Application-Tailored Database Systems: a Case of Aspectsin an Embedded
Database*

Aleksandra TeSanovic Ke Sheng Jorgen Hansson
Department of Computer Science
Linkdping University, Linkoping, Sweden
{alete,jorha@ida.liu.se

Abstract provides an efficient way of modularizing crosscutting con-
cerns in software systems [9]. AOSD enables encapsula-
Current techniques used to design and implementtion of crosscutting concerns of a system in “modules”,
database systems do not provide support for efficient im-called aspects. The application of AOSD to separate con-
plementation of crosscutting concerns in the database soft cerns in database systems has promise as the use of
ware, e.g., failure detection, database policies such asaspects in a database system development would al-
concurrency control and scheduling, and synchroniza- low high reusability, tailorability and maintenance of the
tion. Aspect-oriented software development (AOSD) is adatabase software.
new technique that provides an efficient way of modulariz- In this paper we address the problem of designing tai-
ing crosscutting concerns in software systems. In this pa-lorable and maintainable databases by investigating the
per we evaluate the effectiveness of applying AOSD toimpact of using AOSD for database system develop-
database systems thereby paving way for successful appliment. Component-based databases [5, 16, 3, 8, 13, 7, 1],
cation of aspect languages to the database domain. Ourwhich can be partially or completely assembled from a
focus is on embedded database systems, as a represempre-defined set of components with well-defined inter-
tative for a class of database systems. We show, by anfaces, are suited for tailoring a database system towards
alyzing and re-engineering one commercial well-known an application. However, there are aspects of database sys-
embedded database system (Berkeley database), thaiems that cannot be encapsulated into components with
aspect-orientation has promise, especially in enabling de well-defined interfaces, e.g., failure detection, synoira-
velopment of tailorable, maintainable, and evolvable tion, and database policies such as concurrency control.
database systems. A database component is typically developed indepen-
dently of other components and, therefore, each developed
component has its crosscutting concerns independently im-
. plemented by the component developer. This can lead
1. Introduction to code that is complex, inefficient, and difficult to de-
velop and maintain, hence, making the process of chang-
ing and upgrading the database software difficult and
error-prone.
The contribution of this paper is a case study that identi-
s benefits and drawbacks of applying aspect-orientation

Current techniques used to design and implement
database systems do not provide support for efficient im-
plementation of crosscutting concerns in the database soft
ware. Crosscutting concerns are features of the system thaﬁe

cannot cleanly be encapsulated into functions, modules, ob : . :

. . .~ and aspect programming languages to the design and im-

jects, and components. Typical examples of crosscutting ; ;
plementation of database systems. We show, by analyzing

concerns in database systems are synchronization, er: . . .
. : and re-engineering one commercial well-known embed-
ror handling, and logging and recovery.

Aspectoriented software development (AOSD) has ded database systénf{Berkeley database), that aspect-

o orientation has promise. We found that re-engineering the
emerged as a new principle for software development thatBerkeley database to support aspects improves maintain-

* This work is supported by the Swedish Foundation for StiatBg-
search (SSF) via the SAVE project and the ARTES network, kedt 1 In contrast to an application-embedded database hiddafeian ap-
Center for Industrial Information Technology (CENIIT) werdcon- plication, an embedded database is device-embedded adelsr@san
tract 01.07. embedded system.

ability, independent development of crosscutting congern ,

and testability of the database software. Furthermore, tai asgﬁic:“ Eﬂ?t';{tLockCa”(im lockid)=
lorability and evolvability of the database are also im- call("void getLock(int)")&&args(lockid):
proved. In the re-engineered database changes to the advice getLockCall(lockid):

database software are localized into aspects, which im- Vzgjuf‘if,’l_(c')’;tk"r’ggﬁzte is'<<lockide<endt}
proves comprehensibility by allowing to reason about , ’

different parts of the database software and their interac-] o
tion separately. Figure 1. An example of the aspect definition

The paper is organized as follows. Background informa-
tion on AOSD with a focus on aspect language constructs is
given in section 2. In section 3 we outline the problem ad- p pointcuts}
dressed in the paper, i.e., limited experience when it comes mL{functionjmethod_signatures}
to the impact of applying aspect languages to database soft- \r;::Ejfjlrznnjl)ii;\::vgtl_(zﬁte;r}get(v)|args(v)|p&&p|p||p| !p
ware. We then introduce the case study of the Berkeley)))
database in section 4, and provide the re-engineered solu- Figure 2. A typical pointcut syntax
tion of the database that supports aspects in section 5. Re-
lated work is discussed in section 6. The paper finishes with
the main conclusions and directions for our future work in
section 7.

where some function/method is called, thecute point-
cut refers to the execution of the join point (i.e., after¢h#
has been made and a function started to execute). The point-
cutstarget andargs match any join point that has val-
2. Aspect-oriented software development ues of a specified type; in this caseOperators &&,|, and
I logically combine or negate pointcuts.

Typically, AOSD implementation of a software system An adviceis a declaration used to specify the code that
has the following constituents: (i) components, writtemin should run when the join points, specified by a pointcut ex-
component language, e.g., C, C++, and Java; (ii) aspectspression, are reached. Different kinds of advices can be de-
written in a corresponding aspect language, e.g., AspectCclared, such as: (Pefore advicewhich is executed before
[4], AspectC++ [20], and AspectJ [2] developed for Java; the join point, (ii) after advice which is executed imme-
and (iii) an aspect weaver, which is a special compiler that diately after the join point, and (iiixround advicewhich
combines components and aspects. is executed in place of the join point. In figure 1 an exam-

Components used for system composition in AOSD are ple of an after advice is shown. With this advice each call
white boxcomponents. A white box componentis a piece of to getLock() is followed by the execution of the advice
code, e.g., traditional program, function, and method,-com code, i.e., printing of the lock id.
pletely accessible by the component user. In AOSD one can
modify the internal behavior of a component by weaving 3, Crosscutting concernsin databases
different aspects into the code of the component. Aspects
are commonly considered to be properties of a system that In this section we show that there is limited experi-
affect its performance or semantics, and that crosscut theence about benefits and drawbacks of using aspects in the
functionality of the system [9]. database domain (section 3.1). This is followed by a dis-

In existing aspect languages, each aspect declaratiorcussion on different types of aspects in the database domain
consists of advices and pointcuts (see figure 1poMtcut in section 3.2. Finally (in section 3.3) we give the overall
in an aspect language consists of one or more join points,goal of the paper and discuss the methodology we employ
and is described by a pointcut expressiolpiA pointrefers to reach the goal.
to a point in the component code where aspects should be
woven, e.g., a method or a type (struct or union). Figure 1 3.1. Problem description
shows the definition of a named pointgetLockCall
This pointcut refers to all calls to the functigetLock() Modularizing crosscutting concerns in software systems
and exposes a single integer argument to that call (this ex-using aspects is an open research challenge. The impact of
ample is written in AspectC++.). HencgetLock() is applying AOSD to different application domains has been
the join pointin the program code. The syntax of the point- investigated intensively in recent years; for examplegcas
cut is illustrated in figure 2. The first two pointcutsa(l studies on applying AOSD to operating systems [12, 4]
andexecute) match join points (i.e., places in the code and distributed real-time dependable systems [6] have been
of the program) that have the same signature as the joinmade, and benefits and drawbacks in these domains have
pointm. While thecall pointcut refersto the pointin code been identified.

We summarize the main benefits of using aspect lan-whether benefits B1-B7 can be identified and confirmed, is

guages for developing software systems as follows:

(B1) independent development, implying that aspects of a

needed.

software system can be developed independently with3-2- AsPectsin database systems

clear interfaces towards the software with which as-
pects should be woven;

(B2) localized changes, implying that a software system can
easily be modified by simply modifying the code of the

aspect that is maintained in a separate module;

(B3) extensibility, implying that a software system can be
extended with new functional and non-functional fea-

tures by defining and weaving new aspects;

(B4) improved comprehensibility, implying that having-dif
ferent features of a software system encapsulated into
aspects allows reasoning about different parts of the

software and their interaction separately;

tailorability, allowing software to be tailored toves
systems with which the software is embedded;

improved testability, implying that the software de-
veloped independently of additional, typically non-

(BS)

(B6)

Aspects in a database system can be classified in two lev-

els [19, 21]:

datdbasemanagemensystem (DBMS) level aspects,
which provide features affecting the software architec-
ture of the database system and allowing the tailoring
of a database system architecture and features towards
a specific system with which the database is going to
work, and

database level aspects, which relate to the data main-
tained by the database and their relationship, i.e., the
database schema.

We have identified a number of aspects in database sys-

tems on DBMS level by considering a feature as a crosscut-
ting concern if it is spread over multiple subsystems, func-
tions, and/or code modules of the database system, but per-
forms the same function, or a part of the function, in the

functional, features introduced by aspects can be moresystem. Based on these criteria, we have identified the fol-
efficiently tested (as less software should be tested);lowing aspects that provide tailoring on the DBMS level:

and

(B7) improved maintainability of software, implying that
aspects encapsulated into modules and separated from
the main software functionality enable more efficient
maintainability of software as less software needs to
be maintained. This combined with B2 allows the en-
tire software systems (with aspects) to be more effi-

ciently maintained.

In the area of database systems there is limited expe-
rience about impacts of AOSD to database development.
An overview over few existing approaches that use sepa-
ration of concerns in databases, developed byattmect-
orienteddatabase (AOD) initiative, is given in [19]. How-
ever, a quantitative study on how aspects impact the devel-
opment of database systems as compared to traditional ap-
proaches to development of database software has not been
studied; in AOD it is assumed that aspects are beneficial for
databases based on the studies performed of the general-
purpose software.

However, it is essential to identify benefits and poten-
tial drawbacks of a novel technique, such as AOSD, before
it can efficiently be applied in the domain of database sys-
tems. For example, a study [10] shows that crosscutting con-
cerns such as concurrency and failures, which have been
successfully modularized into aspects in general-purpose
software, cannot easily be aspectualized, and are not as ben
eficial in a real-world distributed system. Therefore, algtu
that addresses the impact of AOSD to database system de-
velopment, i.e., study of database system software to show

synchronization, e.g., in a DBMS there exist many data
areas spread over the entire DBMS that should be pro-
tected by semaphores, which can be encapsulated into
aspects and automatically woven into the DBMS;

failure detection, e.g., keeping data consistent in the
database requires employing failure detection, which is
typically spread over the entire DBMS in order to cap-
ture failures that can occur, and therefore can be con-
sidered as an aspect;

logging and recovery, e.g., in order to recover from

a failure, logging is performed whenever database
changes occur, and this often require logging rou-
tines to be spread out the entire software, and, thus,
easily classified as an aspect;

e error handling, e.g., different errors that can occur in

the execution of the database software could be de-
tected by monitoring the execution of a program by
an error handling aspect;

transaction model, e.g., in real-time and embedded
systems transactions are associated with different tem-
poral properties such as deadlines and/or periods and
these can be woven by means of aspects into a transac-
tion model (hence, tailoring it to suit the needs of the
underlying application);

database policies such as scheduling policy and con-
currency control policy, e.g., real-time and embedded
systems require different real-time scheduling policies
that can be plugged-in by means of aspects; and

e security, e.g., different encryption algorithms could be creased when aspects are used (as compared to the origi-
suitable for different database applications and thesenal implementation of the database). For providing quanti-
could be encapsulated into aspects and woven into thetative support of our findings with respect to B6 and B7 we
database to tailor it for a specific application. use the measurements in termsiafmberof lines (NoL) of

Additionally, databases can make use of so-called the source code in DBMS software, since reducing the NoL

development-type aspects such as debugging, which car?f the code enables more efficient testing and maintaining

o of the database software as less code should be tested and
also be classified as a DBMS level aspect. maintained
Aspects on the database level are identified in [19], '

where they are applied to development of database schema

in the SADES database. In SADES the following features 4. Berkeley database: a case study

are considered database level aspects: (i) changes to links

among entities, such as predecessor/successor links be- Here we first present a brief overview of the Berkeley DB

tween object versions or class versions, inheritance linksin section 4.1, while in the remaining sections we focus on a

between classes, etc.; (ii) changes to version strategy fordetailed description and analysis of the following crosscu

object and class versioning; (iii) extending the systenhwit ting database features: failure detection (section 4y2}; s

new meta classes; and (iv) data object persistence. Databaschronization (section 4.3), and error handling (sectiet).4.

level aspects are specific to a particular implementati@n of

database schema, and for each database system these could, Ber keley DB: an overview

differ, i.e., different parts of database schema could beemo

applicable to represent as aspects. Berkeley DB is an embedded database system, im-
plemented as a classical C-library toolkit that can be
3.3. Goals and methodology linked directly into an application. The database pro-

videsapplicationprogrammingnterfaces (APIs) for appli-

The goal of the work presented in this paper is to identify cations written in other programming languages, such as
and study benefits and drawbacks of using aspect language€++ and Java. Berkeley DB consists of the following sub-
for development of DBMS software. For that purpose we systems [1]: access methods, memory pool, transaction,
have chosen to perform the case study on one well-knownand locking.
commercial and open source embedded database, namely Theaccess methods subsysteravides support for cre-
BerkeleyDatabase (DB) [1]. The reason for choosing an ating and accessing database files. The files are accessed
embedded database lies in the fact that designing a databasgsing key/data pairs to identify desired elements witha th
customized for a particular application is essential for an database. Thmemory pool subsysteisia general-purpose
embedded database system and therefore bears even greateemory buffer pool that allows multiple processes and
importance than for the traditional database systems.ihis threads within the process, to share access to the database.
true since the main objectives for an embedded database ar&he transaction subsysteimplements the Berkeley DB
low memory usage, portability to different operating sys- transaction model. It enforces strict ACID transaction se-
tem platforms, efficient resource management, e.g., mini-mantics. Thdocking subsysterases two-phase locking to
mization of the CPU usage, and ability to run for long peri- provide interprocess (multiple threads within process) an
ods of time without administration [14]. intraprocess (multiple processes) concurrency conttol. |

Given the broad range of aspects that can be identifieduses page-level locking by default. Tlogging subsystem
and used in a database system, for the purpose of our studyensures that committed changes to the database survive fail
we have chosen a subset of DBMS level aspects most likelyures in an application, system, or hardware. It uses write-
to be found in every database system: failure detection, syn ahead logging, thus, logging the information about changes
chronization and error handling. Thereby we are able to il- in the database before the change actually occurs.
lustrate benefits and drawbacks of AOSD on an embedded Berkeley DB provides separate interfaces for each sub-
database and further generalize results to other database d system. This implies that each subsystem is implemented
mains. as an independent module, and can even be used outside the

Our aim is to investigate whether the benefits B1-B7 hold context of Berkeley DB. Hence, an application developer,
when aspect languages are used for database software, amhen using the database, can specify which subsystems
we do that by showing the impact of re-engineering Berke- his/her Berkeley DB configuration should contain based
ley DB to support aspects. We investigate B1-B5 based onon the database services required by a particular applica-
our implementation of aspects in the database, while B6-tion. For example, if the application needs fast, singlerus
B7 are investigated based both on the implementation ofand non-transactional B-tree data storage, the locking and
aspects and on the number of lines of code that are detransaction subsystems do not have to be included in the

database configuration, i.e., they can be disabled, thus, re Analysis of the Berkeley DB source code resulted in the
ducing the overhead of locking and logging. In contrast, if observation that 55 different functions call recovery dete

an application needs to support multiple concurrent users.tion routinepanic _check . The calls are spread over all
but does not require transactions, the locking subsystenfive database subsystems, hence, making the recovery de-
can be included in the configuration without the transac- tection a crosscutting concern in the Berkeley DB.

tion SUbSyStem' Moreover, applications that need CoONCUrpyun-time configuration detectiodetects whether a call to
rent, transaction-protected database access can conﬂguarfe database from the application is made using a method

thebdatabase s_uch thhat al ?}Jbsystemf_'are ensblﬁdl, I.e[.)’B r a function within the current database configuration. Due
subsystems exist in the configuration. Hence, Berkeley to the configurability feature of the Berkeley DB, it is im-

is an embedded re conﬁg_u rable_databasg that _mal_<es th? Ca?)%rtant to detect if an application makes a call within the
study even more Interesting as it a".OWS investigation of im right configuration. If the function or method call is made
pact of applying AOSD on a reconfllgurable d.atabase. to one of the subsystems that are not in the current database
All database management functions provided by Berke- configuration, a warning message is displayed and an error
ley DB can be accessed via opera_tlons defined in the |nter-_,a|ue ginval) returned to the application. The run-time
faces of the subsystems. When using the database, an applionfiguration checks are performed by invoking the config-
cation should first create a structure, referred to as artbbje |, ation detection routinenv _requires _config within
handle, and then call the functions of that structure (Fepre he functional modules of Berkeley DB subsystems.
senting the methods of that handle). One of the most im- Analysis of the source code exposed 26 different func-
portant data structures in Berkeley DB is the database envisign calls to theenv requires _config routine spread
ronment, which represents an encapsulation of all database),er four database subsystems, namely locking subsystem,
states and holds the information about the current Stat“%gging subsystem, memory pool subsystem, and transac-
and the configuration of the database. The database envigon supsystem. Hence, it can be observed that run-time con-
ronment is accessed using its handie env), whichis g ration detection is a crosscutting concern as it affacts
created by passing parameters from the application to the, mber of functions in different subsystems.

functiondb _env _create) o
Failure detectionin, e.g., the memory pool subsys-

tem, is performed in the following manner. When an
4.2. Failuredetection application invokesnempregister method in the mem-
ory pool subsystem, it first invokepanic _check to
Failure detection in Berkeley DB consists of recovery de- check whether the environment is not damaged. After in-
tection and run-time configuration detection. voking the panic _check , if everything is correct and
)))) an error is not detectedenv requires _config is
Recovery detectiomoutines in Berkeley DB detect, in ev- cajied to check whether the application has set up a mem-
ery subsyst_em interface and |ts_operat|or_1$, |_f there |sdr_1ee ory pool subsystem in its environment. If the memory
for performing the recovery. Since applications can tailor pool subsystem has not been set up in the current config-

the database to suit their requirements, Berkeley DB it- uration, a warning message is printed and an error value
self cannot determine whether recovery is required as it is(einval)is returned to the application.

not aware of the current database configuration. The appli-
cation, thus, should determine when recovery is required N
based on the results from the recovery detection routines4'3' Synchronization
run by the Berkeley DB.

A recovery detection routine is implemented through the
panic _check function. To detect failures, e.g., when log
files are physically destroyed or when the underlying file
system is corrupteghanic _check probes the state of the
existing database environment. If the state of the environ-
ment indicates that the failure happenednic _check
returns an error valuedb runrecovery) to the caller, e mutex _lock/unlock ,whichis alock/unlock oper-
i.e., an application or an internal database function that ation on the memory buffer,
propagates the recovery information to the applicatiop-Ty
ically, panic _check is invoked at the beginning of the
functions implementing database functionality within keac

of the subsystem, and immediately after variable init&liz
tion 2 A mutex in this context denotes a mutual exclusion semaphor

Berkeley DB synchronizes access to shared memory data
structures, such as the lock table, in-memory buffer pael, i
memory log buffer, etc. Each independent subsystem uses
mutexe$ to protect its shared data structures, denoted re-
gions. There are four types of operations used for imple-
menting synchronization in Berkeley DB:

e mutex _thread _lock/unlock , which is a
lock/unlock operation on a thread,

e 1 _lock/unlock , which is a lock/unlock operation 5. Modularizing crosscutting concerns

on a region, and

This section shows how aspects encapsulate the cross-
cutting concerns we identified and discussed in the previ-
ous section. We show the aspect-oriented implementation
of failure detection, synchronization and error handlany]
mutex _lock/unlock are the basic synchronization op- provide analysis of the impact of the aspectualization ef th
erations, while all other operations are realized by call- Berkeley DB in terms of the expected benefits B1-B7.
ing mutex _lock/unlock to acquire/release the desired
locks. Synchronization operations do not have a fixed po-
sition in the functional code of each subsystem, rather
they are subsystem-dependent, i.e., depend on the func- ||
tional behavior of a particular subsystem. For example, in .. |}
memppgread function within the memory pool subsys- e —
tem, when an application wants to read a page in memory,
it invokesmutex _lock to block other threads from updat-
ing the page that the application is operating on. After the
reading is donemutex _unlock is invoked to release the
buffer.

The analysis of the Berkeley DB source code indicated —
116 different functions within all the five subsystems that
use the synchronization operations in various places mwithi
their code. Given the number of functions crosscut by
the synchronization operations, the synchronization @n b

e lockregion/unlockregion , which is
lock/unlock operation on regions that are related to
locking operations.

Eunction names:
put downgr.stat detect

pld L EGEND:
Visual
representation of
source code:

the entire
function

[T recovery
detection

_ run-time conf.
detection

(S I synchronization
[z error handling

placement of
crosscutting code

Figure 3. lllustration of crosscutting

viewed as a crosscutting concern of the Berkeley DB. Figure 3 represents the visualization of crosscutting in
the locking subsystem in Berkeley DB. We observed simi-
4.4. Error handling lar crosscutting effects in each subsystem of Berkeley DB

and, therefore, found that it is enough to show the effects

Error handling in Berkeley DB is implemented using if- Of crosscutting on one of the subsystems in order to illus-
statements in the functional code of the database. The-placetrate code entanglement. As can be seen from figure 3, the
ment of if-statements throughout the code is done ad hoc ag0de of each function within the locking subsystem is cross-
it only depends on the desired functionality of the code and cut with several crosscutting concerns. Furthermore, each
undesired conditions that may occur. When the error is de-function has its own set of crosscutting features, e.g., the
tected (within the if-statement), an output message is dis-function downgrade is crosscut with code for recovery
played, and an error value is returned to the caller, e.g., ap- detection, synchronization, and error handling, whilenit
plication or other database functions. The return values fo Stat function there is the code for recovery detection and
an error can be grouped into the following three categories:un-time configuration detection. Hence, even with only a
(i) ret=0 , indicating the successful completion of an op- subset of possible crosscutting concerns of the database sy
eration; (ii)ret>0 , indicating a system error, e.g., unable tem, their effects to the database code entanglement are eas
to allocate memory; and (jifet<0 , indication a condition iy noticeable.
that is not a system failure, but is not an unqualified suc-
cess either, e.g., a routine to retrieve a key/data pairfhm_l 5.1. Failure detection aspect
database may retudb_notfound when the key/data pair
does not appear in the database as opposed to the value of ag mentioned, failure detection consists of recovery de-
0, which would be returned if the key/data pair were found tection and run-time configuration detection. Hence, the
in the database. . aspect-oriented implementation of the failure detectim c

~ Analysis of the source code exposed 194 different func- pe gone in two variants. In the first variant, the code for re-

tions calls to the error handling routine spread out over all coyery detection and run-time configuration detection are

five major subsystems of Berkeley DB. Hence, we View er- jmplemented as separate aspects, i.e., recovery detastion

ror handling as a crosscutting concern in Berkeley DB. pect and run-time configuration detection aspect. In the sec

ond variant, recovery detection and run-time configuration

3 The output message depends on the content of the envirommen detection are implemented as one aspect, called the failure
figuration. detection aspect.

1: aspect recovery detection{

2: pointcut RD(DBenv dbenv) = execution("% DbEnv::lock_vec(..)) | I ...

1: aspect confl(Truratlon _detection(

2

3‘ .
3 (call("% DbEnv::%_stat(...)") | | é execution("% DbEnv::lock §Et(

[

7.

pointcut lock_CD(DB_ENV dbenv)=

execution("% DbEnv::lock_detect(..))&&
target(dbenv);

. pointcut log_CD(DB_ENV dbenv) =
19: (target(DbEnv) || target(Dbc) || (execution("__log_%register%(dbenv, ...)") ||
. . R 12: pointcut mem_CD(DB_é.l.\IV dbenv) =
22: advice RD(dbenv) : void before(){ p (execution("% DbEnv::memp._register(..)") |
23: if(!F_ISSET((dbenv), DB_ENV_NOPANIC) && 5 b
. . e 16: pointcut txn_CD(DB_ENV dbenv) =
24: (dbenv)->reginfo != NULL && ((REGENV *) P (execution("% DbEnv::txn_checkpoint(.)") |
25: ((REGINFO *)(dbenv)->reginfo)->primary)->envpanic != 0) 19: advice Iock CD(db I Befe(DE ENV b
26: return(DB_RUNRECOVERY); Lr s houme g ga;;;;wlg{m ‘3{“"(env){
27: '} 21: cout <<]omPomt :signature() << “ interface requires”
223 cout<<" an envnonment configured for the locking subsystem"”;
28: } 25, return (EINVAL); }

)
25: advice log_CD(dbenv) : void before(DB_ENV dbenv){...}

Flgure 4. The recovery detection aspect 31: advice mem_CD(dbenv) : void before(ljé_ENV dbenv){...}

37: advice txn_CD(dbenv) : void before(DB_ ENV dbenv){...}

First variant: recovery detection aspect and run-time con-
figuration aspectFigure 4 shows theecovery detectiomm-
plemented as an aspect. As can be seen from the figure, the Figure 5. The run-time configuration detec-
recovery detection aspect consists of one pointcut and one tion aspect
advice. The pointcut syntax corresponds the syntax given in
figure 2, with the subset of pointcutsall andtarget
Inthecall pointcut all functions that are using the recov- parts in figure 5 give the pointcut/advice pair for the lock-
ery detection routine are listed. An example of a pointcut is ing subsystem. The pointclgck _CDrefers to the execu-
shownin figure 4 (lines 2-3) where the wildcard % indicates tions of each of the functions within the locking system that
that the pointcut nameRDrefers to all calls to the functions require run-time configuration detection. The before aglvic
with signatures containin@bEnv. The body of the advice |ock _CDidentifies whether a join point described by the
in lines 23-26 is the same as the original implementation of pointcutlock _CD in which the advice is currently execut-
thepanic _check . Note that having the body of the advice ing, is part of the current database configuration (desdribe
implemented and formatted as in the original implementa- by lines 20-23;JoinPoint::Signature in line 21
tion of panic _check allows us to make a fair compari- identifies the current join point).
son of the number of lines of code reduced by aspect weav- Given the original implementation of recovery de-
ing. The advice is executed before the call is made to anytection and run-time configuration detection, and their
of the functions with the specified signature in the pointcut aspectual implementation, we conclude the follow-
RD The implementation of the recovery detection aspect ing about benefits B1-B7. Considering that recovery
does not change the architecture or the functionality of the detection and run-time configuration detection are both im-
Berkeley DB. This is true since the same recovery detectionp|ememed only within one routinepénic _check and
code that was encapsulated by the roupaeic _check env requires _config) the positive effects of aspec-
is now executed within the advice, before the call to any of tyajization to these routines with respect to independent
the functions that need to perform the recovery detection iSdeveIopment (B1) and localized changes (B2) can be ob-
made. This flow of execution also corresponds to the orig- served only in the introduction of pointcuts. The pointcuts
inal implementation sincpanic _check was always exe- allow localized changes in the sense that all the im-
cuted first in the function in which it exists. pact of using this functionality to the overall database is
Run-time configuration detection aspéillustrated in localized. When using the aspectual solution, extensibil-
figure 5. This aspect has four named pointcldsk _CDQ ity (B3) and tailorability (B5) of the database are further
log _-CD memCD andtxn _CD each consisting of a num- improved. Namely, new modules of the database can be de-
ber ofexecution pointcuts. Theexecution pointcuts veloped and added to the database independently of the
describe the execution of the function with the signature failure detection, and this feature can easily be added
given in the pointcut. Four named pointcuts are required toto the parts of the new modules by defining new point-
identify the executions of functions in each of the four dif- cuts in the aspects. Comprehensibility (B4) with respect to
ferent subsystems: locking, logging, memory, and transac-the implementation of the recovery and run-time configura-
tion subsystem. The aspect also contains four advices eaction detection is not significantly improved (due to the fact
corresponding to one of the named pointcuts. The shadedhat these are implemented with only one routine). How-

Invocations[NoL]| Implementation[NoL] Total[NoL] Change

Feature original | aspect| original | aspect | original | aspect| [%]
Failure detection 114 0 41 66 155 66 -57
Recovery detection| 64 0 6 40 70 40 -43
Configuration detec; 50 0 35 43 85 43 -49
| Synchronization | 436 | 0 [425 | 503 | 861 | 503 | -42 |
| Erorhandling | 650 | 0 [142 | 1201 | 792 | 1201] +65 |

Table 1. Comparison of the number of lines (NoL) used in the or iginal and aspectual implementation
of the Berkeley DB.

ever, the overall comprehensibility of the database code aspect synchr oni zati on{
and the effects of these two features to the database are in- m’f I oﬁk(db_en\, dbenv, db_mutex mutexp){..}
deed improved as all the functionality of failure detecti®n

localized in aspects and described in terms of advices and ™ UM ock(db_envdbenv, db_mutex mutexp){.}
pointcuts (which are straightforward to understand). Fur- pointcut mutex_lock

thermore, as shown in the table 1, the use of aspects signif- ggmﬂ: mﬁiij‘h”rfgg_lock

icantly reduces the amount of code that deals with recovery pointcut mutex_thread_unlock

detection. In the original implementation of the Berke- “dvi ce mutex_lock(dbenv) :

ley DB, the number of invocations gbanic _check v?ggk(dbegsfg&gégg\zgmvh%%rw)

for performing recovery detection is 64, while the num- reginfo.primary)->rp->mutex);)}

ber of lines implementing thpanic _check routine itself }

is six. After encapsulating recovery detection into an as-) o
pect, panic _check is not invoked in the code of the Figure 6. The synchronization aspect
database, i.e., the number of invocations is zero, and the
number of lines of code used to implement the recovery de-
tection aspect is 40. Hence, this results in 43% reduction
of the code that handles recovery detection, which im-

the failure detection aspect, i.e., B2 holds. The implement

tion of failure detection as one aspect reduces the taillerab

proves testability (B6) and maintainability (B7) of the eod IFy (BS) of_datapase features, as recovery detection and run
time configuration detection are not independent and can-

Similarly, we obtained 49% reduction of the code that han- T

. ' ; T . not be exchanged and modified independently. Hence, there
dles run-time configuration detection, implying that bene- . : : : o
fits B6 and B7 hold is a tradeoff between B5 and B7, as improving tailorability

could result in decreased maintainability of the software.

Second variant: failure detection aspect that encapsslate

both recovery detection and run-time configuratitfrail- 5.2. Synchronization aspect

ure detection is implemented using only one aspect that en-

capsulates recovery and run-time configuration detection, We have encapsulated synchronization operations
the code reduction increases to 57% as compared to the ininto the synchronization aspect. The synchronization as-
dependently implemented aspects. The decrease is due tpect consists of the internal methodisck/unlock

a large number of pointcuts shared by the recovery detecthat implement the core synchronization operations
tion and run-time configuration detection. Thereforegest mutex _lock and mutex _unlock , providing the same
bility and maintainability (B6 and B7) of the code are fur- functionality as the original implementation of operagon
ther improved (as compared to the first variant). Of course, mutex _lock/unlock . The advices, corresponding to
encapsulating the failure detection into an aspect enablesther synchronization operations, exg.lock/unlock
better comprehensibility of the failure detection in getter mutex _thread _lock/unlock , call the aspect meth-
(B4). Also, encapsulating the overall failure detectiotoin odslock/unlock to perform required locking/unlocking

an aspect, without disturbing the original architecturthef (see figure 6).

database, allows development of the failure detection code Based on the implementation of the synchronization as-
independently of the overall database software (B1). How- pect we can conclude the following. We are able to de-
ever, knowledge of the functions that require failure detec velop the synchronization aspect (B1) independently of the
tion, i.e., pointcuts, is required. Changes to the ovesdll f ~ database code, given the knowledge about join points in the
ure detection code can be done in a localized manner, withindatabase software where synchronization operations need

to be performed. Furthermore, the comprehensibility (B4) dling could be developed independently (B1) if the archi-
of the aspect, and the database in general, improves sigtecture of the system is not modified to a large extent. How-
nificantly as the extensive lock/unlock operations of diffe ever, changes to the error handling routine are localized in
ent types are removed from the code. Changes to the synthe case of aspects, i.e., benefit B2 holds, but the code is not
chronization routines are localized within the aspect (B2 easily extensible when it comes to the code of the aspectand
holds). Moreover, due to the nature of synchronization op- the overall database due to the error handling technique em-
erations we achieved significantly better localizatiomtima ployed in the original implementation of the Berkeley DB.
the case of the failure detection aspect. The introduction o
a new functionality into the database (B3) is also improved

o 5.4. Lessonslearned
as the only change to the synchronization aspect needs to bé
done in the pointcut declaration. The database can now be
tailored further (B5) by simply including or excluding the
functions that require synchronization in the pointcutidec
ration. From table 1 we observe that the total number of in-
vocations of synchronization operations in Berkeley DB is
436, while the number of lines that implement synchroniza-
tion operations is 425. Hence, the total number of lines used
for the synchronization operations in the Berkeley DB arigi

nal code is 861. When implementing the synchronization asmaintained separately, localized in aspects, and then auto
an aspect, 70% of the lines of code used to implement the P Y, P '

aspects are the lines used for defining the pointcuts in thematlcally woven into the overall system. By re-engineering

code. This results in total aspect code of 503 lines, and sig-the orlgmal Ber_keley DB c_ode, we showed f[hat_ the imple-
~ mentation of failure detection and synchronization aspect

ifi 1 0, iai-

e e b0 12 1 010 provids away o eduing (410 574 the cod needed for

overall database decreases making it easier to maintain angnplementmg the§e crp;scuttmg concerns in the database

test database software (B6 and B hold). systgm. We have |den.t|f|ed th_at there is a trgde—p_ff between
requirements for configurability and maintainability o&th
system when aspects are used, namely, recovery detection

5.3. Error handling aspect and run-time configuration detection implemented in sepa-
rate aspects allow greater flexibility and tailorabilitytb&

The structure of error handling aspect follows the typi- database, but they also require maintenance of the two sep-
cal structure of an aspect. However, when error handling isarate aspects. In contrast, implementing the two detection
encapsulated into aspects, the number of pointcuts ifsigni routines as one failure detection aspect reduces the code
icant (total of 1072 lines). This is partly due to that error further and allows for easier maintenance as the designer
handling is done using if-statements, which are not diyectl should only maintain one aspect.
supported in the pointcut syntax (see figure 2), and partly Encapsulating error detection into an aspect in Berkeley
due to a variety of different conditions that are used to de- DB produced a significant increase of code needed for er-
tect errors in the code. ror detection (65% increase), and exposed the drawbacks in

Hence, the aspect solution of error handling resulted in the way error handling is currently implemented in Berke-
a (surprising) 65% increase of the code as compared to thdey DB. This result is different from [11] where it is shown
original database code, as can be seen from table 1. Thehat the code reduction by factor four can be made in the
cause of this increase is the tangled if-statement context-best-case scenario when using aspects for error handling.
dependent error handling style that induced great number ofThe system studied in [11] is a Java-based object-oriented
pointcuts in the aspectual implementation of the error han-framework for interactive business applications. Theeyst
dling, increasing the total volume of the code. The signifi- detects and handles errors by throwing exception and using
cant increase of the amount of the code decreases maintaina catch-statement to handle exception. In contrast, Beykel
ability and testability of the overall system (i.e., B6 and B DB is a C library and uses if-statement to detect and handle
do not hold). Although the implementation of error handling errors. Hence, defining the pointcuts without changing the
as an aspect increases comprehensibility (B4) of the over-original architecture of the database system requires-a sig
all database code, the comprehensibility of the error han-nificant amount of code to describe conditions under which
dling aspect has not been increased as the pointcut declaerrors may occur. However, if an error detection and han-
rations showed to be overly complex and difficult to under- dling model is implemented using AOSD from scratch the
stand. Based on the error handling aspect and the intricateresult could improve significantly. Hence, not only would
pointcut definition it is difficult to claim that the error han the re-engineering the existing database using aspeats to e

The study we performed on the Berkeley DB provided

a valuable insight how a database system could be pro-
grammed to enhance its tailorability, maintainabilitygtte

bility, and comprehensibility. Aspect-oriented approach
designing and implementing databases improves the main-
tainability of the system and allows efficient changes in
the database software as the crosscutting concerns in the
system, e.g., failure detection and synchronization, @an b

- not supported

+ supported in a limited form B1- independent development of aspects

B2- localized changes in database software

++ fully supported Supported characteristics B3- extensibility of database
Implementation | B1 | B2 B3 B4 | B5 | B6 B7 B4 - comprehensibility of database functionality
original _ _ + _ + + _ B5- t?ilorability of dat.a}base towards a particiggstem
. d -+ i B6 - improved testability
re-engineere + + T |+t t B7 - improved maintainability of database software

Figure 7. The overall effect of re-engineering Berkeley DBt o support aspects

capsulate crosscutting concerns provide benefits for an exthis paper we investigated the impact of using aspect lan-
iting system; the beneficial impact would be even more no- guages for customization of the database management
ticeable if the database system is designed with aspects irsoftware, thus, using aspects on the level of database soft-
mind. Given that the constructs provided by the aspect lan-ware.
guages (pointcuts and advices) are powerful and yet simple Component-based datdbase management systems
enough to capture most of the crosscutting concerns, whenfCDBMSs), which can be partially or completely as-
developing the database software the programmers shouldembled from a pre-defined set of components, allow
only focus on the core functionality of the database system,tailoring of the database system towards a specific ap-
while all other crosscutting issues, such as logging, recov plication. Different component-based databases enable
ery and synchronization can be implemented using aspectsdifferent degrees of tailoring the database system fora par
Figure 7 shows an overview of the types of benefits ticular application. Four different categories of CDBMSs
that could be observed generally for the database softwarehave been identified [5]: (Bxtensible DBMSextend exist-
when comparing the original Berkeley DB implementation ing DBMS with non-standard functionality, e.g., Oradle8
with the re-engineered one that supports aspects. As caiil6], Informix Universal Server with its DataBlade technol
be seen from figure 7 we could identify that most of the ogy [8], Sybase Adaptive Server [15], and DB2 Universal
benefits B1-B7 are true for the re-engineered database, andatabase [3]; (ii)database middlewaréntegrates exist-
that we obtained in overall significant improvements over ing data stores into a database system and provides users
the original implementation, e.g., localized changes & th and applications with a uniform view of the entire sys-
database software, comprehensibility, and maintairtgbili tem, e.g., OLE DB [13]; (iii) DBMS serviceprovides
Issues such as tailorability of the database were also im-database functionality in a standardized form unbun-
proved with aspects. This is an interesting observation fordled into services, e.g., CORBAService [17]; (iebn-
this type of a configurable database as it implies that if figurable DBMSenables composition of a non-standard
the already configurable database could be improved fur-DBMS out of reusable components, e.g., KIDS [7]. Berke-
ther with respect to enabling tailorability, then tailoilab ley DB can also be viewed as a configurable CDBMS as
ity in a monolithic database could be significantly improved it allows configuring the database depending on the ap-
by introducing aspects. Finally, the impact of aspectuadiz plication requirements. Common to all CDBMSs is that
the database does not reflect negatively on the functignalit they are assembled out of components that encapsu-
or performance of the database, i.e., database re-engtheer late certain functionality. However, support for crossicut
with aspects exposes the same functionality as the originalconcerns in CDBMSs is not provided. Database compo-

database. nents are developed independently, and therefore each
developed component has its crosscutting concerns im-
6. Redated work plemented by the component developer independently of

other components. This can lead to the code that is com-

In the area of database systems, the aspect—oriente@lex and difficult to maintain and develop.
databases initiative aims at bringing the notion of sepa-
ration of concerns to databases [19].sAmiautonomous 7. Summary
database evolution system (SADES) [18], a prod-
uct of the initiative, uses aspects to allow customization Increasing complexity in development of database sys-
of the database system. The main focus of SADES is as-tems accompanied by the demand for enabling their tai-
pect support on the database level, e.g., aspects are used torability requires the integration of aspect-orientedt-so
denote changes to links among entities, such as predecesware development (AOSD) with database system develop-
sor/successor links between object versions or class verment. However, it is essential to identify benefits and poten
sions, and inheritance links between classes. In contrast, tial drawbacks of a novel technique, such as AOSD, before

it can efficiently be applied in the domain of database sys-

tems.

We have presented a case study, using the well-known [8]
embedded database system, Berkeley database, that iden-

tifies benefits and drawbacks of applying aspect-oriemtatio

and aspect programming languages to the design and imple-[g]
mentation of database systems. The reason for choosing an
embedded database lies in the fact that designing a database

customized for a particular application is essential for an
embedded database system and therefore has even grea

importance than for the traditional database systems.

by

Our study shows that using the aspect-oriented approach
when designing and implementing a database improves

maintainability of the system and allows efficient changes

in the database software as crosscutting concernsin the sys
tem can be maintained separately, localized in aspects, angiL1]

then automatically woven into the overall system, e.gl; fai

ure detection and synchronization. The study also reveals
that implementing error handling in the form of an aspect [12]
could result in an increase of the code size and thereby in

degraded testability and maintainability of the systenr- Fu

thermore, we identified that there is a trade-off between re-

qguirements for tailorability and maintainability of thessy
tem when aspects are used.

Our on-going work focuses on implementation of

[13]

a highly reconfigurable embedded real-time database,[l4]

called COMET [21], which is being built using both

aspect-oriented and component-based software engineer[l5]

ing techniques.

References

[1] Berkeley DB, http://www.sleepycat.com. Sleepycat tSof
ware Inc.

The AspectJ Programming GuidBeptember 2002. Avail-
able at: http://aspectj.org/doc/dist/progguide/intaxl.

(2]
(3]

access interoperability in the IBM database famifEEE

Quarterly Bulletin on Data Engineering; Special Issue on

Interoperability 21(3):4-11, 1998.
[4] Y. Coady and G. Kiczales. Back to the future: A retroaetiv
study of aspect evolution in operating system codePrio

[16]

[17]

M. J. Carey, L. M. Haas, J. Kleewein, and B. Reinwald. Data [18]

[19]

ceedings of the Second International Conference on Aspect-

Oriented Software Developmempiages 50-59. ACM Press,
2003.

[5] K. R. Dittrich and A. Geppert.Component Database Sys-

tems chapter Component Database Systems: Introduction,
Foundations, and Overview. Morgan Kaufmann Publishers,

2000.
[6] A.Gal, W. Schroder-Preikschat, and O. Spinczyk. Oreasp
orientation in distributed real-time dependable systeins.

Proceedings of the Seventh IEEE International Workshop on

Object-oriented Real-time Dependable Syste2082.
[7] A. Geppert, S. Scherrer, and K. R. Dittrich. KIDS: Con-

[20]

[21]

struction of database management systems based on reuse.

Technical Report ifi-97.01, Department of Computer Sci-
ence, University of Zurich, September 1997.

Developing DataBlade modules for Informix-Universal
Server. Informix Corporation, 22 March 2001. Available
at http://www.informix.com/datablades/.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes
J.-M. Loingtier, and J. Irwin. Aspect-oriented program-
ming. InProceedings of the ECOQRolume 1241 ofLec-
ture Notes in Computer Sciengeages 220-242. Springer-
Verlag, 1997.

J. Kienzle and R. Guerraoui. AOP: Does it make sense?
The case of concurrency and failures. Rmoceedings of
the 16th European Conference on Object-Oriented Program-
ming (ECOOP 2002)volume 2374 ofLecture Notes in
Computer Sciencgpages 37-61, Malaga, Spain, June 2002.
Springer-Verlag.

M. Lippert and C. V. Lopes. A study on exception deteatio
and handling using aspect-oriented programming. Technica
Report CSL-99-1, Utah Univeristy, 1999.

D. Mahrenholz, O. Spinczyk, A. Gal, and W. Schroder-
Preikschat. An aspect-orientied implementation of intgtr
synchronization in the PURE operating system family. In
Proceedings of the 5th ECOOP Workshop on Object Orien-
tation and Operating Systepiglalaga, Spain, June 2002.
Universal data access through OLE DB. OLE DB Technical
Materials. OLE DB White Papers, 12 April 2001. Available
at http://www.microsoft.com/data/techmat.htm.

M. A. Olson. Selecting and implementing an embedded
database systenEEE Computers33(9):27—-34, Sept. 2000.

S. Olson, R. Pledereder, P. Shaw, and D. Yach. The Sybase
architecture for extensible data managemBata Engineer-

ing Bulletin 21(3):12—-24, 1998.

All your data: The Oracle extensibility architectur®racle
Technical White Paper. Oracle Corporation, February 1999.
M. T. Ozsu and B. YaoComponent Database Systemisap-

ter Building Component Database Systems Using CORBA.
Data Management Systems. Morgan Kaufmann Publishers,
2000.

A. Rashid. A hybrid approach to separation of concetims:
story of SADES. InProceedings of the third International
REFLECTION Confereng@olume 2192 of ecture Notes in
Computer Sciengpages 231-249, Kyoto, Japan, September
2001. Springer-Verlag.

A. Rashid. Aspect-Oriented Database SystenfSpringer,
2004.

O. Spinczyk, A. Gal, and W. Schroder-Preikschat. As-
pectC++: an aspect-oriented extension to C++Piloceed-
ings of the 40th International Conference on Technology
of Object-Oriented Languages and Systems (TOOLS Pacific
2002) Sydney, Australia, February 2002. Australian Com-
puter Society.

A. TeSanovic, D. Nystrom, J. Hansson, and C. NarrstrAs-
pects and components in real-time system development: To-
wards reconfigurable and reusable softwalk@urnal of Em-
bedded Computind-ebruary 2004.

