for the 6 application
groups (from Table II) is given by the experiments presented
in Table IV. The two cases have the same offered load (the



TABLE III

BANDWIDTH USAGE OF ADHOC-TARA COMPARED TO LP

mobility 0 2 4 8
usage(%) 92 84 80 87

number of arriving flows is around 190), and are using adhoc-
TARA scheme, and “rt-mix” traffic. We show the number of
flows that were blocked and dropped, and also the average
allocation (level) granted to a flow as a percentage of the
maximum it requested. As expected, flows with lower general
utility (groups 3 and 6, see last column in Table II) fare
worst. Also, the mobile case (second row) creates more
congestion and mis-allocations than the static case (first row),
and performance drops in general. If utility is high enough,
and mobility is not excessive, the QoS of rigid real-time flows
is well preserved (e.g. application group 1).

TABLE IV

STATISTICS AT APPLICATION GROUP LEVEL

appGroup 1 2 3 4 5 6
mobility blocked 0 0 5 0 0 4

0 dropped 0 1 13 0 0 0
level(%) 100 84 54 98 72 68

mobility blocked 0 2 11 0 6 6
4 dropped 0 7 16 0 2 0

level(%) 100 76 50 97 76 70

The next set of experiments, Figure 8, show how utility
depends on the offered load. In all experiments, average speed
is 4. On the X-axis, we plot the average inter-arrival rate for
a light (1/400), moderate (1/200) and heavy (1/100) offered
load. We can observe that utility of all 3 schemes follows
similar trends and increases almost proportionally with load,
preserving the superior performance of adhoc-TARA.
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Fig. 8. Utility as function of traffic load

Besides signalling overhead, computational complexity is
a big drawback of the LP solution and one of the reasons

to choose adhoc-TARA. Table V gives a comparison of the
average time (seconds, on a 1GHz P III) needed to reach an
allocation decision, as offered load is increased.

TABLE V

AVERAGE RUNNING TIME OF ALLOCATION DECISION

inter-arrival rate 1/400 1/200 1/100
LP 54.1 173.8 890.9

adhoc-TARA 0.179 0.265 0.476

The above experiments gave a good indication of relative
merits of the the distributed allocation algorithm of adhoc-
TARA compared to optimal LP, as in both cases we use the
price-based routing algorithm. Current work involves isolating
the characteristics of the price-based routing. Surprisingly,
preliminary results, using networks with no hot-spots, show
no important utility improvements by using the price-based
routing instead of the hop-based shortest path first (SPF).
However, more work needs to be done to study price-based
routing in congested networks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel utility/price-based
bandwidth allocation scheme for wireless networks, together
with a complementary price-based routing algorithm.

We first show that we can use utility functions together
with techniques derived from linear programming for opti-
mising resource allocation in multihop ad hoc networks. We
then propose a distributed allocation algorithm that bids for
resources depending on their “shadow prices”, and the “utility
efficiency” of the flow. Simulations show a superior behaviour
of the distributed allocation algorithm, which comes close to
the optimal linear programming allocation, and has a much
lower overhead.

As future work we intend to study the convergence proper-
ties of the algorithm and the benefits and overheads of using
several iterations at each allocation point in order to further
improve the allocation decision. The behaviour of the routing
algorithm in topologies with hot-spots configurations is also
interesting to follow.
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